THE INDECOMPOSABLE K_3 OF FIELDS

MARC LEVINE

In this note, we describe an extension of Hilbert's Theorem 90 for K_2 of fields to the relative K_2 of semilocal PID's containing a field. Most of the results for K_2 of fields proven in [M-S and S] then carry over to the relative K_2 of semilocal PID's containing a field, e.g. computation of the torsion subgroup, and the norm residue isomorphism. Applying this to the semilocal ring of $\{0,1\}$ in \mathbf{A}_E^1 , for a field E, gives a computation of the torsion and co-torsion in

$$K_3(E)^{\mathrm{ind}} := K_3(E)/K_3^M(E).$$

Specifically, we have

- (1) The torsion subgroup of $K_3(E)^{\text{ind}}$ is $H_{\text{\'et}}^0(E, \mu_{\infty}^{\otimes 2})$.
- (2) $K_3(F, \mathbf{Z}/n)^{\operatorname{ind}} \xrightarrow{\sim} H^1_{\operatorname{\acute{e}t}}(E, \mu_n^{\otimes 2})$ for $(n, \operatorname{char}(E)) = 1$, so

$$\varprojlim_n K_3(E)^{\operatorname{ind}}/l^n \tilde{\to} H^1_{\operatorname{\acute{e}t}}(E, \mathbf{Z}_l(2)) \quad \text{for l prime, $l \neq \operatorname{char}(E)$.}$$

- (3) $K_3(E)^{\text{ind}}$ satisfies Galois descent for extensions of degree prime to char(E).
- (4) Bloch's group B(E) is uniquely *n*-divisible if E contains an algebraically closed field, and (n, char(E)) = 1.

The results (3) and (4) follow directly from (1) and (2). To prove (1) and (2), the essential case is when E is a finite extension of the prime field; when E has positive characteristic (1) and (2) follow from Quillen's computation of the K-theory of finite fields [Q2]. For E a number field, (1) and (2) are the conjectures of Lichtenbaum and Quillen in the case of K_3 , i.e. if E is a number field, the Chern class

$$c_{2,1} \colon K_3(E)^{\mathrm{ind}} \otimes \mathbf{Z}_l \to H^1_{\mathrm{\acute{e}t}}(E, \mathbf{Z}_l(2))$$

is an isomorphism. Merkurjev and Suslin have obtained these results, using similar methods. Here we give a sketch of the proof of Hilbert's Theorem 90 for relative K_2 , and its application to the Lichtenbaum-Quillen conjecture for K_3 .

Let R be a semilocal PID with Jacobson radical I. Let \mathcal{D} be an Azumaya algebra over R, and X the associated Brauer-Severi scheme over R. Let \overline{X} denote the fiber over $\overline{R} := R/I$. There is an E_1 spectral sequence converging to the relative K-theory $K_*(X, \overline{X})$ analogous to the Quillen spectral sequence converging to $K_*(X)$; the E_2 term $E_2^{p,q}(X, \overline{X})$ is a relative analogue

Received by the editors May 19, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 18F25, 19F27, 19D55.

to $H^p(X, \mathcal{K}_{-q})$. One proves essentially as when R is a field:

LEMMA 1. Assume that \overline{D} is split, and D has prime rank l over R. Let $h \colon R \to R'$ be a finite étale extension. Then

$$E_2^{1,-2}(X,\overline{X}) \to E_2^{1,-2}(X_{R'},\overline{X}_{R'})$$

is injective.

Let S be a semilocal PID with Jacobson radical J. Let L be the quotient field of S. Weibel [W] has shown that $K_2(S,J)$ is generated by symbols $\{a,b\}$, with $a \in (1+J)^*$, $b \in L^*$. Suppose that S contains a field k containing μ_l , l a prime. Let α be in S^* , let $S^{\alpha} = S[X]/X^l - \alpha$, if $\operatorname{char}(k) \neq l$; if $\operatorname{char}(k) = l$, let $S^{\alpha} = S[X]/X^l - X - \alpha$. Let J^{α} be the Jacobson radical JS^{α} of S^{α} , let

$$N: K_*(S^{\alpha}, J^{\alpha}) \to K_*(S, J)$$

be the norm map, and let σ be a generator of $Gal(S^{\alpha}/S)$.

LEMMA 2.
$$\{y, 1 - N(y)\}$$
 is in $(1 - \sigma)K_2(S^{\alpha}, J^{\alpha})$ for all $y \in (1 + J^{\alpha})^*$.

PROOF (SKETCH). In [S], this is done by an easy direct computation. We proceed here by a generic element method.

Let F_0 be the prime field. If $F_0 = \mathbf{Q}$, let $R = \mathbf{Q}(\mathfrak{G})[t]_{(t)}$; if $F_0 = \mathbf{F}_p$, let $R = \mathbf{F}_p(\mathfrak{G}, t_0)[t]_{(t)}$, with t_0 and t indeterminants. If E is an extension ring of F_0 let $R_E = E[t]_{(t)}$. We let k_0 be the ground field $\mathbf{Q}(\mathfrak{G})$ or $\mathbf{F}_p(\mathfrak{G}, t_0)$. If T is an R-scheme let \overline{T} denote the fiber over $\overline{R} := R/(t)$. After making a purely transcendental extension, we may assume that S contains k_0 .

Let x_0, \ldots, x_{l-1}, v be indeterminants over k, and let $u = v^l$ if $l \neq p$; if l = p, let $u = v^p - v$. Let A^0 , A, and B be the rings

$$A^0 = k_0[x_0, \dots, x_{l-1}], \qquad A = A^0[u], \qquad B = A^0[v],$$

so B = A[v]. Let x be the element

$$x = 1 + t \sum x_i v^i \in R_B,$$

so x is the "generic element" of the universal Kummer extension (or Artin-Schreier extension if l=p) R_B/R_A with $x\equiv 1 \mod t$.

Let $N: R_B \to R_A$ be the norm, σ the generator of $\operatorname{Gal}(R_B/R_A)$ with $\sigma(v) = \varsigma v$ for $l \neq p$, $\sigma(v) = v + 1$ for l = p. Let $X^{1/l} = \operatorname{Spec}(R_B)$, $X = \operatorname{Spec}(R_A)$ and $X^0 = \operatorname{Spec}(R_{A^0})$. Let W be the closed subscheme of $X^{1/l}$ defined by the ideal ((1 - N(x))/t), W' the subscheme defined by (x).

The symbol $\{x, 1 - N(x)\}$ defines an element of $K_2(X^{1/l} - (W \cup W'), \overline{X}^{1/l} - \overline{W})$.

There is an affine open subset U of $X^{1/l} - W - W'$, containing the generic point of $\overline{X}^{1/l}$, and an element μ of $K_2(U, \overline{U})$ with

(*)
$$\{x, 1 - N(x)\} = \mu^{\sigma}/\mu \quad \text{in } K_2(U, \overline{U}).$$

This is fairly easy to show, the essential points being

- (1) the inclusion $\overline{X}^{1/l} \to X^{1/l}$ is split,
- (2) $X^{1/l}$ and X are both affine lines over X^0 .

Given an element y of S^{α} , if y is sufficiently general, we can pull back the relation (*) to show that $\{y, 1 - N(y)\} = z^{\sigma}/z$ in $K_2(S^{\alpha}, J^{\alpha})$. We then conclude by a specialization argument. \square

Let $\{S_i \mid i \in I\}$ be a filtering direct system of semilocal PID's. Let J_i be the Jacobson radical of S_i , and let S_{∞} and J_{∞} denote the direct limits

$$S_{\infty} = \lim_{i \to \infty} S_i, \qquad J_{\infty} = \lim_{i \to \infty} J_i.$$

We suppose that $\{S_i \mid i \in I\}$ satisfies

- (I) Every x in $1 + J_{\infty}$ is a norm from S_{∞}^{α} .
- (II) If P(u) is a separable polynomial with coefficients in S_{∞} and has degree d < l, then P(u) factors completely in $S_{\infty}[u]$.

LEMMA 3. Assuming (I) and (II), the quotient group

$$K_2(S_{\infty}^{\alpha}, J_{\infty}^{\alpha})/(1-\sigma)K_2(S_{\infty}^{\alpha}, J_{\infty}^{\alpha})$$

is generated via symbols by $(1 + J_{\infty}^{\alpha})^* \otimes L_{\infty}^*$.

The proof is essentially the same as the proof of the similar fact for K_2 of fields in $[\mathbf{B}-\mathbf{T}]$.

THEOREM 1 (HILBERT'S THEOREM 90 FOR RELATIVE K_2). Let S be a semilocal PID containing a field k, and containing an lth root of unity, l a prime. Let J be the Jacobson radical of S and α a unit in S. Let σ be a generator of $\mathrm{Gal}(S^{\alpha}/S)$. Then the complex

$$K_2(S^{\alpha}, J^{\alpha}) \underset{(1-\sigma)}{\longrightarrow} K_2(S^{\alpha}, J^{\alpha}) \underset{\text{Norm}}{\longrightarrow} K_2(S, J)$$

is exact.

Using the above lemmas, the proof follows the same outline as Suslin's proof of Hilbert's Theorem 90 for K_2 of fields in [S].

Exactly as in Suslin [S], applying Hilbert's Theorem 90 to the generic Kummer extension $S(u^{1/l})/S(u)$, and the generic Artin-Schreier extension $S(\mathcal{P}^{-1}(u))/S(u)$ one gets

THEOREM 2. Let (S,J) be as above. The l-torsion subgroup of $K_2(S,J)$ is generated by symbols $\{f,\zeta\}$, where f is in $(1+J)^*$, and ζ is an lth root of unity. $K_2(S,J)$ is p-torsion free if k has characteristic p>0.

COROLLARY. Let E be a field. Then the l-torsion subgroup of $K_3(E)^{\text{ind}} := K_3(E)/K_3^M(E)$ is cyclic.

PROOF. We may assume that E contains μ_l . Let (R, J) be the semilocal ring of $\{0, 1\}$ on \mathbf{A}_E^1 . We have the exact sequence

$$0 \to K_3(E)^{\mathrm{ind}} \to K_2(R,J) \to K_2(R) \to.$$

From this and Theorem 2, it follows that ${}_{l}K_{3}(E)^{\mathrm{ind}}$ is generated by symbols of the form $\{f,\varsigma\}$, $f\in(1+J)^*$ with $f\in(R^*)^l$. Writing such an f as $f=g^l$, $g\in R^*$, we normalize g so that g(0)=1. Then the class of $f \mod((1+J)^*)^l$ is determined by the value $g(1)\in\mu_l$, proving the corollary. \square

Now we can show

THEOREM 3. Let E be a number field. The Chern class

$$c_{2,1} \colon K_3(E)^{\operatorname{ind}} \otimes \mathbf{Z}_l \to H^1(E, \mathbf{Z}_l(2))$$

is an isomorphism, so the l-primary torsion in $K_3(E)^{\text{ind}}$ is isomorphic to $H^0(E,(\boldsymbol{\mu}_l^{\infty})^{\otimes 2})$.

PROOF. We may assume that E contains μ_l . From $[\mathbf{Q}]$, $K_3(E)$ is finitely generated. From the above, the l-torsion in $K_3(E)^{\mathrm{ind}}$ is cyclic, hence the l-primary torsion is also cyclic. By $[\mathbf{B}-\mathbf{T}]$, $K_3^M(E)$ is a 2-torsion group; by $[\mathbf{B}]$ the rank of $K_3(E)$ is r_2 . Thus $K_3(E)^{\mathrm{ind}}/l$ is a \mathbf{Z}/l vector space of dimension between r_2 and $1+r_2$. In addition, the Chern class vanishes on the Milnor K_3 (this follows from the integral product formula for Chern classes).

Let symb $H^1(E, \mu_l^{\otimes 2}) \to {}_l K_2(E)$ be the map

$$H^1(E, \boldsymbol{\mu}_l^{\otimes 2}) \tilde{\rightarrow} (E^*/(E^*)^l) \otimes \boldsymbol{\mu}_l \rightarrow {}_l K_2(E)$$

and let H be the kernel of symb. Tate [T] has shown that H is $(\mathbf{Z}/l)^{1+r_2}$ and that symb is surjective. Soule [So] has shown that $c_{2,1}$ is surjective. Suslin shows in [S] that $H = c_{2,1}(K_3(E))$, and that the induced map

$$\bar{c}_{2,1} \colon {}_{l}K_{2}(E) \to H^{1}(E, \boldsymbol{\mu}_{l}^{\otimes Z})/H$$

is inverse to symb. This, together with the computation of $K_3(E)^{\text{ind}}/l$ above, implies that the Chern class map

(*)
$$c_{2,1} \colon K_3(E, \mathbf{Z}/l)^{\text{ind}} \to H^1(E, \boldsymbol{\mu}_l^{\otimes 2})$$

is an isomorphism. Let R be as in the corollary, $\pi^* : E \to R$ the inclusion. A localization argument together with (*) shows that

$$c_{2,1}\colon K_3(R;\mathbf{Z}/l)^{\mathrm{ind}} \to H^1(R,\pmb{\mu}_l^{\otimes 2})$$

is surjective. We have the commutative square

$$\begin{array}{cccc} K_3(R;\mathbf{Z}/l) & \xrightarrow{\delta_K} & K_3(E;\mathbf{Z}/l) \\ c_{2,1} \downarrow & & \downarrow c_{2,1} \\ H^1(R,\boldsymbol{\mu}_l^{\otimes 2}) & \xrightarrow{\delta_H} & H^1(E,\boldsymbol{\mu}_l^{\otimes 2}) \end{array}$$

where the δ 's are the maps "reduce mod J" followed by the difference map. This diagram, together with the surjectivity of $c_{2,1}$ and δ_H , then implies that δ_K is surjective (δ_K is obviously surjective on the Milnor K_3), and hence $K_2(R,J;\mathbf{Z}/l) \to K_2(R;\mathbf{Z}/l)$ is injective. Thus $K_2(R,J)/l \to K_2(R)/l$ is injective.

Let L be the quotient field of R and $i : \operatorname{Spec}(L) \to \operatorname{Spec}(R)$ the inclusion. We have the commutative ladder

the horizontal lines coming from the relativization sequence, and the vertical arrows Chern classes (Galois symbols). For all n, the Galois symbols for

 $K_2(R)/l^n$ and $K_2(E)/l^n$ are isomorphisms. The surjectivity of δ_H shows that $H^2(R,i_!(\boldsymbol{\mu}_l^{\otimes 2})) \to H^1(R,\boldsymbol{\mu}_l^{\otimes 2})$ is injective, hence the second vertical arrow is an isomorphism for n=1. We have the commutative ladder

with the second row exact, and the first row exact except possibly at $K_2(R,J)/l^n$. This and induction show that the Galois symbol for $K_2(R,J)/l^n$ is an isomorphism for all n.

From the localization sequence on \mathbf{A}_E^1 , together with a knowledge of $K_2(E)$, and K_1 of number fields, it follows that $K_2(R)\{l\}$ has no l-divisible subgroups, hence the same for $K_2(R,J)$. Thus for n sufficiently large, the l-primary torsion in $K_3(E)^{\mathrm{ind}}$ injects into $K_2(R,J)/l^n$. From the ladder (***), it follows that the Chern class $c_{2,1}:K_3(E)^{\mathrm{ind}}\to H^1(E,\boldsymbol{\mu}_{l^n}^{\otimes 2})$ is injective on the l-primary torsion for large n. From this, the surjectivity of $c_{2,1}$, and the computation of the ranks of $K_3(E)^{\mathrm{ind}}$ and $H^1(E,\mathbf{Z}_l(2))$ (the latter due to Tate $[\mathbf{T}]$) it follows that the Chern class gives an isomorphism on the limits

$$c_{2,1} \colon K_3(E)^{\operatorname{ind}} \otimes \mathbf{Z}_l \to H^1(E, \mathbf{Z}_l(2)),$$

proving the theorem.

REFERENCES

- [B-T] H. Bass and J. Tate, On the Milnor ring of a field, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1973, pp. 349-446.
- [B] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974), 235-272.
- [M-S] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR-Izv. 21 (1983), 307-340.
- [Q] D. Quillen, Finite generation of the groups K_i of rings of algebraic integers, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1973, pp. 179–198.
- [Q2] ____, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586.
- [So] C. Soulé, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-296.
 - [S] A. A. Suslin, Torsion in K₂ of fields, LOMI Preprint, 1982.
- [T] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257–274.
- [W] C. Weibel, Mennicke-type symbols for relative K_2 , Lecture Notes in Math., vol. 1046, Springer-Verlag, Berlin and New York, 1984.

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS 02115