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THE INDECOMPOSABLE K3 OF FIELDS 

MARC LEVINE 

In this note, we describe an extension of Hubert's Theorem 90 for K2 
of fields to the relative K<i of semilocal PID's containing a field. Most of 
the results for K2 of fields proven in [M-S and S] then carry over to the 
relative K% of semilocal PID's containing a field, e.g. computation of the 
torsion subgroup, and the norm residue isomorphism. Applying this to the 
semilocal ring of {0,1} in A^, for a field E, gives a computation of the torsion 
and co-torsion in 

K3{Eynd:=K3{E)/K^(E). 

Specifically, we have 
(1) The torsion subgroup of K3(E)ïnd is H°t(E,v®?). 
(2) K3(F,Z/n)™d+Hit(E^®2) for (n,char(£)) = 1, so 

\\mK3(E)'md/ln^Hlt(E, Z|(2)) for / prime, I # char(£). 
n 

(3) K3(E)md satisfies Galois descent for extensions of degree prime to 
char(£). 

(4) Bloch's group B(E) is uniquely n-divisible if E contains an algebraically 
closed field, and (n, char(i£)) = 1. 

The results (3) and (4) follow directly from (1) and (2). To prove (1) and 
(2), the essential case is when E is a finite extension of the prime field; when 
E has positive characteristic (1) and (2) follow from Quillen's computation 
of the if-theory of finite fields [Q2]. For E a number field, (1) and (2) are 
the conjectures of Lichtenbaum and Quillen in the case of K3, i.e. if E is a 
number field, the Chern class 

c2|1 : K3(Erd ® Zi - H\t{E, Z,(2)) 

is an isomorphism. Merkurjev and Suslin have obtained these results, using 
similar methods. Here we give a sketch of the proof of Hubert's Theorem 90 
for relative #2, and its application to the Lichtenbaum-Quillen conjecture for 
K3. 

Let R be a semilocal PID with Jacobson radical I. Let V be an Azu-
maya algebra over R, and X the associated Brauer-Severi scheme over R. Let 
X denote the fiber over R := R/I. There is an E\ spectral sequence con­
verging to the relative K-theory K* (X, X) analogous to the Quillen spectral 
sequence converging to K+(X); the E2 term E^^X^X) is a relative analogue 
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to HV(X, K-q). One proves essentially as when R is a field: 

LEMMA 1. Assume that D is split, and D has prime rank I over R. Let 
h: R —• R' be a finite étale extension. Then 

is injective. 

Let 5 be a semilocal PID with Jacobson radical J . Let L be the quotient 
field of S. Weibel [W] has shown that K2{S^ J) is generated by symbols {a, 6}, 
with a G (1 + J)*, b € L*. Suppose that S contains a field k containing /*/, / 
a prime. Let a be in S*, let Sa = S[X]/Xl - a, if char(fc) ^ /; if char(fc) = /, 
let Sa = S[X]/Xl -X-a. Let Ja be the Jacobson radical JSa of Sa, let 

N:K*(Sa,J<*)->K*{S,J) 

be the norm map, and let a be a generator of Gsl(Sa/S). 

LEMMA 2. {y,l-N{y)} is in {1 - a)K2{Sa,Ja) for all y e {I + Ja)*. 

PROOF (SKETCH). In [S], this is done by an easy direct computation. We 
proceed here by a generic element method. 

Let Fo be the prime field. If F0 = Q, let R = Q(a)[%); if F0 = F p , let 
R = Fp(#, £o)M(t)> with to and t indeterminants. If E is an extension ring of 
F0 let RE = E[t]w. We let k0 be the ground field Qfo) or Fp(û,*0). If T is 
an ^-scheme let T denote the fiber over R := R/{t). After making a purely 
transcendental extension, we may assume that S contains ko. 

Let Xo,... ,£j_i, v be indeterminants over A;, and let u = vl if / / p; if 
/ = p, let w = vp - v. Let A0, A, and £ be the rings 

i4° = *ö[xo,. . . ,*i-i], A = A°[t4], B = A°M, 

so i? = A[v]. Let x be the element 

x = l + t^XiV1 €RB, 

so x is the "generic element" of the universal Kummer extension (or Artin-
Schreier extension if / = p) RB/RA with x = 1 modi. 

Let N: RB —* RA be the norm, a the generator of GB\(RB/RA) with 
a(v) = £v for I / p, <r(v) = v + 1 for / = p. Let X1!1 = Spec(i?s), X = 
Spec(i^) and X° = Spec(i?^o). Let W be the closed subscheme of X1!1 

defined by the ideal ((1 — iV(x))/£), W' the subscheme defined by (x). 
The symbol {x, 1 - N{x)} defines an element of K2{X1/1 - {W U W7)» 

There is an affine open subset U of X1!1 — W — W', containing the generic 
point of X , and an element // of K2(U, U) with 

(*) {x,l-7V(x)} = / /7 / i mK2(UjJ). 

This is fairly easy to show, the essential points being 
(1) the inclusion X —• X1!1 is split, 
(2) Xlll and X are both affine lines over X°. 
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Given an element y of S a , if y is sufficiently general, we can pull back 
the relation (*) to show that {y, 1 - N(y)} = z°jz in K2{Sa, Ja). We then 
conclude by a specialization argument. D 

Let {Si | i € / } be a filtering direct system of semilocal PID's. Let Ji be 
the Jacobson radical of £», and let 5oo and JQO denote the direct limits 

Soo = \mi Si, JQQ = \im Jj. 

We suppose that {Si \ i G /} satisfies 
(I) Every x in 1 + J ^ is a norm from S^. 
(II) If P{u) is a separable polynomial with coefficients in SQO and has degree 

d < /, then P(w) factors completely i n OQO K*J • 

LEMMA 3. Assuming (I) and (II), the quotient group 

is generated via symbols by (1 + J^ )* (8) ^JQ. 

The proof is essentially the same as the proof of the similar fact for K2 of 
fields in [B-T]. 

THEOREM 1 (HlLBERT'S THEOREM 90 FOR RELATIVE K2). Let S be 
a semilocal PID containing a field k, and containing an Ith root of unity, I 
a prime. Let J be the Jacobson radical of S and a a unit in S. Let a be a 
generator of Gsl(Sa/S). Then the complex 

K2(S«,J<*) -+ K2(S",Ja)^ K2(S,J) 
(l—a) Norm 

is exact. 

Using the above lemmas, the proof follows the same outline as Suslin's 
proof of Hilbert's Theorem 90 for K2 of fields in [S]. 

Exactly as in Suslin [S], applying Hubert's Theorem 90 to the generic 
Kummer extension 5(w1/ /)/5(ti), and the generic Art in-Schreier extension 
S{P-x{u))/S{u) one gets 

THEOREM 2. Let (5, J) be as above. The l-torsion subgroup of K2(S,J) 
is generated by symbols {ƒ, ç}, where f is in (1 + J)*, and <; is an Ith root of 
unity. K2(S, J) is p-torsion free if k has characteristic p > 0. 

COROLLARY. Let E be a field. Then the l-torsion subgroup ofK3(E)[nd := 
K3{E)/Kg*(E) is cyclic. 

PROOF. We may assume that E contains w. Let (i?, J) be the semilocal 
ring of {0,1} on A^. We have the exact sequence 

0 -* K3{E)ind - K2{R, J) -+ K2{R) -+ . 

From this and Theorem 2, it follows that jif3(i£)ind is generated by symbols 
of the form {ƒ, f}, ƒ € (1 + J)* with ƒ G (fl*)'. Writing such an ƒ as ƒ = gl, 
g € i?*, we normalize g so that g(0) = 1. Then the class of ƒ mod((l -f J)*)1 

is determined by the value #(1) G /*/, proving the corollary. D 
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Now we can show 

THEOREM 3. Let E be a number field. The Chern class 

C2,i : K3(Erd ®Z | - H\E, Z,(2)) 

25 an isomorphism, so the l-primary torsion in Ks(E)md is isomorphic to 
#°(£,(/*f°)®2). 

PROOF. We may assume that E contains /LIJ. From [Q], K$(E) is finitely 
generated. From the above, the /-torsion in Ks(E)ind is cyclic, hence the l-
primary torsion is also cyclic. By [B-T], K^I{E) is a 2-torsion group; by [B] 
the rank of K${E) is r2. Thus Ks(E)ind/l is a Z/l vector space of dimension 
between r2 and 1 + r2. In addition, the Chern class vanishes on the Milnor 
Kz (this follows from the integral product formula for Chern classes). 

Let symb Hx(E^f2) -+ tK2(E) be the map 

H\E,ikf2WE*l(E*)l)®m - iK2(E) 

and let H be the kernel of symb. Tate [T] has shown that H is (Z//)1 + r 2 and 
that symb is surjective. Soule [So] has shown that C2,i is surjective. Suslin 
shows in [S] that H = C2,i(ÜT3(i?)), and that the induced map 

c2tl:lK2(E)-+H1(E,pfz)/H 

is inverse to symb. This, together with the computation of Ks(E)md/l above, 
implies that the Chern class map 

(*) c2y.Kz{E,ZllTA->Hl{E,tif2) 

is an isomorphism. Let R be as in the corollary, 7r* : E —• R the inclusion. A 
localization argument together with (*) shows that 

c2y. Ks{R;Z/irA -+ H\R,»f2) 

is surjective. We have the commutative square 

K3(R;Z/l) s-5 K3(E;Z/l) 
(**) C2,l 4 | C2,l 

H\R,nr) % H\E,tf*) 
where the <5's are the maps "reduce mod J" followed by the difference map. 
This diagram, together with the surjectivity of C2,i and 8 H, then implies that 
8K is surjective (8 K is obviously surjective on the Milnor X3), and hence 
K2(R,J;Z/l) -+ K2(R;Z/l) is injective. Thus K2(R,J)/l -> K2(R)/l is 
injective. 

Let L be the quotient field of R and i: Spec(L) —> Spec(R) the inclusion. 
We have the commutative ladder 
(***) 

K3(E)ind/ln -+ K2(R,J)/ln -• K2(R)/ln -• (K2(E)/ln)2 -* 0 
1 1 i i 

HHE^%2) -> H*(RM»?n2)) - H2(R,fifn
2)) - (H2(Efifn

2))2 - 0. 
the horizontal lines coming from the relativization sequence, and the vertical 
arrows Chern classes (Galois symbols). For all n, the Galois symbols for 
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K2{R)/ln and K2{E)/ln are isomorphisms. The surjectivity of ÔH shows that 
H2(R,i\{iif2)) —• f/"1(i?,/if2) is injective, hence the second vertical arrow is 
an isomorphism for n = 1. We have the commutative ladder 

tK2(R,J) - K2(R,J)/ln -+ K2{R,J)lln+x -> K2(R,J)/l -» 0 
symbî | | | 

HHRM9*?2)) -> H*{RM»?n2)) - H*(RMn%li)) -> H*(RM»?2)) 

with the second row exact, and the first row exact except possibly at 
K2(R, J)/ln- This and induction show that the Galois symbol for K2{R, J)/ln 

is an isomorphism for all n. 
From the localization sequence on A^, together with a knowledge ofK2(E), 

and K\ of number fields, it follows that K2{R){1} has no /-divisible subgroups, 
hence the same for K2(R,J). Thus for n sufficiently large, the /-primary 
torsion in K3(E)ind injects into K2(R,J)/ln. From the ladder (***), it fol­
lows that the Chern class c2,i : K3(E)ind - • Hl(E,nfr?) is injective on the 
/-primary torsion for large n. From this, the surjectivity of C2,i, and the com­
putation of the ranks of K3(E)'md and Hl(E, Z/(2)) (the latter due to Tate 
[T]) it follows that the Chern class gives an isomorphism on the limits 

c2)1: ÜT3(£)ind ®Zi - ff1(S,Z,(2)), 

proving the theorem. D 
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