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CONTINUED FRACTALS AND THE SEIFERT CONJECTURE

BY JENNY HARRISON!

In 1950 Herbert Seifert posed a question today known as the Seifert Con-
jecture:

“Every C" vector field on the three-sphere has either a zero or a closed
integral curve.”

Paul Schweitzer published his celebrated C! counterexample in 1971 [Sch).
We show how to obtain a C3~¢ counterexample X by using techniques from
number theory, analysis, fractal geometry, and differential topology [H1 and
H2]. X is C? and its second derivative satisfies a (1 — ¢)-Hélder condition.

1. Continued fractions and quasi-circles. Any irrational number a,
0 < a < 1, can be expressed as a continued fraction

1

1

az +
a3+

where the a; are positive integers. One writes o = [a;, a2, a3, ...]. The trun-
cation [ay,...,a,] = Dn/gn is the best approximation to a among all rational
numbers p/q with 0 < ¢ < g,. The growth rate of the a; tells “how irra-
tional” o = [a,] is. At one extreme is the Golden Mean, v = [1,1,...]); at the
other are Liouville numbers such as A = [1*,2%,33' .. ]. The former is “very
irrational” while the latter is “almost rational”.

To study a dynamically it is standard to consider R,, the rigid rotation
of the circle S! of unit length through angle a. Choose z € S! and consider
its Ro-orbit O,(z). Since a is irrational, O,(z) is dense in S'. But how is
it dense? For Liouville ), Oy (z) contains long strings {R}(z), Ry (), ...,
R (z)} that are poorly distributed. They “bunch up”. In contrast, the
Golden Mean’s orbit distributes itself fairly evenly throughout S*.

Unfortunately, it is hard to distinguish visually (and hence geometrically)
between bunched-up dense orbits and well distributed ones. After many iter-
ates, the orbit picture becomes blurred. This is due in fact to the picture’s
being drawn on the circle. As a remedy, we “unfold” S! onto a canonically
constructed curve Q,, in the 2-sphere S? as follows.

Choose a “Denjoy” projection p: S! — S!; that is, p is onto and continu-
ous, p~1(na) is an interval I, for all n € Z, the I,, are disjoint, and p is 1-1
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away from (J I,. By (na) we mean the fractional part of na. The discrepancy

of a is
(ma) |I|l}

where I is an interval in S! = R/ Z a.nd Xy is its characteristic function.
Choose weights wy, > 0 so that > wy, Dy, (a) converges and wy, Dy, (a) is mono-
tone decreasing as |n| — oo. For any z € S'\|JI,, define hq(z) = (h1(2),
ha(z)) in S* x R by

D, () —sup{

oo

ha(z) = p(x) + Y wa(p(z) = X[o,p(2)) (nex))
|n|=0
ha(z) = Z {w2n41X[0,0(2)) (27 + 1)a) — Wan X[0,p(z)) (2n) }-
|n|=0

The mapping h, is uniformly continuous. Its extension to the closure of
S\ U1, sends the endpoints of I,, onto points p,, g, in the cylinder S* x R!
joined by a line segment A,, of slope +1. Extend h, to S! so it sends I,, onto
A,, homeomorphically.

The curve Qo = hqo(S?) is the continued fractal corresponding to a. It
depends only on o and the choice of weights; different Denjoy projections
just give it different parametrizations. When « is of constant type (its a; are
bounded) we take wy, of the form 1/(1 + |n|*) with § < 4 < 1. In that case,
Qq turns out to be an Ahlfors quasi-circle [Ah]. In any case,

Think of the continued fractal @), as a picture of o.

Its geometry embodies not only the early patterns apparent from the circle
rotation but also much of its long-term behavior.

In Figure 1 are three examples drawn on the open cylinder with z = 0
and z = 1 identified. The quasi-circle Q, with a = [4,4,4,...,] leads to a
C?+8 Seifert counterexample with § small. To raise the differentiability from
C?*5 to C3~¢ we take @ = [2N, 2N, ...] with N large and prove a sharpened
Denjoy-Koksma inequality for such numbers o [H6]. The choice o = /21
also leads to a C?t¢ example but (v/5 — 2)!/2 does not.

2. Fractal geometry of Q). When « is of constant type, the continued
fractal @ = Q. can be exhibited as the nested intersection of connected
closed sets A™ called (B-diamond chains, as in Figure 2. Formally, A™ =
ATUTPU---UAT UTE, where m = m(n) and (suppressing the superscript
n as appropriate)

(a) A; is a segment of slope +1 with respect to the cylinder’s coordinates.
The A; are diagonals of A", 1 <7< m.

(b) T; is a parallelogram with interior, whose edges have slope +3. In
practice, 8 < 1. The T; are B-diamonds of A, 1 <17 <m.

(c) A; slopes backwards and joins the right-hand vertex of T;_; to the
left-hand vertex of T3, 1 < 1 < m. We call Ty = T,,, to take care of the case
i=1
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FIGURE 1. Continued Fractals.

(d) A > A2 > ..- D A™ D --- and the diameters of the diamonds in A™
tend to zero as n — oo.

(e) diam(AT) < diam(T}*) if 1 <4, j < m and AT is a diagonal of A™ but
not of A1,

The intersection C = [) A™ is a Jordan curve consisting of all the diagonals
AT of all the A™ plus a Cantor set T,

c=Aur, A=[(JAL
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FIGURE 2. A diamond circle.

Such a C is called a diamond circle. All continued fractals @, with a of
constant type are diamond circles and all diamond circles are quasi-circles.

As a degenerate case, suppose all the diagonals of a diamond circle C are
points. Then C is the graph of a Lipschitz function S! — R having Lipschitz
constant 3 (and conversely). In the nondegenerate case and when a is of
constant type, its continued fractal Q@ = @, turns out to have Hausdorff
dimension > 1, so it cannot be a graph. Nevertheless, () has the following

Graph-like property. There exist angles n’,n, 0 < ' < 5 < 7, a neighbor-
hood U of @ in the cylinder, and a family of disjoint open sets D;, © € Z, such
that

(a) Each D; is a homothetic replica of a fixed hexagon and contains the
interior of the diagonal A,;. We denote D = J D;.

(b) If € U\D lies on the north side of @ then any point y € @ nearest
z lies in the downward pointing sector of angle n at z. If z lies near the
bottom edge of D; then y lies in the downward pointing sector of angle %’ at
z. Symmetric conditions prevail south of Q). See Figure 3.

If C is a Lipschitz graph with Lipschitz constant 3 this property is obvious;
D is empty and = 2arctan 3. When C is a general diamond curve the proof
is tricky.

3. Denjoy homeomorphisms of ) and the Whitney extension
theorem. To introduce dynamics on @), we consider any Denjoy homeo-
morphism D of §! satisfying pD = Rjap (recall p from §1). Then we lift
D: 8! - 8! to f: Qo — Q. via the embedding hy: S! — Q4. Let € > 0 be
given. Choose a large integer N and set a = [2N,2N,...]. The right choice
of weights w,, in the definition of h, gives

(*) I/(2) = f(y) = -yl < Cllz - yl*~*

for some constant C' and all z,y in the Cantor set I'. Using only (x), the
Whitney Extension Theorem [W, AR] and the fact that Q, is a quasi-circle,
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FIGURE 3. Imposing semistability.

we find a C3~¢ diffeomorphism F: S?2 — §2 fixing the poles of S? such that
F|T = f|T, F(Qa) = Qa, DF|T = 1d, D?F|T = 0 and F(D;) = D;12. In
particular, F is a C3~¢ Denjoy rotation of Q,, cf. [Ha, Kn].

Since no quasi-circles have C3 Denjoy rotations [H4], one is led to wonder if
the differentiability class C3 separates Seifert counterexamples from a Seifert
Theorem, much as happens in KAM theory [He, M]. It is also interesting
to speculate about the relation between ¢ and the Hausdorff dimension of T'.
Our F turns out to be of class C3¢ and our I has HD(T') = 2 — ¢, cf. [N].
Must HD(T') be large if the distortion of Df at I is small? Cf. [H4, H5].

4. Semistability of g at (). We want a modification G of the Whitney
extension F in §3 so that G = F on Q, G is a C3~¢ diffeomorphism of S?
and Q is G-semistable: under forward G-iterates @ attracts the north side of
S2?\Q and the reverse holds south of Q.

North of @ we want to push F(z) closer to @ than z was. The crucial
fact that lets us do so (in a C? fashion near T') is the C2-flabby condition
DF|I' = 1d and D?F|T' = 0. The Denjoy examples of Knill [Kn], Hall [Ha]
and Herman [He] do not have this property and that is what prevents their
use against the Seifert Conjecture.

In Figure 3 we indicate the directions in which we push F(z) toward Q.
Since DF|T' = Id and D?F|T’ = 0, such pushing meets little resistance. At
this stage of the construction we use the downward-pointing sector (shaded)
from the graphlike property (§2), the fact that the quasi-slope 8 of @ is
small, and the fact that the diagonals A; slope backward. Under the resulting
diffeomorphism G, @ is semistable. North of Q, G(D;) & D; 2, while south
of Q> G_I(Di) ;Ct D, _,.



152 JENNY HARRISON

Seifert counterexamples and loxodromic diffeomorphisms. The
diffeomorphism G constructed in §4 sends some zo € U\D north of @ into
Dy. Under G its a-limit is the north pole N and its w-limit is I'. Similarly,
some yp € Dy south of @ is sent into U\D by G; its o-limit is T’ and its
w-limit is the south pole S. Compose G with a C® motion M of S2? such
that M(G(zo)) = yo and M leaves all points of $%\Dy fixed. The resulting
C3~¢ diffeomorphism H = M o G: 8% — S? has the following properties:

(a) The only periodic points of H are its fixed-point poles, N and S. They
are a source and sink, respectively.

(b) limp,—,—oo H™(z0) = N and lim,_,oo H™(zo) = S for some zg.

(c) H has a minimal set other than the poles.

(a) follows from disjointness of the G™(Dyp), n € Z; (b) is by construction;
(c) is clear—T is the minimal set.

A suspension similar in spirit to Schweitzer’s [Sch]| lets us use H to con-
struct a C3~¢ flow ¢ on S° with no compact orbits. By Hart’s Smoothing
Theorem [Ht], ¢ is conjugate to a flow 1 whose generating vector field X is
also of class C3~¢.

This vector field X is a C3~¢ counterexample to the Seifert
conjecture. The same procedure applied to any C" diffeomor-
phisms H: S? — S? obeying conditions (a), (b), (c) above
would produce a counterezample to the C™ Seifert Congecture.

It is not known if X is C? structurally stable. By Pugh’s Closing Lemma it
is not C! structurally stable [P]. Any diffeomorphism of S? obeying (a) and
(b) but having no minimal set except the poles is topologically conjugate to
the standard loxodromic diffeomorphism z — %z of the closed complex plane
C U oo = S2. Thus we put forward the

CONJECTURE. Every C3 diffeomorphism of S? satisfying conditions (a),
(b) above s lozodromic.

This is a dissipative analogue of Birkhoff’s conjecture that any measure-
preserving diffeomorphism of S2? whose only periodic points are the two fixed
point poles must be topologically conjugate to a rigid irrational rotation of
82,
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