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Unified integration, by E. J. McShane, Academic Press, Orlando, Fl., 1983, 
xii + 607 pp., $55.00. ISBN 0-12-486260-8 

This book is intended to provide a unified theory of integration (Riemann, 
Lebesgue, etc). Professor McShane believes that the way integration is taught 
now is not very efficient, since we first teach our students the Riemann 
integral, and then, once we have introduced them to the Lebesgue integral, 
abandon all our earher work about the Riemann integral. 

In this book Professor McShane tries to produce a unified way of defining 
the integral; of course, he includes, as a special case, the Riemann integral. The 
author hopes that this way of introducing the integral "can also go from 
beginning calculus to the graduate level without ever abandoning earher work 
and starting again (as usually now happens when Lebesgue integration is 
met)". 

The book under review begins with the introduction of the gauge integral. 
Some preliminaries are necessary for its definition. 

An allotted partition of a set B in R is a finite set of pairs 

P = {{xl9Al),...,(xk9Ak)} 
in which the Ai are pairwise disjoint left open intervals in R9 the xt are points 
in [— oo, 4- oo], and B = Uf^^,. 

To an allotted partition P and an extended real-valued function/, S(P, ƒ) 
will denote the sum Lf-i/(x /)m(^4 /), where m(A() is the length of the interval 
A,. 

A gauge T on a set B in [ - oo, + oo] is a function x -> T(x) such that, for 
each x in B, T(x) is a neighborhood of x. 

If T is a gauge on [ - oo, + oo] and P is an allotted partition of a set B that is 
equal to the union of the ^ / s , P is said to be T fine if, for each / = 1,2,...,k9 

the closure of At is included in T(JC/). 
Now, the definition of the gauge integral is given as follows: 
DEFINITION. Let B be a subset of R and ƒ a real-valued function defined on a 

subset D of [ — oo, + oo]. Suppose B is contained in D. Define g to be equal to ƒ 
on B and to be zero on [ - oo, + oo]\i?. The function ƒ is said to be gauge 
integrable on B and of gauge integral / if for every e > 0 there exists a gauge T 
on [-oo, + oo] such that if P is a T fine partition of R, S(P9 g) exists and 
\S(P, g)~J\< £. 
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This definition is used and extended stage by stage throughout the book to 
amplify its scope of applications. On p. 43, Theorem 7.2 shows that if ƒ is 
Riemann integrable on an interval [a, b], then ƒ is gauge integrable on [a, b], 
and its Riemann integral is equal to its gauge integral. The characteristic 
function of the rationals on [0,1] is gauge integrable and has zero as its gauge 
integral. Therefore, the gauge integral is more general than the Riemann 
integral; this will become more evident when it is shown (p. 296) that the gauge 
integral is indeed equivalent to the Lebesgue integral. 

Chapter I is devoted to the introduction of the gauge integral and its relation 
to the Riemann integral. Chapter II is concerned with the convergence theo­
rems, the introductions of sets of measure zero, and properties that hold almost 
everywhere. Absolute continuity and differentiation under the integral sign are 
also treated in Chapter II. Chapter III gives some applications to differential 
equations and to probability theory. A more general integral is defined with 
respect to a regular nonnegative additive measure on the left open intervals of 
R. Here, also, the notions of measurable functions and of measurable sets are 
defined. Chapter IV deals with integration in Rn. Chapter V treats line 
integrals and the areas of surfaces. In Chapter VI, Lp spaces, Fourier series, 
Fourier transforms, and special polynomials are introduced. Chapter VII gives 
the classical approach to measure theory. 

The author begins Chapter VII by declaring 

The developments of integration theory in the preceding chapters is 
only one of many ways of approaching the subject. It was set forth 
in the belief that it is especially easy for a beginner to comprehend 
and is well suited for teaching a student of physics, chemistry, or 
engineering enough integration to be of clear benefit. 

Hence, one can see that McShane's intent is to teach nonmathematics majors 
the powerful Lebesgue integral at once, without having to go first through the 
Riemann integral and he wants to do it in an elementary way so they can use it 
in their respective fields. That is why McShane's book is quite inclusive and 
covers large parts of topics found in advanced calculus, applied mathematics, 
probability theory, analysis, etc. The reviewer also thinks that Professor 
McShane wanted to prove that his definition of the integral can be applied in 
all the topics covered in this book. 

McShane's definition of the gauge integral can be understood by someone 
with little background; one only needs to know the notions of neighborhood of 
a point, closure of a set, etc.—roughly speaking, a little topology of the real 
line. But a question can be asked: Does someone with that background have 
enough mathematical maturity to grasp all the theory developed throughout 
the book? The reviewer believes that most of the time he or she does not. 

Another question one should look at carefully when developing a theory of 
integration is, how easy are the proofs of the convergence theorems? For 
example, the proof of the monotone convergence theorem (Theorem 4-2, p. 86) 
took four pages; however, the same proof (Theorem 2-10, p. 552) in Chapter 
VII, where the integral is defined the classical way, is more natural, shorter, 
and easier. In fact, McShane acknowledges that the measure was only defined 
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on intervals and "was assumed only to be finitely additive and nonnegative, 
and it was that proof of the monotone convergence theorem that brought 
countable additivity into the theory ". The point the reviewer would like to 
make is that starting from an elementary definition does not always protect 
someone from paying the price later on in the theory. 

This book is very well written, contains some very good exercises, and proofs 
are given in full detail. It is an honest attempt by somebody who loves measure 
theory to try to make this very important tool (the Lebesgue integral) accessi­
ble to a wide audience. 

How well this book will succeed in achieving its avowed purpose of making 
the unified treatment of integration widely accepted is perhaps better judged 
by how fast and how often this book, or similar books, will make it to the 
classroom. 
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Group representations and special functions, by Antoni Wawrzyhczyk, Mathe­
matics and its Applications, D. Reidel Publishing Co., Dor­
drecht/Boston/Lancaster, 1984, xvi + 687 pp., $119.00 US; Dfl. 320,-. 
ISBN 90-277-1269-7 

This huge book, a translation of the 1978 Polish original [1], is clearly 
intended by the author to be a study of the relations between the representa­
tion theory of groups and the special functions of mathematical physics. What 
has emerged is somewhat more restricted: a detailed and extensive study of the 
theory of spherical functions and harmonic analysis on symmetric spaces, and 
the application of these theories to certain special functions. The so-called 
special functions of mathematical physics are those useful functions which 
arose when physicists obtained explicit solutions of the partial differential 
equations governing physical phenomena—e.g., the heat, wave, Helmholtz, 
and Schrödinger equations—through separation of variables. With the devel­
opment of quantum mechanics in the 1920s and 1930s, it became evident that 
there were relations between the symmetries of the partial differential equa­
tions and some of the special functions that arose as solutions of these 
equations. However, the first clear formulation of such a relationship appears 
in Eugene Wigner's 1955 unpublished Princeton lecture notes. The first exten­
sive published treatment of the theory was the 1965 monograph of N. J. 
Vilenkin in which the achievements of the Gel'fand school in the theory of 
spherical functions were utilized [2]. This was followed by J. D. Talman's book 
in 1968, based on Wigner's lectures [3]. In these works the special functions 
occur as matrix elements of irreducible representations of the fundamental 
symmetry groups of physics. The matrix elements are defined with respect to a 


