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INDUCTION THEOREMS FOR INFINITE GROUPS 

JOHN A. MOODY 

The purpose of this paper is to announce Theorems 1 and 4 below. These 
may be viewed as generalizations of theorems of Brauer, Swan, and Artin [11] 
to certain classes of infinite groups. 

THEOREM 1. Let G be a virtually polycyclic group. Let U be a G-graded 
ring with a unit in each degree, such that U\ is Noetherian. Then the induction 
map 

(1) 0 K'0UH - K'0UG 
H<ZG 

finite 

is surjective, where UH is the part of U supported on H, for each H C G. 

The proof depends on a structure theorem for such U. 
Added in proof: I wish to thank Hyman Bass for carefully planning my 

course of graduate study to bring me into contact with this constellation of 
research questions. The idea for the structure theorem comes from a case 
of the general unpublished conjecture of Farrell and Hsiang that leads to 
recent work of Farrell-Jones and F. Quinn. The conjecture about KQ was 
independently posed by S. Rosset [7] based on ring-theoretic evidence. I 
wish to thank Tom Farrell for showing me his conjecture with Hsiang and 
expressing confidence in the approach to Theorem 1. 

In the special case that k is a field of characteristic 0 and U is the group 
algebra kG with the natural grading, Theorem 1 is equivalent to the following 
result announced by F. Quinn [8] (at least for k = Q) in establishing Farrell 
and Hsiang's conjecture [4]: 

(2) K0{kG)~ lim K0{kH) 
Hei(G) 

{7 = Frobenius category of finite subgroups). In effect, as kG and all kH 
are regular, we may identify K$ and K'0 via the Cartan map, so (2) => (1). 
Conversely, in the diagram 

lim K0{kH) -> 
H€?(G) 

1 r 
lim TfJzH) *-+ 

HET(G) 
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K0(kG) 

ir 

T(kG) 
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where the vertical maps are Bass's rank map [1], once the top arrow is sur-
jective it is automatically an isomorphism, so (1) => (2). 

In case k is instead a Noetherian Hubert ring and U = kG for G crystal-
lographic, K. A. Brown, J. Howie, and M. Lorenz have already shown that 
(1) ® Q is surjective [3]. They made use of Roseblade's structure theory of 
group algebras of poly Z by finite groups. 

Rosset showed [7] when A; is a field and G is a prime virtually polycyclic 
group, letting Qc{kG) denote the simple Artinian classical fraction ring of kG, 
and writing 

a = lcm |//"I, 
H<ZG 
finite 

6 = length(QcA;G), 

c = least common denominator XC^OJ M f.g. fcG-module, 

that a\b and b\c. Also he showed that whenever the induction map 

0 K'^kH) -> K'0(kG) 
HCG 
finite 

is surjective, c\a. 
However, Theorem 1 implies that this map is indeed surjective, so we obtain 

the solution of the Goldie rank conjecture: 

THEOREM 2 (Rosset, Goldie rank conjecture). 

length QckG = \cm\H\. 
HC.G 
finite 

In a joint paper with P. Kropholler and P. Linnell, we plan to apply The­
orem 1 to extend the statement of Theorem 2 to a larger class of groups. In 
particular, we will deduce the Zero-Divisor Conjecture for solvable groups. 

To illustrate the technique, 

THEOREM 3. Let U be a G-graded ring with a unit in each degree. Suppose 
that G is virtually polycyclic and for each H C G finite, UH is an Ore domain. 
Then U is an Ore domain. 

Letting S = U\ — 0, each S~1UH is a division ring when KQ(S~1UH) — 0. 
Then by Theorem 1, K^S^U) = 0, so that Noetherian ring is necessarily 
an Ore domain; so U must have been. 

Note that Theorem 3 is not weakened by replacing the words "virtually 
polycyclic" by "finitely generated virtually abelian," because once the theorem 
holds for all finite extensions of the factors of a finite composition series of a 
group T, it holds as well for T. Note also that it sufiices to verify the conclusion 
for finitely generated subgroups; so, for instance, "finitely generated virtually 
abelian" can be replaced by "virtually abelian." For full details in the general 
case refer to our joint paper mentioned above. 
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THEOREM 4. Suppose G C GLm(F) for some field F, m > 1; k is a 
normal domain of characteristic 0. Let r: G —> k be a virtual rank function. 
Then there is a number e > 1 and finite hyperelementary subgroups Hi,..., Hn 

of G such that for all g G G 

(3) ^K^Ei^E^"1) 
in G 

where for each i, Xi: Hi —• k is a virtual character of finitely generated pro­
jective kHi-modules. Take e as small as possible. 

For any group G, any fccQ, and any virtual rank function ƒ: G —» k [1], 
Linnell showed [5], when r{g) ^ 0, that 

(4) r(g) = r(gp), p£kx prime. 

We show that for k C C, any group G and any virtual rank function ƒ : G —> A;, 
the finite abelian extension K = Q({r(g): g € G})/Q (see [2]) satisfies 

i. d(.fi:/Q)€fcx, 

2. rfo") = (Jf/Q,p)(r(fl)) forp£fc x , 

where (K/Q,p) is the Artin symbol and d(K/Q) is the discriminant. This 
represents an improvement of Bass's [1], which asserted the second part for 
almost all unramified p £ kx. Both parts were suggested by K. S. Brown 
(private correspondence) before Lmnell's preprint became available. 

Theorem 4 is a consequence of (5) and elementary techniques of [9]. 

REMARK 5. If k is a field of characteristic 0 and G is virtually polycyclic, 
(2) implies that e = 1 and that, given finitely generated projective kG-modules 
P and P' with rank functions r and r', 

r — r' *> P ~ P' stably isomorphic 

so Ko(kG) is isomorphic to the group of functions G —> k of the form (3). 

The hypothesis that G is a linear group is not necessary in Theorem 4. 
In fact Theorem 4 goes through, without the linearity assumption, for For-
manek's groups of type (D) (cf. [1]). 

Also, using Theorem 4 and Kaplansky's theorem [6], 

COROLLARY 6. Let P{T) G k[T] be monic of discriminant A, k a domain 
of characteristic 0 and G a group of type (D). If the order of no finite subgroup 
of G is invertible in k, and A € kx, then all solutions in kG of the equation 

P{T) = 0 

actually lie in k. 
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