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RESEARCH ANNOUNCEMENTS

ON K, AND K, OF THE INTEGERS MOD ~
BY JANET AISBETT

Quillen [7] defines an algebraic K-functor from the category of associative
rings to that of positively graded abelian groups, with K,(R) = [I,(BGLR*') fori>1.
K, and K, correspond respectively to the ‘classical’ Bass and Milnor definitions.
The K-images of finite fields and their algebraic closures were computed by Quillen
in [8]. Since then, there has been only a handful of complete calculations of any
of the higher K-groups (K for i > 2). Lee and Szczarba [4] showed that the
Karoubi subgroup Z/48 of K;(Z) was the full group. Evens and Friedlander [3]
computed K(Z/p*) and K(F,[z] /(t%)) for i <5 and prime p greater than 3.
Snaith in [1] and, with Lluis, in [5], fully determined Ka(Fpm [£1/(t%)) for
m > 1 and prime p other than 3.

This note summarizes computations of the groups K3(Z/n), and K, 4(Z/p")
for k> 1 and prime p > 3. These complete the recent partial results on K3(Z/4)
by Snaith and on K;(Z/9) by Lluis, and extend the work of Evens and Fried-
lander. The theorem stated below is consistent with the Karoubi conjecture that
for odd primes, BGIZ/p" * is the homotopy fibre of the difference of Adams
operations, wrk \I/Pk_l. However, Priddy [6] has disproved the conjecture in
the cases p > 3 and k = 2.

I am most grateful to Victor Snaith for his supervision of the thesis in

which these results originally appeared. Details of the proofs can also be found
in [1].

THEOREM. Take k> 1and 0 <i<2.
@) Ky (225 =22 @ /2% @ /(2" - 1). K,,_,(Z/p*)=
Z/p"*=1) @ Z/(p' — 1) if p is an odd prime. For all primes, the map

K, 1(Z/pk+ l) —K,;_ 1(Z/pk)
induced by reduction is the obvious surjection.
(b) For prime p > 3, K, (Z/p*) = 0. K,(Z/3%) = 0. K,(Z/2*) = z)2.

K, is due to Bass, K, to Milnor, Dennis Stein.
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K3(Z/p") is isomorphic to H*(StZ/p*; Z) where the special linear group
SLZ/p* coincides with StZ/p* modulo K,(Z/p¥). For odd primes, K ,(Z/p¥) is
recovered from the homology of SLZ/pk using the Serre spectral sequence related
to the natural inclusion BSLZ/p** — K(K4(Z/p¥), 3). Thus the bulk of the
proof of the theorem consists of computing the low dimensional group cohomol-
ogy of SLZ/p¥. Stability results of Wagoner [9] and others mean that it suffices
to work with SLnZ/p" for large n prime to the order of the group of units in
Z/p" . In fact, we will assume that » is large and n = 1 mod p. Our method is
based on recursive definition of group extensions and detailed comparison of the
resulting Lyndon-Serre spectral sequences.

The key set of extensions are those induced by reduction,

Bk k= k L Tk
%) G, = kerr, >— SL Z/p*¥ ——SL Z/p.

The initial step in the recursive analysis is provided at k = 2 by the calculations
of Snaith (p = 2), Lluis (odd primes) and Evens and Friedlander (p > 3) of the
E¥* terms in the associated spectral sequence with coefficients in Z or Z/p. (Gf,
is isomorphic to M, Z/p, the zero trace n x n matrices over Z/p.) A specific
resolution-level differential formula is derived, then applied to the spectral se-
quence H*(SL, Z/2; H*(M,;Z[2; Z[4)) = H*(SL, Z/4; Z[4) to complete the deter-
mination of H*(SL,Z/4; Z/4) and thence of K;(Z/4). For the odd primes, in
particular p = 3, spectral sequence pairings and the Charlap and Vasquez [2] dif-
ferential formula are exploited in order to avoid resolution level calculations in
the integral spectral sequences associated with E(2). So for all primes p,
H"(SLnZ/p2 ; Z) is known.

For the recursive step, the modules I{i(G,’f ; Z) for i < 4 and k > 2 need
first to be estimated. This is done through the spectral sequences associated with
the central group extensions

- Tk -
E(k) M, Z[p >— G¥ —= Gk~1, k>2.

Initially take Z/p coefficients. Because the base group in E(3) is an elemen-
tary abelian p-group, it is straightforward to apply the Hochschild-Serre formula
for the d, differential. In an identical calculation to that which would be used
to determine H*(M,; Z/p?; Z/p) from the equivalent filtration, the full graded
module H*(Gﬁ; Z/[p) is obtained when p is odd. When p = 2, an ad hoc compu-
tation of desired E** terms must be employed. For k > 3 the differential
formula cannot be neatly expressed. However, the image of the 3! differential
can be shown to be precisely the cokernel of mj_,: H 2(G,",’_"’; Z/p) —
HQ(G’,f‘1 ; Z/p) by comparing low dimensional terms in the spectral sequence
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associated with E(k) with those in the sequence H*(GX~2; H*(M,, Z/p*; Z/p)) =
H*(Gf, ; Z/p). From this, an isomorphism with the k = 3 spectral sequence is
obtained if p is odd. For p = 2, each of the H*(GL‘; Z/p) is isomorphic as

SL, Z/p-modules if £ > 3, and as groups if k > 3.

The modules H(G¥; Z), i < 4, are determined from the Z/p-results using
the integral spectral sequence associated with E’(k) and the fact that in this situa-
tion,d (1 ® B) = pd, (B the Bockstein H*(—; Z/p) — H**1(~; Z)). These
modules are expressed in terms of direct summands and quotients of H*(M,, Z/p; Z/p),
in particular, summands which are the (w5 - - * m;)*-images of H*(Gf,; Z). Itis
then easy to show that the groups If(SLnZ/p; Hi(G’,f ; Z)) are isomorphic under
(my - - - m)* for each k > 2 in total degree less than 6, if (7, /) & {(0, 5), (1, 4),
(2, 3), (0, 4)}. Naturality of spectral sequences therefore provides for an iso-
morphism: ker i¥ —> ker i} restricting from the map: H? (SL"Z/p2 3 Z2) —
H*(SL,Z/p*; Z) induced by reduction.

To find im 7}, first reconsider the spectral sequences associated with E?(k).
The SL, Z/p-invariants in the E%* terms of total degree 4 are determined by
specifically examining the action of the differential on invariants in the E¥* terms.
The Wagoner-Milgram [10] result that K5(Z/p), defined as lim l'l3(BGLZ/pk *,
contains a copy of the p-adic integers is interpreted to mean that the subgroup of
invariants in H* (Gﬁ; Z) becomes arbitrarily large with increasing k. By studying
possible representatives in p - H* (G’,:; Z) for decreasing k it can be recursively
shown that all E** invariants represent invariants in the full group. With the
Z/p results, we find the invariants in H*(G¥; Z) to be Z/p ® Z/p**~D*1 if p
is odd, or Z/2 ® 2/2 ® 2/2**=2) if p = 2. Further, T, may be taken to be
the zero map on the first summand, and multiplication by p? on the last (and to
be an isomorphism between the second summands if p = 2).

Next, an injection: H*(SL,Z/p*; Z) — H*(SL,Z/p**?; Z) induced by re-
duction is established by recursively determining the E¥* terms in the spectral
sequences H*(SL, Z/p*; H¥(M,, Z/p; Z)) = H*(SL,Z/p**1; Z), then inspecting
differentials. This together with the known action of n} permits the determina-
tion of the image of i}, k > 2; it is as shown in the following commutative exact
diagram which has now been set up for odd primes p. (The case p = 2 is entirely
analogous.)

ker if >— H*(SL,Z/p*; Z) —— im i} = Z/p? (k- 2)+1

=1 1 Ip2(k—2)

ker i¥ > H*(SL,Z/p*; Z) — im i} = Z/p.

Then information about H*(SL,,Z/p? ; Z) suffices to determine fully H* (SL,Z/p*;2)
for all k > 2.
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Finally, that H5(SL,Z/p*; Z) = 0 when p > 3 follows from the natural
isomorphisms of the universal coefficient sequences

H*(SL,Z/p*; Z) ® ZJp > H*(SL,.Z/p*; Z/p) —> Tor(H® (SL,Z/p¥; Z), Z/p)
with the corresponding sequences when k = 2. The groups
H'(SL,Z/3; H/(M,, Z[3;Z/3))

for (i, ) = (0, 4) and (2, 2) which are needed to obtain H* (SL,Z/9, Z/3) are not
yet available.
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