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PERIODIC GEODESICS OF GENERIC NONCONVEX 
DOMAINS IN R2 AND THE POISSON RELATION 

VESSELIN M. PETKOV AND LUCHEZAR STOJANOV 

1. Introduction. Let Q c Rn, n > 2, be a bounded connected domain 
with C°° smooth boundary dQ. Consider the eigenvalues { A ^ } ^ correspond­
ing to the Dirichlet problem for the Laplacian 

(1) - A M = X2u in fî, u = 0 on dQ. 

The Poisson relation for a(t) = ]T • cos Xjt has the form 

(2) singsupp(j(t) C ( J {-T7}U{0}U ( J {T^. 

Here £Q is the union of all generalized periodic geodesies 7 in Ü, includ­
ing those lying entirely on dfi, and T^ is the period (length) of 7 (see [1]). 
Generalized geodesies are projections on Ü of the generalized bicharacteris-
tics of d\ — A, introduced by Melrose and Sjöstrand [6]. We have proved in 
[8, 9] that for generic strictly convex domains in R2 the relation (2) becomes 
an equality and the spectrum of (1) determines the lengths of all periodic 
geodesies (see [5] for related results). The purpose of this announcement is 
to prove the same result for generic nonconvex domains in R2 . 

2. Main results. In the analysis of (2) for nonconvex domains three 
difficulties appear: (A) the existence of periodic geodesies having gliding seg­
ments on dQ and linear segments in the interior of fi, (B) some linear segment 
/ of a periodic geodesic could be tangent to dQ at some interior point of /, (C) 
the linear Poincaré map P1 of a reflecting periodic geodesic 7 could contain 
in its spectrum 1 or tf\ with p G N. We refer to [3] for the precise definition 
of reflecting geodesies and the related Poincaré map. A linear segment is a 
set I = [x,y] = {z\z = ax + (1 - a)y, 0 < a < 1}, while a gliding segment 
is an arc 6 C dû. We show below that generically for domains in R2 the 
phenomena (A), (B), (C) cannot occur. We begin by assuming fi C R2 . 

Set dQ = X and consider the space C ^ b ( X , R 2 ) of all C°° smooth em-
beddings of X into R2 with the Whitney topology [2]. For ƒ G C ^ b ( X , R2) 
we denote by fi/ C R2 the bounded domain with boundary f(X). A set 
Z C C ^ b ( X , R 2 ) will be called residual if Z is a countable intersection of 
open dense sets. 

THEOREM 1. Let Q be a domain with boundary X. There exists a residual 
set Z C C ^ b ( X , R2) such that for every f G Z there are no generalized 
periodic geodesies 7 G Cnf having at least one gliding segment on f(X) and 
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at least one linear segment in the interior offlf. Moreover, for f E Z every 
reflecting geodesic 7 G Cnf has Poincaré map P1 whose spectrum does not 
contain tf\ for every p ç N . 

REMARK 1. The above result has been conjectured in [9]. For generic 
strictly convex domains in R2 the conclusion concerning Poincaré map was 
established by Lazutkin [4]. 

THEOREM 2. Let Q be a domain with boundary X. There exists a residual 
set Z C C ^ b ( X , (R2) such that for every f £ Z there are no generalized 
periodic geodesies 7 G Lnf containing at least one linear segment I tangent to 
f{X) at some interior point of I. 

REMARK 2. According to Theorems 1 and 2, for generic domains in R2 

every periodic geodesic, different from the boundary, is a reflecting one. The 
above assertion about Poincaré map and Theorem 2 admit a generalization 
for domains in R n which will be published elsewhere. 

Combining the rational independence of periods of reflecting geodesies for 
generic domains, established in [8, 9], Theorems 1 and 2 and the result in [3], 
we obtain 

THEOREM 3. Under the assumptions and notations of Theorem 1, for 
every ƒ G Z the Poisson relation (2) becomes an equality where <r(t) is related 
to the eigenvalues for problem (1) in 0 / with boundary condition on f{X) and 
the unions in (2) are taken over all generalized periodic geodesies in tçif • 

3. Idea of the proof of Theorem 1. Let ƒ G Cemb{X,R2) and let 7 
be a generalized geodesic in tuf having linear segments in R 2 \ / ( X ) . As­
sume 7 antisymmetric, that is 7 does not contain a linear segment I or­
thogonal to f(X) at some end point of I. In this case there are different 
points yi = /(x;) , i = 1 , . . . ,8 on / (X) , an integer k > s and a surjection 
UJ: { 1 , . . . ,fc} —• { 1 , . . . ,3} with UJ(1) = 1, u;(2) = 2, u;(fc) = 8, so that the 
linear segments lj = [yu>(j)iyu(j+i)}i j» = 1 , . . . , fc — 1 are successive segments 
of 7 with reflection points y^j), j = 2 , . . . , fc - 1 , the curvatures of ƒ (X) at y\ 
and yk vanish and l\ and h-i are tangent to f(X) at 3/1 and yk respectively. 
Setting oj(l) — uj(k 4-1), we have u(i) ^ oj(i H-1) for i = 1 , . . . , k and {cj(i), 
uj(i + 1)} ^ {w(j),<jj(j + 1)} whenever 1 < i < j < k - 1. The maps hav­
ing the properties listed above will be called admissible antisymmetric. Let 
Z{9) = {(*i,. • •, z8) G Zs; Zi ^ ZJ for i ^ j}. For i = 1 , . . . , 8, set U = {j-, 
there exists t = 1 , . . . , k — 1 with {i,i} = {oj(t),oj(t + 1)}} and denote by U^ 
the set of those z G (R2)^s^ such that z% £ convex hull {zj\j G U} for every 
i = 1 , . . . , s. Finally, consider the map F: U^ —• R given by 

fc-i 
F(z) ~ zZ II^W ~ M»+i)ll-

It is clear that x' = (x2,. . . ,x a_i) is a critical point of F o fs{xi,z',xs) 
considered as a function of z' = fa,... ,25- i ) G X^s~x\ where f3{x) = 
(ƒ(xi) , . . . , ƒ(x5)). Fix fc, s, F and an admissible antisymmetric map UJ and 
denote by T^ the set of those ƒ G C ^ b ( X , R2) such that if x = (x i , . . . , x5) G 
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X(a), f8(x) e 17W, gradx,(Fo fs)(x) = 0 and the curvatures of f(X) at f(xi) 
and f(x8) vanish, then we have (f{x2) — f{xi),nXl) = 0,nXl being the normal 
to f(X) at xi and ( , ) the scalar product in R3 . Our aim is to show that T^ 
is residual in C ^ b ( X , R2) . To do this, we use the s-fold bundle of the 2-jets. 
Namely, let a: J 2 (X,R 2 ) -+ R2 and /?: J 2 (X,R 2 ) -> R2 be the source and 
the target maps (see [2]). Set 

where V is the set of those ( i 2 / i ( x i ) , . . . J2f8{xs)) G (J 2 (X,R 2 ) ) 8 with 
dfi(xi) ^ 0 for every i = l , . . . , s . Clearly, M is an open submanifold of 
J2(X, R2) = (a8)~1(X^). To describe the above situation, we introduce the 
set E of those a = (j2fi{xi),... ,j2fs(x9)) G M such that gra,dx,(Fof8)(x) = 
0, the curvature of fi(X) at / i (xi) and that of f8(X) at fs(xa) vanish and 
the vector ƒ2(#2) — / îfai) is collinear with the tangent to fi(X) at / i (xi) . 
The main difficulty is to show that E is a smooth submanifold of M with 
codimE = 5 + 1. Therefore, by applying the multijet transversality theorem 
in [2], we prove that T^ is residual in C ^ b ( X , R 2 ) . Similarly we treat ad­
missible symmetric maps w which are related to geodesies on f(X) having 
segments / orthogonal to ƒ(X) at some end point y G f(X) of /. Then f]^ Tw, 
where OJ runs over all admissible maps, is residual in C ^ b ( X , R2) . 

For the proof of the second part of Theorem 1 we use essentially the rep­
resentation of Poincaré map P1 related to a reflecting geodesic 7, found by 
Petkov and Vogel [7]. We introduce a corresponding singular set Ei and again 
the main point is to prove that Ei can be covered by a countable union of 
smooth manifolds having codimension s + 1. 

A similar approach is used for the proof of Theorem 2. 
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