COVERING SPACES OF 3-MANIFOLDS

JOEL HASS, HYAM RUBINSTEIN AND PETER SCOTT

Let M be a closed P^2 -irreducible 3-manifold with infinite fundamental group. It is a long-standing conjecture that the universal cover \tilde{M} of M must be homeomorphic to R^3 . Waldhausen [Wa] proved that this is the case when M is Haken. The first result of this announcement is the following generalization of Waldhausen's result.

THEOREM 1. Let M be a closed P^2 -irreducible 3-manifold. If $\pi_1(M)$ contains the fundamental group of a closed surface other than S^2 or P^2 then the universal cover of M is homeomorphic to R^3 .

We will say that a 3-manifold is almost compact if it can be obtained from a compact manifold N by removing a closed subset of ∂N . Then Theorem 1 is equivalent to the assertion that the universal covering of M is almost compact. A natural way to attempt to generalize Theorem 1 is to show that other coverings of M are almost compact. It was conjectured by Simon [Si] that if M is any compact P^2 -irreducible 3-manifold and if M_1 is a covering of M with finitely generated fundamental group then M_1 must be almost compact. Simon verified this conjecture for the case when $\pi_1(M_1)$ is the fundamental group of a boundary component of M. Jaco [J] generalized this to the case when $\pi_1(M_1)$ is a finitely generated peripheral subgroup of $\pi_1(M)$. More recently, Thurston [Th] showed that if M admits a geometrically finite complete hyperbolic structure of infinite volume then Simon's conjecture is true. Finally, Bonahon [B] showed that any hyperbolic 3-manifold with finitely generated fundamental group is almost compact provided that $\pi_1(M)$ is not a free product.

The second result of the announcement is the following.

THEOREM 2. Let M be a closed P^2 -irreducible 3-manifold such that $\pi_1(M)$ contains a subgroup A isomorphic to $Z \times Z$. Then the covering M_A of M with $\pi_1(M_A) = A$ is almost compact.

If M is Haken then the conclusion of the theorem follows immediately from Simon's work [Si]. For the crucial condition needed in [Si] is that if H is any finitely generated subgroup of $\pi_1(M)$, then $H \cap A$ is also finitely generated, and this obviously holds, as A is isomorphic to $Z \times Z$. If M is not Haken, then the version of the Torus Theorem proved by Scott [Sc] shows that some infinite cyclic subgroup of A must be normal in $\pi_1(M)$. Now the following is another long-standing conjecture.

CONJECTURE 3. If M is a closed P^2 -irreducible 3-manifold such that $\pi_1(M)$ contains an infinite cyclic normal subgroup, then M is a Seifert fiber space.

If M is a Seifert fiber space, then Theorem 2 is easily proved. Thus the interest of Theorem 2 is that we do not assume that M is either Haken or a Seifert fiber space. We hope that our result will be a step towards proving Conjecture 3.

Now we give a brief outline of the arguments for proving Theorem 1. Suppose that F is a closed surface, not S^2 or P^2 , such that $\pi_1(M)$ contains $\pi_1(F)$. Then there is a map $f: F \to M$ inducing the inclusion of fundamental groups and we choose f to be a least-area map in its homotopy class. This can be done in the smooth category by choosing a Riemannian metric on M and then applying the existence results of Schoen-Yau [S-Y], or it can be done in the P-L category using work of Jaco and Rubinstein [J-R]. Now in the universal cover \tilde{M} of M, the complete pre-image Π of f(F) consists of planes as f injects $\pi_1(F)$ into the fundamental group of M, and these planes are embedded by results of Freedman, Hass, and Scott [F-H-S]. Further, the intersection of two planes never contains a circle. These planes define a division of M into 3-dimensional chambers, each of which covers one of the compact chambers in M obtained by cutting M along f(F). We show that each of the chambers in M is simply connected and that each chamber in M is π_1 -injective. We also show that if M is not Haken then each chamber in M is a handlebody. It follows that the closure of each chamber in M is almost compact. We show that if a finite collection Σ of the planes in Π are removed, then the new bigger chambers formed by cutting M along $\Pi - \Sigma$ have the same property. As a compact set in M can meet only finitely many planes of Π , it follows immediately that any compact subset of \tilde{M} lies in the interior of a 3-ball. This shows that M is homeomorphic to R^3 as required.

The proof of Theorem 2 uses similar ideas. Let T denote the 2-torus and let $f\colon T\to M$ be a map of least area such that $f_*(\pi_1(T))=A$. The preimage in M_A of f(T) is a collection of possibly singular tori and annuli. If they were all embedded in M_A then we would argue much as in the proof of Theorem 1. This need not be the case, even when M is a Seifert fiber space, but we show that M_A must have a finite cover in which the preimage of f(T) consists of embedded tori and annuli. This result completes the proof of Theorem 2.

REFERENCES

- [B] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), 71–158.
- [F-H-S] M. H. Freedman, J. Hass and P. Scott, Least area incompressible surfaces in 3-manifolds, Invent. Math. 71 (1983), 609-642.
- [J] W. Jaco, Lectures on 3-manifold topology, CBMS Regional Conf. Ser. in Math., no. 43, Amer. Math. Soc., Providence, R.I., 1980.
 - [J-R] W. Jaco and H. Rubinstein, P-L minimal surfaces in 3-manifolds, preprint.
- [Sc] P. Scott, A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980), 241-277.

[Si] J. Simon, Compactification of covering spaces of compact 3-manifolds, Michigan Math. J. 23 (1976), 245-356.

[S-Y] R. Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the topology of 3-dimensional manifolds with non-negative scalar curvature, Ann. of Math. (2) 110 (1974), 127-142.

[Th] W. Thurston, Geometry and topology of 3-manifolds, Lecture Notes, Princeton University, 1978-1979.

[Wa] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, ISRAEL

DEPARTMENT OF MATHEMATICS, MELBOURNE UNIVERSITY, PARKVILLE, VICTORIA 3052, AUSTRALIA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LIVERPOOL, LIVERPOOL, ENGLAND