PERIODIC GEODESICS OF GENERIC NONCONVEX DOMAINS IN R² AND THE POISSON RELATION

VESSELIN M. PETKOV AND LUCHEZAR STOJANOV

1. Introduction. Let $\Omega \subset \mathbf{R}^n$, $n \geq 2$, be a bounded connected domain with C^{∞} smooth boundary $\partial \Omega$. Consider the eigenvalues $\{\lambda_j^2\}_{j=1}^{\infty}$ corresponding to the Dirichlet problem for the Laplacian

(1)
$$-\Delta u = \lambda^2 u \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega.$$

The Poisson relation for $\sigma(t) = \sum_{i} \cos \lambda_{i} t$ has the form

(2)
$$\operatorname{singsupp} \sigma(t) \subset \bigcup_{\gamma \in \mathcal{L}_{\Omega}} \{-T_{\gamma}\} \cup \{0\} \cup \bigcup_{\gamma \in \mathcal{L}_{\Omega}} \{T_{\gamma}\}.$$

Here \mathcal{L}_{Ω} is the union of all generalized periodic geodesics γ in $\overline{\Omega}$, including those lying entirely on $\partial\Omega$, and T_{γ} is the period (length) of γ (see [1]). Generalized geodesics are projections on $\overline{\Omega}$ of the generalized bicharacteristics of $\partial_t^2 - \Delta$, introduced by Melrose and Sjöstrand [6]. We have proved in [8, 9] that for generic strictly convex domains in \mathbb{R}^2 the relation (2) becomes an equality and the spectrum of (1) determines the lengths of all periodic geodesics (see [5] for related results). The purpose of this announcement is to prove the same result for generic nonconvex domains in \mathbb{R}^2 .

2. Main results. In the analysis of (2) for nonconvex domains three difficulties appear: (A) the existence of periodic geodesics having gliding segments on $\partial\Omega$ and linear segments in the interior of Ω , (B) some linear segment l of a periodic geodesic could be tangent to $\partial\Omega$ at some interior point of l, (C) the linear Poincaré map P_{γ} of a reflecting periodic geodesic γ could contain in its spectrum 1 or $\sqrt[p]{1}$ with $p \in \mathbb{N}$. We refer to [3] for the precise definition of reflecting geodesics and the related Poincaré map. A linear segment is a set $l = [x, y] = \{z; z = \alpha x + (1 - \alpha)y, 0 \le \alpha \le 1\}$, while a gliding segment is an arc $\delta \subset \partial\Omega$. We show below that generically for domains in \mathbb{R}^2 the phenomena (A), (B), (C) cannot occur. We begin by assuming $\Omega \subset \mathbb{R}^2$.

phenomena (A), (B), (C) cannot occur. We begin by assuming $\Omega \subset \mathbf{R}^2$. Set $\partial \Omega = X$ and consider the space $C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^2)$ of all C^{∞} smooth embeddings of X into \mathbf{R}^2 with the Whitney topology [2]. For $f \in C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^2)$ we denote by $\Omega_f \subset \mathbf{R}^2$ the bounded domain with boundary f(X). A set $\mathcal{R} \subset C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^2)$ will be called residual if \mathcal{R} is a countable intersection of open dense sets.

THEOREM 1. Let Ω be a domain with boundary X. There exists a residual set $\mathcal{R} \subset C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^2)$ such that for every $f \in \mathcal{R}$ there are no generalized periodic geodesics $\gamma \in \mathcal{L}_{\Omega_f}$ having at least one gliding segment on f(X) and

Received by the editors August 26, 1985.

at least one linear segment in the interior of Ω_f . Moreover, for $f \in \mathcal{R}$ every reflecting geodesic $\gamma \in \mathcal{L}_{\Omega_f}$ has Poincaré map P_{γ} whose spectrum does not contain $\sqrt[p]{1}$ for every $p \in \mathbb{N}$.

REMARK 1. The above result has been conjectured in [9]. For generic strictly convex domains in \mathbb{R}^2 the conclusion concerning Poincaré map was established by Lazutkin [4].

THEOREM 2. Let Ω be a domain with boundary X. There exists a residual set $\mathcal{R} \subset C^{\infty}_{\mathrm{emb}}(X,(\mathbf{R}^2))$ such that for every $f \in \mathcal{R}$ there are no generalized periodic geodesics $\gamma \in \mathcal{L}_{\Omega_f}$ containing at least one linear segment l tangent to f(X) at some interior point of l.

REMARK 2. According to Theorems 1 and 2, for generic domains in \mathbb{R}^2 every periodic geodesic, different from the boundary, is a reflecting one. The above assertion about Poincaré map and Theorem 2 admit a generalization for domains in \mathbb{R}^n which will be published elsewhere.

Combining the rational independence of periods of reflecting geodesics for generic domains, established in [8, 9], Theorems 1 and 2 and the result in [3], we obtain

THEOREM 3. Under the assumptions and notations of Theorem 1, for every $f \in \mathcal{R}$ the Poisson relation (2) becomes an equality where $\sigma(t)$ is related to the eigenvalues for problem (1) in Ω_f with boundary condition on f(X) and the unions in (2) are taken over all generalized periodic geodesics in \mathcal{L}_{Ω_f} .

3. Idea of the proof of Theorem 1. Let $f \in C_{\text{emb}}(X, \mathbb{R}^2)$ and let γ be a generalized geodesic in \mathcal{L}_{Ω_f} having linear segments in $\mathbf{R}^2 \setminus f(X)$. Assume γ antisymmetric, that is γ does not contain a linear segment l orthogonal to f(X) at some end point of l. In this case there are different points $y_i = f(x_i)$, i = 1, ..., s on f(X), an integer $k \geq s$ and a surjection $\omega \colon \{1,\ldots,k\} \to \{1,\ldots,s\}$ with $\omega(1)=1,\; \omega(2)=2,\; \omega(k)=s,\; \text{so that the}$ linear segments $l_j = [y_{\omega(j)}, y_{\omega(j+1)}], \ j = 1, \dots, k-1$ are successive segments of γ with reflection points $y_{\omega(j)}$, $j=2,\ldots,k-1$, the curvatures of f(X) at y_1 and y_k vanish and l_1 and l_{k-1} are tangent to f(X) at y_1 and y_k respectively. Setting $\omega(1) = \omega(k+1)$, we have $\omega(i) \neq \omega(i+1)$ for $i=1,\ldots,k$ and $\{\omega(i),$ $\omega(i+1)\} \neq \{\omega(j), \omega(j+1)\}$ whenever $1 \leq i < j \leq k-1$. The maps having the properties listed above will be called admissible antisymmetric. Let $Z^{(s)} = \{(z_1, \dots, z_s) \in Z^s; z_i \neq z_j \text{ for } i \neq j\}. \text{ For } i = 1, \dots, s, \text{ set } I_i = \{j; \}$ there exists t = 1, ..., k-1 with $\{i, j\} = \{\omega(t), \omega(t+1)\}$ and denote by U_{ω} the set of those $z \in (\mathbf{R}^2)^{(s)}$ such that $z_i \notin \text{convex hull } \{z_i; j \in I_i\}$ for every $i=1,\ldots,s.$ Finally, consider the map $F\colon U_\omega\to \mathbf{R}$ given by

$$F(z) = \sum_{i=1}^{k-1} \|z_{\omega(i)} - z_{\omega(i+1)}\|.$$

It is clear that $x'=(x_2,\ldots,x_{s-1})$ is a critical point of $F\circ f^s(x_1,z',x_s)$ considered as a function of $z'=(z_2,\ldots,z_{s-1})\in X^{(s-1)}$, where $f^s(x)=(f(x_1),\ldots,f(x_s))$. Fix k,s,F and an admissible antisymmetric map ω and denote by T_ω the set of those $f\in C^\infty_{\mathrm{emb}}(X,\mathbf{R}^2)$ such that if $x=(x_1,\ldots,x_s)\in$

 $X^{(s)}, \ f^s(x) \in U_{\omega}, \ \operatorname{grad}_{x'}(F \circ f^s)(x) = 0$ and the curvatures of f(X) at $f(x_1)$ and $f(x_s)$ vanish, then we have $\langle f(x_2) - f(x_1), n_{x_1} \rangle = 0, n_{x_1}$ being the normal to f(X) at x_1 and $\langle \ , \ \rangle$ the scalar product in \mathbf{R}^3 . Our aim is to show that T_{ω} is residual in $C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^2)$. To do this, we use the s-fold bundle of the 2-jets. Namely, let $\alpha \colon J^2(X, \mathbf{R}^2) \to \mathbf{R}^2$ and $\beta \colon J^2(X, \mathbf{R}^2) \to \mathbf{R}^2$ be the source and the target maps (see [2]). Set

$$M = (\alpha^s)^{-1}(X^{(s)}) \cap (\beta^s)^{-1}(U_{\omega}) \cap V,$$

where V is the set of those $(j^2f_1(x_1),\ldots,j^2f_s(x_s))\in (J^2(X,\mathbf{R}^2))^s$ with $df_i(x_i)\neq 0$ for every $i=1,\ldots,s$. Clearly, M is an open submanifold of $J_s^2(X,\mathbf{R}^2)=(\alpha^s)^{-1}(X^{(s)})$. To describe the above situation, we introduce the set Σ of those $\sigma=(j^2f_1(x_1),\ldots,j^2f_s(x_s))\in M$ such that $\mathrm{grad}_{x'}(F\circ f^s)(x)=0$, the curvature of $f_1(X)$ at $f_1(x_1)$ and that of $f_s(X)$ at $f_s(x_s)$ vanish and the vector $f_2(x_2)-f_1(x_1)$ is collinear with the tangent to $f_1(X)$ at $f_1(x_1)$. The main difficulty is to show that Σ is a smooth submanifold of M with $\mathrm{codim}\,\Sigma=s+1$. Therefore, by applying the multijet transversality theorem in [2], we prove that T_ω is residual in $C_{\mathrm{emb}}^\infty(X,\mathbf{R}^2)$. Similarly we treat admissible symmetric maps ω which are related to geodesics on f(X) having segments l orthogonal to f(X) at some end point $g\in f(X)$ of $g\in f(X)$. Then f(X) where $g\in f(X)$ are residual in f(X) at some end point $g\in f(X)$ of $g\in f(X)$.

For the proof of the second part of Theorem 1 we use essentially the representation of Poincaré map P_{γ} related to a reflecting geodesic γ , found by Petkov and Vogel [7]. We introduce a corresponding singular set Σ_1 and again the main point is to prove that Σ_1 can be covered by a countable union of smooth manifolds having codimension s+1.

A similar approach is used for the proof of Theorem 2.

REFERENCES

- 1. K. Andersson and R. Melrose, The propagation of singularities along gliding rays, Invent. Math. 41 (1977), 197-232.
- 2. M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Math., vol. 14, Springer-Verlag, Berlin and New York, 1973.
- 3. V. Guillemin and R. Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math. 32 (1979), 204-232.
- 4. V. F. Lazutkin, Convex billiard and eigenfunctions of the Laplace operator, Leningrad University, 1981. (Russian)
- 5. S. Marvizi and R. Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), 475-502.
- 6. R. Melrose and J. Sjöstrand, Singularities in boundary value problems. I, II, Comm. Pure Appl. Math. 31 (1978), 593-617; 35 (1982), 129-168.
- 7. V. Petkov and P. Vogel, La représentation de l'application de Poincaré correspondant aux rayons périodiques réflechissants, C. R. Acad. Sci. Paris, Sér. A 296 (1983), 633-635.
- 8. V. Petkov, Propriétés génériques des rayons réflechissants et applicationns aux problèmes spectraux, Séminaire Bony-Sjöstrand-Meyer, École Polytechnique, Centre de Mathématiques, Exposé XII, 1984–1985.
- 9. V. Petkov and L. Stojanov, Periods of multiple reflecting geodesics and inverse spectral results, preprint.

Institute of Mathematics, Bulgarian Academy of Sciences, P. O. Box 373, 1090 Sofia, Bulgaria