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ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES 

BY C. D. GODSIL AND B. D. McKAY 

A k X n Latin rectangle is a k X n matrix with entries from {1,2,.. . , n} such 
that no entry occurs more than once in any row or column. (Thus each row is 
a permutation of the integers 1,2,..., n.) Let L(k, n) be the number of k x n 
Latin rectangles. An outstanding problem is to determine the asymptotic 
value of L(k, n) as n —• oo, with k bounded by a suitable function of n. 

The first attack on this problem was made by Erdos and Kaplansky [1], 
who obtained the correct value for k — 0((log n)3 /2 _ e) . The range of validity 
was later widened to A; = ofa1^) by Yamamoto [8] and to k = ofo1/2) by Stein 
[7]. We have obtained the correct value for k = o(n6/7), and at the same time 
have sharpened the known approximations for fixed k > 4. Specifically, we 
have the following Theorem. 

THEOREM. Let k = 0(nx~6) for some fixed 6 > 0. Then 

L(M) - J^n-lreMk{k" mk'n))' 
where 

f„ , 1 fe-1 k2-k-l 12/c3 - 13/c2 - 13/c - 6 

15/c4 - 18/c3 - 18/c2 - 28/c + 47 
+ 180n5 

The bound l(k, n) > 0 is a consequence of the van der Waerden permanent 
conjecture. It is interesting to note that the leading coefficients of the expan­
sion of l(k, n) are in harmonic progression. If this trend continues (which we 
cannot prove) it would suggest that 

v ' ; nnk(n-k)\n\ nj 

as n —• oo with k = 0(nx~6). 
As with previous work, our Theorem is obtained by first estimating the 

average number of ways in which a k x n rectangle can be extended to a 
(k + 1) X n rectangle by adding an extra row. The important new feature of 
our work is that is uses some of the recently developed theory concerning the 
matchings and rook polynomials [2-5]. 
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From [3 or 5] we know that the number of ways of extending a given k X n 
rectangle R can be expressed as /0 e~xr(x) dx, where r(x) is a polynomial of 
degree n determined by R. Now, all the zeros of r(x) are known [4, Lemma 
4.1 and Theorem 4.3] to lie in the real interval [0,4fc — 4). For n :» k, this 
implies that the integrand is concentrated in a fairly small region near x = n. 
Moreover, the moments of the set of zeros of r(x) enumerate a certain family 
of closed walks in a A;-regular bipartite graph G associated with R [2]. By 
comparing these with another family of closed walks in G [6], we obtain an 
accurate estimate of the number of extensions of R in terms of the counts 
of certain small subgraphs (squares, etc.) in G. The average values of these 
counts are then estimated by another method and the Theorem follows. 

A similar technique has been used to asymptotically enumerate disjoint 
perfect matchings in the complete graph. Details will appear elsewhere. 
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