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RANDOM WALK ON THE SPEISER GRAPH 
OF A RIEMANN SURFACE 

BY PETER G. DOYLE 

ABSTRACT. We consider the problem of determining the conformai 
type—hyperbolic or parabolic—of a covering surface of the Riemann 
sphere with n punctures. To such a surface there corresponds a graph 
called the Speiser graph of the covering, and it is natural to ask for a 
criterion for the type of the surface in terms of properties of the graph. 
We show how to define a random walk on the vertices of the graph, so 
that the random walk is transient if and only if the surface is hyperbolic. 

1. The type problem. A simply-connected open Riemann surface is con-
formally equivalent either to the open unit disk or to the entire complex plane 
[1]. In the first case the surface is said to be hyperbolic, or to have hyperbolic 
type; in the second case it is said to be parabolic. This dichotomy is extended 
to multiply-connected surfaces by declaring a surface to be hyperbolic if, like 
the unit disk, it has finite electrical resistance out to infinity, and parabolic if, 
like the plane, it has infinite resistance. Equivalently, a hyperbolic surface is 
one on which Brownian motion is transient, and a parabolic surface is one on 
which Brownian motion is recurrent [8, 9]. The classical type problem for Rie­
mann surfaces is the problem of determining whether a given open Riemann 
surface is hyperbolic or parabolic. 

2. The Speiser graph of a covering surface. One special case of the 
type problem that has received a lot of attention is the problem of determining 
the type of an infinitely-sheeted covering surface of the Riemann sphere with 
n punctures. Such a covering surface can be represented by a Speiser graph, 
as I will now describe. 

Start by drawing a simple closed curve C through the n branch points, as 
shown in Figure 1. The branch points divide C into n segments, which we 
label C i , . . . , Cn. The curve C divides the sphere into two parts, which we 
label Sa and S&. Cutting along the curves that cover C i , . . . ,C n separates 
the covering surface into an infinite number of pieces, some that cover Sa and 
some that cover S&. 

To reconstruct the surface, we must glue each copy of Sa along each of the 
n curves that form its boundary to one or another of the copies of Sb- The 
Speiser graph gives a recipe for carrying out these gluings. It is an infinite 
graph with vertices labelled a and b and edges labelled by integers between 1 
and n. Each edge joins a vertex labelled a to one labelled b. Each vertex has 
n edges coming into it, labelled 1 , . . . , n. The vertices labelled a correspond to 
copies of Sa, and those labelled b to copies of Sb. An edge labelled i indicates 
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FIGURE 1 

that the copies of Sa and Sb corresponding to the ends of the edge are to be 
glued along the parts of their boundaries that correspond to the curve Ci. 

Examples of Speiser graphs are shown in Figures 2 and 3. Figure 2 shows 
the graph of the universal covering surface of the sphere with three punctures 
(the Riemann surface of the inverse of the modular function). Figure 3 shows 
the graph of the "class surface" of the sphere with three punctures, which 
is to homology what the universal covering is to homotopy; this surface is 
discussed by Lyons and McKean [11] and McKean and Sullivan [12]. For 
more examples, see Wittich [20]. 

Here is another way to look at the Speiser graph: Take the dual graph of 
the graph C, label it as shown in Figure 4, and take the inverse image under 
the covering projection. What you get is a copy of the Speiser graph sitting 
inside the covering surface. Note that a path of length two with edges labelled 
i and 2 + 1 (modulo n) corresponds to winding once around one of the branch 
points. 

3. Determining the type of the surface from the Speiser graph. In 
introducing the Speiser graph, Speiser's idea [18, 19] was to determine the 
type of the surface from properties of the Speiser graph. Since the graph 
determines the covering surface up to the location of the punctures, and since 
moving the punctures around does not affect the type, the graph does in fact 
determine the type: the problem is to find a simple, natural, useful, sharp 
criterion expressed in terms of the graph itself. Many criteria were found that 
were simple, natural and useful [17, 20], but never one that was sharp. I am 
going to describe a criterion that is simple, natural and sharp, indicate how 
to prove it, and discuss how useful it is. 

4. Random walk on the Speiser graph. Following McKean and Sulli­
van [12], we define a certain random walk on the vertices of the graph, which 
we call the McKean-Sullivan random walk. This is not the usual simple ran­
dom walk, where the walker can move only to a neighboring vertex. Instead, 
we allow the walker to move from one vertex to any other vertex connected 
to it by a path in the graph that corresponds to winding some number of 
times—integral or half-integral—around one of the n branch points. Such a 
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path can be described in terms of the labelling as a path where the labels 
of the edges alternate between two integers that are consecutive modulo n. 
For our purposes, it does not matter what the exact values of the transition 
probabilities are, as long as they are symmetric and approximately Cauchy-
distributed: This means that the probability of a transition along a path of 
the kind we are considering must be the same forward or backward, and it 
must be on the order of 1/(1 + A:2), where k is the length of the path. 

THEOREM. The McKean-Sullivan random walk on the Speiser graph of a 
covering surface of the Riemann sphere with n points removed is transient if 
and only if the surface is hyperbolic. 

5. A probabilistic explanation and an electrical proof. This result 
is probabilistically obvious. The random walk on the graph is a discrete 
caricature of Brownian motion on the surface. The big jumps represent the 
fact that when the Brownian particle wanders in toward one of the punctures, 
it may wind quite a few times around the missing point before wandering 
back out to the graph again. We expect that the discrete caricature should 
be transient if and only if the Brownian motion is, that is, if and only if the 
surface is hyperbolic. 

But while this result is probabilistically obvious, it is not at all clear how 
to prove it using purely probabilistic methods. The key step of the proof I am 
going to outline will depend on an analytic argument. The role of probability 
in this whole discussion may be likened to that of the stones in the fabulous 
stone soup. 

The first step is to quadrangulate the punctured sphere, as indicated in 
Figure 5, and lift to get a quadrangulation of the covering surface. The graph 
consisting of the edges and vertices of this quadrangulation is an extension of 
the Speiser graph. 

Now suppose we can shown that Brownian motion on the covering surface 
has the same type—transient or recurrent—as simple random walk on this 
extended Speiser graph, where the walker moves with probability 1/n to each 
of its n neighbors. To translate this information about random walk on the 
extended graph into information about random walk on the Speiser graph, 
we watch the random walk on the extended graph only when it is at points 
of the Speiser graph. If we do this, it will appear that the walker is carrying 
out a McKean-Sullivan random walk on the Speiser graph. But shutting our 
eyes when the walker is outside of the Speiser graph does not change the type 
of the random walk, so the McKean-Sullivan random walk is transient if and 
only if the surface is hyperbolic. 

To complete the proof, we must justify the connnection between the type 
of Brownian motion on the surface and simple random walk on the extended 
Speiser graph. To do this, it is best to abandon probability and make an 
analytic argument, based on a method from the classical theory of electricity. 
This method, called Rayleigh's short-cut method, was introduced by Rayleigh 
[16] as a way of finding upper and lower bounds for the resistance of an 
electrical system; it is described at length in the monograph of Doyle and 
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Snell [4]. The idea of applying Rayleigh's method to the type problem is not 
new, going back at least to Royden's remarkable and much-overlooked thesis 
[17]. 

The basis for the electrical argument is the observation that the Brownian 
motion is transient if and only if there is a system of currents out to infinity 
having finite dissipation rate. By a system of currents out to infinity, we mean 
a vector field for which, for a sufficiently large compact set, the vector field 
is divergenceless outside of the set, and the total flux through the boundary 
of the set is positive. The dissipation rate of the flow is the integral of the 
square of the current density, that is, the square of the Hilbert-space norm of 
the vector field. 

Similarly, the random walk is transient if and only if there is a system of 
currents through the edges of the graph out to infinity having finite dissipation 
rate. Here, the dissipation rate is the sum of the squares of the currents 
through the edges. 

To show that the graph and the surface have the same type—transient or 
recurrent—one shows how a system of currents could be transferred from the 
graph to the surface, or vice versa, without destroying the finiteness of the 
dissipation rate. The ingredients of the argument can be found in Royden's 
thesis [17]. 

Transferring a flow from the graph to the surface is easy. We simply fatten 
up the flow a little, taking the flow along each edge and spreading it over 
a narrow strip. Transferring a flow from the surface to the graph is a little 
trickier. The basic idea is to direct along each edge of the graph a current 
equal to the flux through the corresponding edge of the dual triangulation. 
The tricky part involves worrying about current that cuts across a corner of 
one of the polygons in the dual triangulation. For the original flow, the charge 
for doing this will be small, but for the transferred flow, the charge will be 
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just as much as if the same amount of current had passed all the way across 
the polygon, and if we are not careful, we may find that the dissipation rate 
for the transferred flow has become infinite. Everything turns out all right, 
however, because for the extended Speiser graph, the polygons of the dual 
triangulation do not have too many sides, and are not too dissimilar; this was 
the reason for looking at the extended graph in the first place. 

6. How useful is this criterion?. This result gives, I believe, a very 
satisfactory explanation of how the type of the surface is determined by prop­
erties of the Speiser graph. If this result is to be more than a curiosity, 
however, we must explain how we propose to tell whether the random walk 
we have defined is transient or recurrent. Otherwise, we merely have reduced 
one problem we cannot solve to another. 

In certain cases we may be able to apply traditional probabilistic methods 
to determine whether the walk is transient or recurrent. For example, I sup­
pose that one could give a thoroughly probabilistic proof that walk on the 
graph in Figure 3 is transient (though there is a better way to show this, as 
I will explain shortly). In general, though, traditional probabilistic methods 
do not seem to be much help. 

So how do we tell if the walk is transient or recurrent? The answer is, 
translate the problem back into electrical terms and apply Rayleigh's method 
[3, 4, 6, 10, 13]. Taking this approach, it is easy to show that the graph 
in Figure 3 is transient, thus giving another proof of the theorem of Lyons, 
McKean, and Sullivan [11, 12] that the class surface of the sphere with three 
punctures is hyperbolic. This approach can also be used to derive known 
criteria for the type of the surface in terms of the rate of branching of the 
Speiser graph [20]; these now appear as conditions for recurrence or transience 
of the McKean-Sullivan random walk. 

This suggests that what is really useful is not the result itself, but Rayleigh's 
method, the method by which the result ia derived. The usefulness of Ray­
leigh's method is hardly news, however, because Rayleigh's method is equiv­
alent [5, 17] to the method of extremal length, a geometrical method that has 
been the basis for most of the work on the type problem [2, 7, 14, 15, 17, 
20]. 

This brings us to what may be the main use of this new criterion: It gives us 
yet another proof that the type problem is solved, and the method of extremal 
length is the solution. Not a formal proof, of course, but a proof in the sense 
of the dictum, "Prove all things, hold fast that which is good." 

REFERENCES 

1. W. Abikoff, The umformizatUm theorem, Amer. Math. Monthly 88 (1981), 574-592. 
2. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N.J., 

1960. 
3. P. G. Doyle, Application of Rayleigh's short-cut method to Polya's recurrence problem, Ph.D. 

Dissertation, Dartmouth College, Hanover, N.H., 1982. 
4. P. G. Doyle and J. L. Snell, Random walks and electric networds, MAA Carus Monographs 

(to appear). 



RANDOM WALK ON THE SPEISER GRAPH 377 

5. R. J. Duffin, The extremal length of a network, J. Math. Anal. Appl. 5 (1962), 200-215. 
6. D. Griffeath and T. M. Liggett, Critical phenomena f or Spitzer's reversible nearest particle 

systems, Ann. Probab. 10 (1982), 881-895. 
7. S. Kakutani, Applications of the theory of pseudo-regular functions to the type-problem of 

Riemann surfaces, Japanese J. Math. 13 (1937), 375-392. 
8. , Two-dimensional Brownian motion and the type problem of Riemann surfaces, Proc. 

Japan. Acad. 21 (1949), 138-140. 
9. , Random walk and the type problem of Riemann surfaces, Contributions to the Theory 

of Riemann Surfaces, Princeton Univ. Press, Princeton, N.J., 1953, pp. 95-101. 
10. T. J. Lyons, A simple criterion for transience of a reversible Markov chain, Ann. Probabl. 

11 (1983), 393-402. 
11. T. J. Lyons and H. P. McKean, Jr., Winding of the plane Brownian motion, Adv. in 

Math. 51 (1984), 212-225. 
12. H. P. McKean Jr. and D. Sullivan, Brownian motion and harmonie functions on the class 

surface of the thrice-punctured sphere, Adv. in Math. 51 (1984), 203-211. 
13. C. St. J. A. Nash-Williams, Random walk and electric currents in networks, Proc. Cam­

bridge Philos. Soc. 55 (1959), 181-194. 
14. R. Nevanlinna, Eindeutige analytische FunktUmen, 2. AufL, Springer, Berlin, 1953. 
15. R. Osserman, Riemann surfaces of class A, Trans. Amer. Math. Soc. 82 (1956), 217-

245. 
16. J. W. S. Rayleigh, On the theory of resonance, Collected Scientific Papers, Cambridge 

Univ. Press, Cambridge, 1899, pp. 33-75. 
17. H. L. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. 

73 (1952), 40-94. 
18. A. Speiser, Problème aus dem Gebiet der ganzen transzendenten FunktUmen, Comment. 

Math. Helv. 1 (1929), 289-312. 
19. , Ueber Riemannsche Flaechen, Comment. Math. Helv. 2(1930), 284-293. 
20. H. Wittich, Neuere Untersuchungen ueber eindeutige analytische FunktUmen, 2. Aufl., 

Springer, Berlin, 1968. 

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS, UNIVERSITY OF MIN­
NESOTA, M I N N E A P O L I S , M I N N E S O T A 55455 


