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BOOK REVIEWS 

Cartanian geometry, nonlinear waves, and control theory, by Robert Hermann, 
Interdisciplinary Mathematics, volumes 20 and 21, Math. Sci. Press, Brook-
line, Mass, Part A, 1979, xv + 501 pp., $50.00; Part B, 1980, xii + 585 pp., 
$60.00. 

Cartanian geometry, A and B are the twentieth and twenty-first volumes in 
the series Interdisciplinary mathematics (IM) which is authored by Robert 
Hermann. (A companion series is Lie groups: history, frontiers and applications.) 

The volumes under review represent both a refinement and an extension of 
earlier work in the IM series. Most particularly, for the purpose of this review, 
we need to refer to Vol. 3 (Algebraic topics in system theory), Vol. 8 (Linear 
system theory and Introductory algebraic geometry), Vol. 9 (Geometric structure 
of systems—Control theory and physics, Part A), Vol. 11 (Geometric structure of 
systems—Control Theory, Part B) and Vol. 13 (Algebro—Geometric and Lie 
theoretic techniques in systems theory, Part A—coauthored with Clyde Martin). 
As is the case with most of the series, Cartanian Geometry A,B cover an 
enormous number of topics. Broadly grouped, they fall into the categories (1) 
systems and control theory; (2) nonlinear waves; (3) quantum mechanics and 
(4) a translation (by Michael Ackerman) of Sophus Lie's papers General 
investigations of differential equations which admit a finite continuous group and 
Foundations of the theory of infinite continuous transformation groups. I. This last 
item is of value to historians of modern mathematics as well as those whose 
interest is in Lie groups or differential geometry. 

Because of the wealth of ideas dealt with in these volumes and the need to 
keep this review to a manageable length, attention will be restricted to the 
material on the matrix Riccati equation and on the relationship between 
control/system theory and vector bundle theory. (Those interested in the topic 
of nonlinear waves may wish to see Hermann's review [33] of Elements of 
soliton theory by G. L. Lamb, Jr. The presentation in Lamb's book is from a 
different perspective from that of Hermann's work in this area, but Hermann 
has taken the opportunity of the review to give an overview of the geometric 
theory of nonlinear waves.) 

Before we discuss in depth any of the mathematical content, a few words are 
in order about the author's philosophy. Perhaps the first two paragraphs of the 

preface to Part A best sum up his attitude. 

"I began in 1970 to write this series of books in order to 
develop a unified mathematical science and technology. After 
all, if subjects like category theory, logic, differential topology 
are accepted and integrated into the mathematical world, why 
not system theory, mathematical elementary particle theory, 
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relativity, etc.? I had no master plan, but intended to write 
down what I could, as best I could, and see where it led. 

Twenty volumes are now completed and I can say more 
definitively that the unifying theme is the role that geometry 
plays in physics and engineering. 'Applied mathematics' is 
usually thought of as involving the more concrete parts of 
analysis and certain areas like numerical analysis and combi­
natorics, which interface computer science; but my vision is 
quite different. To a large extent I am inspired by the histori­
cal example of the 19th century, where the basis of much of 
the fruitful interchange between mathematics and physics was 
precisely in the area we call 'geometry' or 'the geometric 
theory of differential equations.' " 

Surely none of us could quarrel with the notion that there is a symbiotic 
relationship between mathematics and physics (as well as other branches of 
science and engineering). In fact, an argument can be made that mathematical 
ability is what differentiates the scientist from the nonscientist. C. P. Snow in 
the preface of The search [62] says: 

"There is just one basic difficulty. All children have a dash 
of scientist in them. Watch any bright child if you tell him 
about the stars or atoms or dinosaurs. He will want to find 
out some more. The urge to investigate, which is the scientific 
urge, isn't anything very special or academic. It is one of the 
most human things about us. In that sense, as I said, all 
children are scientists. But all children are not mathemati­
cians, and that is the core of the difficulty. I don't know how 
many people are mathematically blind to the extent that some 
of us are tone deaf, but I suspect a larger proportion than the 
educational psychologists usually allow. Thinking of twenty 
acquaintances, who have all done pretty well in various sorts 
of intellectual life, I should say that at least five were, if not 
mathematically blind, at least grossly deficient in mathemati­
cal sense. That means that though, sensibly educated, they 
could have got a good working idea of how physical science 
goes about its business, they would never have reached the 
fundamental concepts. I suggest we have got to accept the fact 
that, for a lot of people of high intelligence and imagination, 
this is as near as they are going to come to the real stuff. It is 
much better than nothing, but there are limits, and it is just as 
well to be clear-sighted about them in advance." 

Nor, we feel, can one deny that differential geometry and topology, in 
particular, provide a very powerful and succinct language for describing 
physical phenomena. A few examples show how significant these languages 
have become in the description of diverse areas of physics and engineering and 
how manifold are their application. 
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(1) The association of a symplectic manifold with the phase space of a 
mechanical system (with finitely many degrees of freedom) introduces great 
clarity into classical mechanics. From here it is a short jump conceptually 
(though not necessarily technically) to studying continuum problems on sym­
plectic manifolds modelled on Banach spaces [1, 2, 13, 25, 46, 47, 65, 69, 70, 
76]. 

(2) Fiber bundles give a structure to the gauge theories of quantum field 
theory whereby a gauge potential is a connection one-form on a principal fiber 
bundle over space-time and the curvature form of that connection defines the 
field strength of the gauge field. The many tools of differential geometry (e.g. 
Chern classes, Atiyah-Singer Theorem, etc.) have been brought to bear on 
physical problems with good results [3, 4, 16, 19, 30]. 

(3) In geometric quantization, one seeks to formulate the relationship 
between classical and quantum mechanics in a geometric language. Not only 
does this approach lead to an intuitive mathematical interpretation of quantum 
mechanics, but it has led, in particular, to new insights into the connection 
between the concepts of symmetry in the two theories [3, 4, 41, 60, 61, 63, 72]. 

(4) General relativity was, of course, a geometric theory from its inception. 
Little more need be added than to say that it is now de rigueur to use the 
invariant calculus of modern differential geometry [22, 26, 52, 58, 71]. Complex 
manifold theory has come to play an increasing and exciting role here and in 
mathematical physics in general [20, 21,44, 56, 74, 75]. 

(5) In the materials sciences, geometric and topological methods have been 
valuable in describing dislocations in simple bodies and defects in ordered 
media [5, 51, 53, 54, 57, 73]. 

(6) A vast array of mathematical tools, including not only the traditional 
analytic and linear algebraic ones but more recently those of algebraic and 
differential geometry and ring theory, have been brought to bear in the study 
of control systems. Lie theoretic techniques are especially useful in the study of 
nonlinear systems [7-9, 15, 27, 29,31, 34-39, 42,43,45, 50, 66-68]. 

This list could go on to include other disciplines (e.g. Walrasian economics 
[17]), but we conclude this brief description with a quote from [52, p. 302]: 
"Nature likes theories which are simple when stated in coordinate free geomet­
ric language." 

A word about the title is in order. Cartanian geometry, of course, means 
geometry in the sense of Elie Cartan. That in turn can mean many things, not 
the least of which is a systematic use of the ideas of exterior differential 
systems. Hermann is to be praised for making this material available in a 
modern setting, as there is a striking absence at the textbook level (the works 
of Dieudonné [18] and Sternberg [64] being exceptions) of in-depth informa­
tion on exterior systems. In his own work he has made significant application 
of these methods in his collaboration with Estabrook and Wahlquist on 
nonlinear waves. The interest in exterior differential systems is quite high these 
days. There are some articles in the proceedings of the conference held at Park 
City, Utah [11]. In addition, between the time this review is written and it 
appears, there will be two conferences which will delve into this subject. S. S. 
Chern and R. Bryant will have lectured on it in January, 1982 at the University 
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of New Mexico and R. Gardner will discuss some of its aspects at Michigan 
Technological University in July, 1982 at a conference on differential geomet­
ric control theory. 

There can be little question then, at least from the mathematician's point of 
view, that differential geometry has had significant impact on the development 
of physical sciences and of mathematical engineering. Hermann among others 
has proselytized long and hard for its use, not only for the clarity and beauty 
thereby introduced but also, perhaps more to the point, as a way of cir­
cumventing difficulties (e.g. in quantum field theory) that have arisen from too 
rigid an adherence to analytical techniques. Of course, for each specific 
application a value judgment needs to be made. Thus, there are alternative 
views of the value of Hermann's work. Both sides of this question are 
presented in the author's essay Twenty-five years as a mathematician and the 
other reflections which cover the first 82 pages of Part B. Included in those 
pages are not only referees' reports which question whether there will be 
scientific rewards from the approach espoused in the book but also a series of 
rebuttal letters written by Hermann defending his approach. Prospective 
readers of these volumes may wish to examine these reflections before making 
the decision whether or not to go through the material themselves. 

Let us begin the mathematical review of this work with the material which 
does work quite well; namely, applying fiber bundle techniques to linear 
systems theory. This material, which was originally due to the author and 
Clyde Martin [32, 48, 49], starts off with a linear system and interprets it in the 
frequency domain as a vector bundle over the Riemann sphere. The machinery 
of algebraic topology/differential geometry may then be brought to bear on 
the problem. We will outline this procedure and its consequences, after a short 
introduction to relevant concepts from linear systems theory. 

Basic to the understanding of a linear time-invariant system 2 are the 
internal and external descriptions of such a system. When the system dynamics 
are known, then one has at hand three vector spaces X, U, Y (called the state, 
input and output spaces respectively) and a triple of constant matrices (A, B, C) 
of appropriate sizes so that the state x, the input w, and the output^ are related 
by 

x(t)=Ax(t) + Bu(t), 
{ ' y(t) = cx(t) 

with x(t) G X, u(t) G U and y(t) G Y. When a control function u is chosen 
(frequently from the space of piecewise continuous {/-valued functions), the 
differential equation can be integrated to produce, for any initial time t0 and 
initial state x0, an evolution of the state x(t; t0, x0,u) which starts at x0 at 
time t0 and an associated output y(t; t09x0,u). Consequently, 2 can be viewed 
as a map, via the state trajectory x(t; tQ, xQ, w), from input functions to output 
functions. 

Two questions of concern about 2 are whether it is controllable and/or it is 
observable. The former means that it is possible in finite time and by suitable 
choice of u to connect any two points of the state space by a state trajectory. 
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Since the system is linear, this is equivalent to being able to drive any initial 
state to zero. For 2 to be observable means that one can reconstruct the initial 
state of the system from a reading of the input and output over a sufficient 
duration of time. Simple matrix criteria are known for determining whether 2 
possesses these properties; to wit 

2 controllable <=> n = dim X 

= rank([#, AB,... ,An~lB]) (column partition) 

and 

2 observable <=> n = rank([c, CA,..., CAn~l]) (row partition). 

What has been given up to this point is an internal description in the time 
domain. Taking the Laplace transform f(s) — /0°° e~stf(t) dt (with zero initial 
condition), one obtains equations in the frequency domain 

* sx(s) = Ax(s) + Bû(s), i(oo) = 0, 
( ) '* y(s) = Cx(s), )>(oo) = 0, 

where the values at the ideal point, oo, follow from setting r = s~l in 2 and 
letting T go to zero. Consequently, the system is now defined over the Riemann 
sphere, S. Solving for y yields the input-output (i/o) map 

y (s) = C(sl — A) Bû(s), s G .S-spectrum(yl). 

In the external ("black box") description, only the i/o map is known (i.e. 
y(s) — T(s)u(s\ where T(s) is a proper rational matrix function called the 
transfer function). One then seeks a realization of the system, which is an 
internal description (= triple (A> B, C)) with the same i/o map. While many 
realizations are possible, a minimal realization is achieved when the dimension 
of the state space is minimal. It is a fundamental result of linear system theory 
that the realization is minimal when (A, B, C) is a controllable and observable 
triple (uncontrollable modes and unobservable modes do not contribute to the 
i/o map). The minimal state space dimension is called the McMillan degree of 
2. (For a matrix theoretic description of these ideas, see Brockett [6].) 

The Hermann-Martin work, which is described next, has made interesting 
connections between vector bundle theory and the concepts of controllability, 
observability, and McMillan degree. Recall that a vector bundle over M is a 
(total) space P and a continuous map 7r: P -* M such that the fiber TT~ \m) is a 
vector space for each m E M. The vector bundle is nonsingular if dim7r-1(m) 
is constant. A section of the bundle is a map y: M -> P with IT Q y = idM. 
Working in the frequency domain, Hermann constructs the input-output 
bundle I/O for 2 by 

I/O — {(s, w, y) : there is an x which solves (2)}. 

This is a holomorphic vector bundle over the Riemann sphere S whose 
cross-sections are i/o maps for 2. The object now is to attach geometric 
invariants to this bundle that have linear system theoretic significance. 
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To establish another link with 2, he first considers the general class of kernel 
bundles associated with a pair of linear maps. Briefly described, the construc­
tion is as follows. Let a09 ax: V -» JFbe linear maps between a pair of complex 
vector spaces V, W and define 

A(s) — ker(s0a0 + sxax)9 s = (s09 sx) G C2 - O. 

Since A(s) respects the equivalence relation which creates PX(C) = S from 
C2 — 0, there is obtained a (possibly singular) vector bundle over S with fibers 
A(s). The Kronecker theory of pencils of linear maps [23, 28] is now brought 
into play. Under a certain technical assumption about the nature of the 
Kronecker decomposition of the pencil, Hermann shows that the kernel bundle 
is nonsingular and then proceeds to give a concrete algebraic construction of 
the splitting of this bundle into complex line bundles ( = vector bundles whose 
fibers are one dimensional complex vector spaces). This is the splitting ensured 
by the Grothendieck Theorem [24] on nonsingular holomorphic vector bundles 
over the Riemann sphere. In addition, Hermann's construction explicitly 
exhibits for each line bundle an integer ni which is the Chern number of that 
bundle. 

The machinery now being in place, the tie-in with linear system theory can 
be made. Form the kernel bundle K based on the spaces V= XxU9 W — X 
and the linear maps 

OL0(X9 u) — x, OLX(X, u) — - (Ax + Bû). 

Then, controllability of 2 makes K nonsingular (i.e. the aforementioned 
technical assumption of the Kronecker decomposition is then met). Controlla­
bility and observability of 2 imply that I/O and K are isomorphic vector 
bundles (i.e. there is a fiber preserving diffeomorphism between the total 
spaces which restricts to linear isomorphisms on fibers) and so the geometric 
invariants of K obtained by the Kronecker decomposition carry over to I/O. 

To explore the nature of these invariants, let 2 ' = (A'9 B\ C') be another 
controllable/observable system with associated pencil P\s) = (A' — sl9 B') 
and input-output bundle I/O'. Continuing with the circle of ideas above, he 
establishes the equivalences: the kernel bundles K9 K' of 2, 2 ' have the same 
Chern numbers for their decomposition into line bundles if and only if I/O 
and I/O' are isomorphic; if and only if the associated pencils are Kronecker 
equivalent, i.e. aP(s) = P'(s)f$ for invertible matrices a, fi on appropriate 
spaces; if and only if (A9 B) and (A'9 B') lie on the same orbit under the action 
of the general feedback group (which affects systems by state space and input 
space isomorphisms and by state feedback); if and only if 2, 2 ' have the same 
Brunovsky indices ( = set of integers that label the above orbits). The Brunov-
sky indices (= Kronecker indices = controllability indices), which are of a 
linear system theoretic origin [10, 40], are thus established as geometric 
invariants of the I/O bundle (also see Wonham [77] for a characterization of 
these indices as dimensions of (A9 2?)-controllability subspaces.) Moreover, the 
McMillan degree, as the sum of the Chern numbers of the I/O bundle, is also 
a geometric invariant. 
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Once Hermann has completed this discussion and made the analogy between 
the decomposition of kernel bundles into line bundles and the Grothendieck 
theory, he makes some speculative assertions about possible generalizations to 
higher dimensional projective spaces. That material is then mentioned on p. 
436 where the Hermann-Martin papers are referred to. 

The above illustrates both the strengths and weaknesses of the book. On the 
one hand the connection between control theory and holomorphic vector 
bundles is quite exciting. However, without having read the Hermann-Martin 
papers, it would be quite difficult to see where the circle of ideas discussed 
above was going. In fact, some aspects of the circle are mentioned only 
implicitly in the two volumes under review. One wonders why the author didn't 
incorporate more of the very interesting work from the Hermann-Martin 
papers in Parts A and B (of course, it may be that what the two reviewers see 
as the most important and interesting aspect of these ideas is different from 
what the author sees as most important). We would urge any readers of these 
two volumes to have the Hermann-Martin papers close at hand. 

The problem of wondering what goes next occurs too often in the books. In 
a working draft of an article that is fine; however, in a book or seminar notes, 
it is a questionable approach. The books should be better organized so that 
similar results could be grouped together, rather than scattered through several 
sections of both volumes. For example, the Kronecker decomposition is 
discussed in Part A but not made use of until Part B. There are also 
incomplete ideas such as on p. 399 of Part A where, after showing that a 
certain procedure (involving algebraic geometry) yields the Gaussian elimina­
tion, Hermann says: "There are certain general features of these algorithms 
which have the same geometric and algebraic flavor; I plan to work further in 
this direction." On the next page, in the introduction to the Surveys and 
development of new geometric methodology for application section he says "I 
believe this topic, the QR algorithm, is an ideal one for this purpose and it 
introduces tremendous new insight into the applied problem. I plan much more 
work later on; this is the first tidbit" (emphasis is the author's). Excellent, then 
publish it when there is more than a tidbit. Moreover, while it is of interest to 
geometers to see other mathematics translated into their terms, it should be 
pointed out that there is already a geometric theory of the QR algorithm [55] 
that is in harmony with its natural linear space structure. 

The beautiful subject of geometric methods in control theory has been 
undergoing an information explosion. The results of the Harvard conference of 
June, 1979, sponsored by NATO and NASA/Ames Research Center have 
been edited by C. Byrnes and C. Martin and published by D. Reidel [12]. 
These proceedings include many fine articles (especially the Byrnes, Hazewin-
kel, Martin and Rouchaleau article, the Byrnes article, the Brockett article, and 
the Martin article) which are well written and accessible even to the nonexpert. 
This is a better place to learn geometric control theory than are the Hermann 
books. (Of course, Part A was finished before the NATO conference and Part 
B must have been nearly complete at the time of the conference. Thus, it is 
likely that Hermann wrote most of his work without being able to make use of 
the preprints of the conference.) 
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We now turn to the matrix Riccati equation (MRE), which has a prominent 
place in the control theory literature. For example, its solutions determine the 
state feedback which gives optimal performance in the linear optimal control 
problem with quadratic performance functional. Naturally an equation of such 
importance has been studied from many points of view. Starting with a paper 
of C. R. Schneider [59], the MRE has been viewed to be properly set 
geometrically as a differential equation on a Grassmann space. It is this 
interpretation which Hermann describes and builds upon in the book under 
review. 

Consider i?2" as a linear symplectic manifold with respect to the alternating 
nondegenerate form co given by 

Define a subspace y of R2n to be Lagrangian if co(v{, v2) = 0 for all v]9 v2 G y 
and dim y = n. Let £ be the collection of such subspaces. £ is then a subset of 
the Grassmann space GR(R2n) of all subspaces of R2n and is acted on 
transitively by the symplectic group Sp(co) (that is, the invertible In X In 
matrices that leave w invariant). As such, £ is an orbit in GR(7?2n) and can be 
realized as the coset space Sp(co)/i/, where H is the isotropy subgroup at some 
element of £. This is an example of what Hermann terms a Grassmann coset 
space. What is the relevance of this idea for the study of the MRE? 

The linear optimal control problem with quadratic performance index is 
given by a pair consisting of a linear differential equation 

(ODE) x = Ax + Bu, A, B constant 

and a performance index (over a finite time interval) 

(Index) jdt( xTQx -f uTRu), Q, R constant, positive definite. 

The goal is to choose the control function u so that it, together with the 
resulting state function as given by ODE, will minimize Index. It is a 
time-honored result that the optimal control is given by state feedback accord­
ing to 

u(t) = -R-lBTP(t)x(t) 

where the symmetric matrix P — P{t) satisfies 

(MRE) -P = ATP + PA- PBR~lBTP + Q 

Recast MRE as the equation 

A -BR-]BT\ 
-Q -A7 (3) L = ip and tp = [x,Px]T. 

If it is now noted that the set of [x, Px]T, as x runs through Rn, is a 
Lagrangian subspace and that the symmetric matrices can be identified with 
Rn(n+1)/2^ t j i e n w e s e e t j i a t faQ m a p ^ ^ h sends P to the corresponding 
Lagrangian subspace is a chart on the compact n(n + l)/2-manifold £. In this 
setting, (3) tells us not only that MRE can be viewed as an equation on Ê but 
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also that the usual treatment is local, i.e. on a chart. (In this regard, Hermann 
develops a theory of global linear systems in Part B.) 

A local description is in general inadequate for dealing with finite escape 
times or asymptotic phenomena. From the global viewpoint, MRE may 
continue to evolve on £. This offers the possibility of following the time 
evolution by employing other charts on £ (e.g. the one given by P -» {[Px, x]T: 
x G Rn}). Another pay-off comes in viewing solutions of the algebraic Riccati 
equation (set P = 0 in MRE) as zeroes of a vector field on a manifold. These 
ideas are explored in Chapters 4 and 5 of Part A. 

Thus far, this review has discussed both Hermann's philosophy and some of 
the mathematics in the volumes. We now turn to the pedagogy which is, 
unfortunately, a weak point of the volumes. In the preface to volume I of IM, 
the author says it is his intention that these are seminar notes and so we need 
to look at them in this light. The problem is that it is unclear for whom the 
notes are intended as the level of exposition is quite uneven. For example on p. 
437 of Part B the author uses Chow's Theorem in a proof about controllability 
but never discusses it in detail, whereas five pages earlier he defines the 
pull-back map on differential forms and the Grassmann algebra! (In fairness, 
he does give reference to a paper by Hermann-Krener [31] in which a version 
of Chow's Theorem appears.) The three problems which we found most 
troublesome were the lack of an index, the enormous number of typographical 
errors, and the tendency alluded to earlier to start one subject, leave it and 
then return later. While a lack of index is understandable in a "seminar notes" 
type of format, large numbers of typos are not. Their presence makes the going 
very difficult, much more so than it should be. One example suffices: If 
V = X © U and W — X then for any A, a linear map from X to X and B a 
linear map from U to X, A(s) = (A — si, B) for s E C, is called a pencil. 
Hermann says that A(s) and A'(s) — {A' — si, Bf) are Kronecker equivalent if 
there is a pair y G G\(W) and /? G G\(V) such that A(s) = A\s). (Of course 
what is meant is yA(s) — A'(s)fi.) One wishes that the author had taken into 
account the problems which were cited in the Chernoff-Marsden review [14] of 
some of his earlier work. 

Robert Hermann has made a significant contribution to mathematics both 
in differential geometry and in control/systems theory. These volumes, which 
describe some of his work, are from a philosophical viewpoint valuable. Their 
value could have been far greater if the author had (1) explored specific topics 
in more detail and/or omitted ideas whose depths had not yet been explored 
and (2) done a good job in proofreading. In his final remarks on exterior 
systems (Part A, p. 444) he states "I hope I have given some solid evidence for 
my belief that ideas of "modern" differential and algebraic geometry are very 
significant for systems-theoretic problems." For systems theory (to which we 
have restricted our review), this evidence has been given. 
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Introduction. In his book Bases in Banach spaces. II (BBS II), Ivan Singer 
takes all knowledge of bases and their generalizations to be his province. More 
precisely, he states in the preface that "this volume attempts to present the 
results known today on generalizations of bases in Banach spaces and some 
unsolved problems concerning them". Bases in Banach spaces. I (BBS I) was 
published in 1970 and BBS II in 1981. During the writing of these books, basis 
theory and its generalizations began to develop very rapidly. The task of the 
author became not that of describing a theory already essentially developed, 
but of presenting a theory in a very rapid state of development. Thus, in order 
to achieve his goal of a complete account of basis theory, its generalizations, 
and its applications, Ivan Singer is working on a third volume on applications, 
bases in concrete spaces, and perhaps some loose ends. 

The book under review, BBS II, is encyclopaedic (at the Banach space level) 
with respect to its subject. It consists of twenty-one sections plus a section 
entitled Notes and remarks. The review will discuss the section on the solution 


