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A Riesz space is a (real) linear space E endowed with a partial ordering < 
which is translation-invariant (i.e. x<,y=>x + z^y + z) and a lattice (i.e. 
x V y = sup{jc, y) and x A j = inf{x, y} exist for all x and y), and such 
that ax > 0 whenever x > 0 in E and a > 0 in R. Write E+= {x: x > 0}. A 
Riesz norm on E is a norm || || such that ||x|| < \\y\\ whenever \x\ < \y\, where 
\x\ = x V ( — x). A Banach lattice is a Riesz space with a Riesz norm under 
which it is complete. 

From the beginnings of functional analysis it has been recognized that many 
of the most important normed spaces are endowed naturally with Riesz space 
structures. The interactions of the three aspects of a Banach lattice—its linear, 
metric and order structures—lead to a rich and delightful, if not particularly 
deep, tapestry of interwoven motifs. We can study these either in the general, 
setting up an abstract theory, or in the particular, concentrating on well-known 
spaces of special importance. The book under review takes the latter course, 
though fully committed, in language and spirit, to the wider theory of normed 
Riesz spaces. 

An M-space is a Banach lattice E in which \\x V y\\ = max(||x||, || j>||) 
whenever x, y e E+; an L-space is a Banach lattice E in which \\x + y\\ = 
||x|| 4- ||y|| for all x, y e E+. There are effective representation theorems for 
both classes. A Banach lattice is an M-space iff it is isomorphic, as normed 
Riesz space, to the space C0(X) of continuous real-valued functions vanishing 
at infinity on some locally compact Hausdorff space X; it is an L-space iff it is 
isomorphic to the space l}{ X) of equivalence classes of integrable real-valued 
functions on some measure space X. Among the M-spaces we naturally wish to 
identify those corresponding to compact spaces X\ these are precisely the 
M-spaces with a unit e such that, for any x, ||x|| < 1 iff |*| < e. 

Corresponding to the rich internal structure of Riesz spaces is an ap­
propriately elaborate theory of morphisms between them. If E and F are Riesz 
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spaces, we say that a linear map T: E -> F is positive if Tx ^ 0 whenever 
x > 0 and a Ztoz homomorphism if r ( x V j>) = 7* V Ty for all x, >> e E. A 
positive linear map T: E -> F is order-continuous if inf F[yl] = 0 in F whenever 
>4 ç £ is a nonempty, downwards-directed set with infimum 0 in F; it is 
sequentially order-continuous if infw e N7xn = 0 in F whenever (xn)xGN is a 
decreasing sequence with infimum 0 in E. If E and F are Banach lattices, then 
every positive linear map from E to F is norm-continuous; questions concern­
ing order-continuity therefore amount to a sharper enquiry into the nature of 
operators than questions about norm-continuity. The norm dual E' of a 
Banach lattice is precisely the space E~ of differences of positive linear 
functional; within this we can distinguish the subspace Ex of differences of 
order-continuous positive linear functionals. For any Riesz space F, E~ is also 
a Riesz space, if we say that ƒ < g means that f(x) < g(x) for every x e E+. 
If E is an M-space, then E' = F~ is an L-space; if F is an L-space, then 
E' = F~= F x is an M-space with unit. 

If F is a Riesz space, a linear subspace F of F is the kernel of a Riesz 
homomorphism with domain F iff it is solid, i.e., x e F whenever J G F and 
|JC| < | ƒ |. In this case there is a natural Riesz space structure on E/F, saying 
that x- < y iff (x — y) V 0 e F. F is the kernel of an order-continuous Riesz 
homomorphism iff it is a band, i.e., a solid linear subspace such that sup,4 e F 
whenever ^ ç F and sup A is defined in F. F is the set of values of a Riesz 
homomorphism with codomain F iff it is a Riesz subspace of F, i.e., a linear 
subspace such that x V j> e. F whenever x, y e F. Part of the importance of 
the space F x is that it is a band in F ~ and the canonical map from F to 
( F x ) * , the algebraic dual of F x , is an order-continuous Riesz homomorphism 
from F to F x x . 

All the mathematics above is perfectly standard, though no two authors can 
agree on notation; it is dealt with once again in the opening chapters of 
Kaplan's book. But his main concern is with spaces of the form C = C(X), 
where X is a compact Hausdorff space. C is an M-space with unit; its dual 
C' = C~ is an L-space; and its bidual C" = C ' X = C " ~ is another M-space 
with unit. The point at which the study of C" becomes more than the study of 
L-spaces and M-spaces comes when we examine the canonical embedding of C 
in C". This gives rise to a special structure which is the subject of the book 
under review. 

We now approach one of the test theorems of analysis. There is a canonical 
bijection JU •-> h from the space M of Radon measures on X to the positive 
cone C' + of C', given by writing h^(x) = ƒ xd\i for x e C. I call this a test 
theorem because an author's attitude to it is likely to determine his whole 
treatment of the subject. The Bourbaki school made it a tautology by defining 
a Radon measure to be a member of C'. I think this was simply a blunder; a 
measure is an extended-real-valued countably additive function on a a-algebra 
of sets, and sooner or later you have to come to terms with the things. Kaplan 
does not mention the theorem, and finds alternative paths through the thickets 
which surround it. I used to be sympathetic to such enterprises, but have since 
come to feel that they are largely misplaced ingenuity. My present view is that 
if you are studying topic A, and find deep results from topic B standing in 
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your way, it will in the long run be worth learning B properly; not so much 
because you will learn useful facts, as because your intuition will be able to 
operate on an extra wavelength. 

In fact, Kaplan's terminology, as well as his results, make it plain that he is 
fully conscious of the importance of the representation theorem. Consider, for 
instance, the following space of functions, which is properly given a prominent 
place in his account. U is the set of bounded real-valued functions on X which 
are universally measurable, i.e., ft-measurable for every ju e M. If x G [/, then 
(by definition) ƒ xd\i exists for every JU e M, so there is a member x of C" 
defined by writing Jc(/iM) = ƒ x dp for every JU, e M. The map x •-> x: U -» C" 
is an injective sequentially order-continuous Riesz homomorphism which is 
uniferent, i.e., the unit of C" is the image of the unit of C. Accordingly U can 
be identified, as normed Riesz space, with its image Û in C". If x e C then 
* ( ƒ ) = ƒ ( * ) for every / G C ' ; thus the embedding of U in C" extends the 
canonical embedding of C. 

Elements and subsets of U can now be considered in terms of the Riesz 
space structure of C". For instance, write JC for the set of suprema in C" of 
nonempty order-bounded upwards-directed subsets of C, the image of C in 
C". Then JC is precisely the set of images in C" of bounded lower-semi-con­
tinuous real-valued functions on X. Similarly, elements of 3>C, the set of 
infima in C " of nonempty order-bounded downwards-directed subsets of C, 
correspond to bounded upper-semi-continuous functions on X. The set of 
Baire measurable functions on X corresponds to the sequential order-closure 
of C in C"; the set of Borel measurable functions to the sequential order-closure 
of JC - JC. An element <p of C" belongs to Û iff there are nonempty sets 
A,B c C" such that A is upwards-directed, B is downwards-directed, sup^l 
= inf B = <p, and [ a , j 8 ] n C ^ 0 for every a e i and f} e B; Û can also be 
characterized as Q)JC n y ^ C . C" = 0 > # = ƒ 0 f t 

A reverse approach starts from an arbitrary y E: C". Define <p*: X -» R by 
writing <p*(f ) = <p(?) for every f G JT, where î E C' is defined by writing 
?(*) = *(*) for every x e C. Then (p -> <p*: C" -* <?°°(X) is an order-
continuous uniferent Riesz homomorphism. If x e U, then jc* = x; that is to 
say, ƒ <jp* d/x exists and is equal to (fih^) whenever < p £ [ / and JU, e M. Next, 
for ( p e C " , set 

w(<p) = inf{x: * e C, A: ^ (p} e C", 8(<p) = w(<p) + w( —<p). 
Both w(<p) and 8(<p) belong to £/, and t/((p)* and S(<p)* are upper-semi-
continuous; <p G C iff S((p)* = 0. The map <p •-> w(<p): C" -> C" is a kind of 
closure operator; it is norm-continuous. 

Let ft be a Radon measure on X, and x e f°°(X). We say that x is 
Riemann integrable with respect to /x if 

sup< ƒ ^<i/x: y G C, ƒ < x > = inf< ƒ z dju: z G C, z > x > ; 

in this case, of course, both are equal to f x dp. Let £ ç C' be a band which 
separates the points of C. Write ME = {/A: JU G M, h^E E] and J££ = {ƒ: 
ƒ e £ , ƒ > 0, H/11 = 1}. Suppose that <p G C". Then the following are equiva­
lent: (i) there is an x e t°°(X) such that x is Riemann integrable with respect 
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to jut, and ƒ xd\i = <p(/? )̂, for every /i e M^; (ii) there is a#^/ G C" such that 
if/ r E = <p f £ and 8 (^ ) ( / ) = 0 for every ƒ e E; (iii) <p f iC£ is ZS(C,C)-
continuous. 

Let Ra Q C " be the set of those <p such that w(|<p|)* is zero except on a 
meagre set. Then Ra is a norm-closed solid linear subspace of C"; its polar in 
C' is precisely Cx . (Note that C x = {0} in many of the most important 
elementary cases.) The quotient C"/Ra is an M-space with unit; let C be the 
image of C in C"/Ra\ because C D Ra = {0}, C is canonically isomorphic, as 
M-space, to C and C. The Riesz subspace JC n ^ C of C"/Ra is Dedekind 
complete, so can be identified with the Dedekind completion of C 

I have not mentioned the multiplicative structure of C. But this is implicit in 
the Riesz space structure; every M-space with unit has a canonical multiplica­
tive structure, and uniferent Riesz homomorphisms between such spaces are 
multiplicative. Thus there are multiplications on C" and C"/Ra which are 
consistent with the natural multiplications on C and U. 

From what I have written it should be clear that the structure (C9C") is a 
happy hunting ground for anyone who enjoys multifaceted phenomena. I 
should like to conclude by remarking on three of the lines of enquiry suggested 
by this book, (a) Is there any sense in which we can say that U is the largest 
subspace of £°°(X) which can be naturally identified with a subspace of 
C"{X)! It may be necessary to use concepts from mathematical logic to 
explain what "naturally identify" can properly mean, (b) The space X can be 
retrieved, up to homeomorphism, from the Riesz space C, and the L-space C' 
can be found from C", being identifiable as (C") x . But widely varying spaces 
X can give rise to identical C' spaces. Maharam's theorem gives a simple 
complete classification of L-spaces in terms of densities of principal bands; is 
there an easy way to pick out the C' spaces from this classification, and to 
what extent can we derive topological properties of X from the properties of 
C'? (c) Because C" is an M-space with unit, it can be identified with C(Z) for 
an essentially unique compact Hausdorff space Z, and the embedding of C in 
C " corresponds to a continuous surjection q: Z -> X. Is there a useful direct 
topological construction of (Z, q) from XI Which aspects of the structure 
(C, C") can be effectively developed in terms of the triple (X, Z, #)? 
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The book under review is a major treatise on analytical methods in bifurca­
tion theory. The theory is developed in the context of a large variety of 


