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boundaries do not satisfy the relevant curvature conditions. Solutions with 
infinite boundary data are also considered. This sometimes produces interest­
ing generalizations of one of Scherk's classical minimal surfaces. 

The final chapter of this book is devoted to extensions of the theorem of 
S. Bernstein that a function z = ƒ(*, y) satisfying the minimal surface equa­
tion and defined for all (x, y) in R2 must be affine. The corresponding 
theorem for functions ƒ : Rw -» R is true when n = 3, 4, 5, 6, 7 and fails for 
larger n. 

As indicated above, this book leads one near the frontiers of knowledge in 
the study of oriented area-minimizing hypersurfaces. Much more remains to be 
done. For example, we know very little about the structure of singularities—not 
even if they necessarily have integer dimensions or whether or not they can 
persist under small boundary deformations. 
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Value distribution theory has known alternating periods of quiescence and 
rapid progress: the classical function-theoretic work of Nevanlinna, Ahlfors' 
introduction of differential-geometric methods, the work of Stoll, and the 
work of the Griffiths school, motivated by problems in algebraic geometry. 
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Shabat's book, translated from the Russian by James King, is an excellent 
self-contained exposition of this last phase. It contains an extensive bibliogra­
phy, but, sadly, no index. 

Function theory. According to the fundamental theorem of algebra, a 
polynomial equation f(z) = aoî degree d has precisely d solutions (counting 
multiplicities) for all a. Classical value distribution theory seeks similar regu­
larity properties of the solution sets f~l(a) when ƒ is holomorphic, or more 
generally, meromorphic. The transcendental equation ez = a shows that (i) 
there may be lacunary values (e.g. a = 0) for which there are no solutions and 
that (ii) the solution set is in general infinite. One therefore speaks of the order 
of growth of the solution set, measured by the "counting function" nf{r9 a) = 
# { z | / ( z ) = a, | z | < r } , and the order of growth of a function, measured by 
an averaged modulus indicator, 

/ , ( / • ) - ƒ \og+\ f (z)\d6. 

Somewhat better behaved are the logarithmic averages Nf(r9a)9 Tf{r)9 where 
in general the logarithmic average of a function g(t) is the integral 

G(t)-f'[g(s)-g(0)]*/s. 

The fundamental regularity results, the first and second main theorems of 
classical Nevanlinna theory (FMT and SMT) assert that 

Nf(r9a)<Tf(r) + 0(l)9 

(q - 2)7}(r) + Nf(S9 r) < £ Nf(aJ9 r) + o(ln Tf(r))9 
7 = 1 

where nf(S9r) is the counting function for the ramification divisor, and 
Nf(S,r) is its logarithmic average. By ramification divisor we mean the 
analytic set defined by the vanishing of the derivative of ƒ, with points where 
f' vanishes to order n being counted n times. The FMT generahzes the 
inequality (number of zeros) < degree, a fact which is perhaps made more 
evident by Croftons' formula: 

Tf(r)=fpiNf(r,a)da, 

where P1 is complex projective space of dimension one (the Riemann sphere), 
and where da is the invariant measure on P1 of unit total mass. The order 
function 7} is thus revealed as a kind of integrated degree. 
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To obtain more quantitative results define the f-defect of a to be 

, x NÂa,r) 
ôf(a) = 1 - lim -fj-t 

r->oo 1f\r) 

so that (by the FMT) 0 < 8f(a) < 1, while 8f(a) = 1 for lacunary values. The 
SMT—the more subtle of the two results—then gives the celebrated defect 
inequality 

a 

a result which one should view as a quantitative version of Picard's theorem: 
the number of lacunary values (including infinity) cannot exceed 2, with the 
exponential function achieving the bound. 

Differential geometry. Although the function-theoretic proofs gave the best 
possible result for entire meromorphic functions, they did not, unfortunately, 
provide a satisfactory understanding of the constant 2 in the right-hand side of 
the defect inequality. An explanation of this maximum defect came in 1937 
with Ahlfors' introduction of differential-geometric methods to the subject, an 
introduction which was to play a crucial role in all future developments [Al, 
A2]. 

Ahlfors begins with a more geometric definition of the order function. Let 

_ i idz A dz 
W ~ ^ ( l + | z | 2 ) 2 ' 

be the volume form on the Riemann sphere associated to the Fubini-Study 
metric: the unique invariant volume form of total mass 1. Define a new order 
function, one which measures the area of the image of the disk of radius r, by 

J\\*\\<r 

The logarithmic average of this function differs from the one previously 
defined by a bounded function. 

To establish the FMT in this context, consider the function 

An easy calculation shows that 

(i/2*r)aaiogüfl»«-afl, 
where 8a is the Dirac current with support at a. By this we mean the 
differential 2-form with distribution coefficients whose integral against a test 
function p has the value p(a). Take the pullback of the preceding relation 
along a meromorphic function ƒ, integrate over the disk of radius r, apply 
Stokes' theorem, and then form the logarithmic average. The result is the FMT. 

A preliminary form of the SMT is obtained, very roughly, by applying the 
process just outlined to the Fubini-Study metric, modified to have singularities 
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of the right kind at the points ax,..., aq. In more detail, set 

L 1 = 1 J 

dz ® dz 

i ( i + m2)2J 
where 0 < X < 1. Write ƒ * ds2 = h0dz <8> dz and compute the Laplacian to get 

i - q 

— 981og/*0 = - ƒ *S2 + \qf*co + 85 - X £ 8ri(fl>, 

where fl is the curvature form of the Fubini-Study metric, and where the S's 
refer to the Dirac currents of the indicated sets, with S as the ramification 
locus. Because S = Ko), where K is the Gaussian curvature, equal to 2 in this 
case, the integral of the above equation over the disk of radius r gives 

j - [ dd\ogh0=(Xq-2)f / •w + n / ( S > r ) - X l i i / ( f l / > r ) . 

Apply Stokes' theorem, form the logarithmic averages, and work to show that 
the resulting left-hand side is bounded above by a function which is of the 
order of log T. In the limit of X = 1 this gives the SMT. 

The preceding argument reveals the origin and significance of the maximum 
defect: it is geometric, given concretely by the Gaussian curvature K. The 
curvature can be further interpreted as the topological Euler characteristic of 
the Riemann sphere (i.e. the integrated curvature) or, usefully but perhaps less 
transparently, as the proportionality constant between the curvature of the 
tangent bundle and the curvature of the hyperplane bundle. 

Closely related to the above was Ahlfors' differential-geometric proof of the 
Schwarz lemma, a proof which in the late 1960s and early 1970s played a 
central role in complex algebraic geometry (Griffiths' classifying spaces for 
Hodge structures and properties of the period mapping). 

Algebraic geometry. Chow's theorem asserts that any closed analytic sub-
variety of complex projective space is algebraic. Consider therefore an analytic 
sub variety Z of dimension # i n C " = P " - {hyperplane}. Bishop [B]_and Stoll 
[S2] showed that if co is the standard Kàhler form, given by <o = /991og||z||2, 
and if fzu

q < oo, then the closure of Z is an analytic, and hence algebraic, 
subvariety of projective space. Furthermore, arguments based on the Chern 
character, which connects cohomology and ^-theory, and Grauert's theorem, 
which asserts that a complex vector bundle can be deformed to a holomorphic 
one, show that any homology cycle of even dimension in an affine algebraic 
variety can be represented by an analytic cycle: a formal linear combination of 
analytic subvarieties. Now an affine variety (which is a Stein space) is just the 
complement of a hyperplane in an algebraic variety. Thus, if the analytic cycle 
has finite volume, its closure will be algebraic. 

This line of reasoning led Griffiths to formulate a plan for proving the 
Hodge conjecture: Given a primitive integral cohomology class of type (p, p), 
represent its restriction to a hyperplane complement by an analytic cycle, and 
then develop an obstruction theory relating Hodge type to order of growth of 
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the volume of the cycle, so that (p,p) classes can ultimately be represented by 
analytic cycles of finite volume [CoG]. 

Although this plan is still unrealized, it, with Ahlfors' work, prepared the soil 
for the modern flowering of value distribution theory. Among the first results 
were generalizations of Picard's theorem and then the defect relations to the 
context of equidimensional mappings of several complex variables [CaG], i.e., 
holomorphic mappings ƒ: Cn -> Pw. Define the counting function of an 
analytic set of dimension q9 

n(Z,r)=[ <o«, 
JZ[r] 

where Z[r]= {a e Z|| |a| | < r }. Thus, if A is a smooth algebraic hypersurface 
of degree d, then one may consider n(f~1(A), r) and seek for it first and 
second main theorems. The consequent defect relations assert that if the 
Jacobian determinant of ƒ is not identically zero, then 

A 

where the hypersurfaces A meet with normal crossings, i.e. locally as do the 
coordinate hyperplanes in Cn. In particular, if ƒ has «4 -2 lacunary hyper-
planes then its Jacobian determinant must vanish identically, a generalization 
of Picard's theorem to several complex variables (in this context a three-point 
set is a smooth hypersurface of degree three in P1). For the proof one follows 
Ahlfors' lead and constructs a volume form on projective space which (a) has 
prescribed (negative) curvature properties and which (b) has singularities of the 
correct type along the hypersurfaces A. As a model of both the curvature and 
singularity properties one takes the Poincaré volume form on a product of 
punctured disks, where that given on a single punctured disk is 

__ idz A dz 

| |2 | |2(log||z||2)2 ' 

The number on the right-hand side, as in all results of this type, is a 
proportionality constant relating the curvature forms of the various line 
bundles used in the construction of the volume forms. 

Higher codimension. With the study of analytic sets of codimension greater 
than one came results with no classical analogue. In algebraic geometry 
Bezout's theorem asserts that if A1 and A2 are projective algebraic curves with 
no components in common, then 

deg(^x Pi A2) = deg(A1)dQg(A2), 

where on the left the degree is the number of points counting multiplicities and 
where on the right the degree is the degree of the defining equation. In analytic 
geometry one expects an analogous inequality, with the integrated counting 
function in the place of the degree. In the simplest instance the sets At are 
defined by a single analytic function, and so the intersection is defined by a 
vector-valued function. Thus, the hoped-for inequality would follow from a 
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suitable vectorial version of the FMT. Cornalba and Shiffman, however, found 
functions ƒ: C2 -> C2 which show this to be impossible: ƒ has moderate 
growth while the analytic set f~1(Q) has arbitrarily high growth rate. The 
problem was that while there was a FMT, it contained a term which could not 
be estimated in terms of the order function T. Subsequent work showed that 
f~l{a) is well-behaved for all a outside a thin set (a set of capacity zero). The 
"bad term" of the FMT, while inevitably present, was well-behaved in the 
mean. 

This essentially different (and more difficult) behavior of analytic sets of 
codimension greater than one is mirrored by similar phenomena in algebraic 
geometry, where (for example) one knows the Hodge conjecture in codi­
mension one, but not in higher codimension. 

Conclusions. A single paradigm dominated the work of this last period: find 
a (tensorial) potential S with suitable singularities and curvature properties, 
compute 995 to obtain a C00 term (the curvature) and a singular term (the 
integration current of the analytic set to be "counted"), apply Stokes' theorem, 
integrate, form a logarithmic average, and (attempt to) bound any terms other 
than the order and counting functions by O(logT). If successful, obtain a good 
FMT (and perhaps SMT). The influence of Ahlfors' proof of Nevanlinna's 
theorem is clear. 

New techniques or new problems may once again reinvigorate the subject. 
The recent connection with number theory is perhaps a sign of this [V, L]. 
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