RESEARCH ANNOUNCEMENTS

ON K_3 AND K_4 OF THE INTEGERS MOD n

BY JANET AISBETT

Quillen [7] defines an algebraic K-functor from the category of associative rings to that of positively graded abelian groups, with $K_i(R) = \Pi_i(\mathrm{BGLR}^+)$ for $i \ge 1$. K_1 and K_2 correspond respectively to the 'classical' Bass and Milnor definitions. The K-images of finite fields and their algebraic closures were computed by Quillen in [8]. Since then, there has been only a handful of complete calculations of any of the higher K-groups $(K_i \text{ for } i > 2)$. Lee and Szczarba [4] showed that the Karoubi subgroup Z/48 of $K_3(Z)$ was the full group. Evens and Friedlander [3] computed $K_i(Z/p^2)$ and $K_i(\mathbf{F}_p[t]/(t^2))$ for i < 5 and prime p greater than 3. Snaith in [1] and, with Lluis, in [5], fully determined $K_3(\mathbf{F}_{pm}[t]/(t^2))$ for $m \ge 1$ and prime p other than 3.

This note summarizes computations of the groups $K_3(Z/n)$, and $K_4(Z/p^k)$ for k>1 and prime p>3. These complete the recent partial results on $K_3(Z/4)$ by Snaith and on $K_3(Z/9)$ by Lluis, and extend the work of Evens and Friedlander. The theorem stated below is consistent with the Karoubi conjecture that for odd primes, $\mathrm{BGL} Z/p^{k+}$ is the homotopy fibre of the difference of Adams operations, $\Psi^{p^k} - \Psi^{p^{k-1}}$. However, Priddy [6] has disproved the conjecture in the cases p>3 and k=2.

I am most grateful to Victor Snaith for his supervision of the thesis in which these results originally appeared. Details of the proofs can also be found in [1].

THEOREM. Take k > 1 and $0 < i \le 2$.

(a) $K_{2i-1}(Z/2^k) = Z/2^i \oplus Z/2^{i(k-2)} \oplus Z/(2^i-1)$. $K_{2i-1}(Z/p^k) = Z/p^{i(k-1)} \oplus Z/(p^i-1)$ if p is an odd prime. For all primes, the map

$$K_{2i-1}(Z/p^{k+1}) \longrightarrow K_{2i-1}(Z/p^k)$$

induced by reduction is the obvious surjection.

(b) For prime
$$p > 3$$
, $K_{2i}(Z/p^k) = 0$. $K_{2i}(Z/3^k) = 0$. $K_{2i}(Z/2^k) = Z/2$.

 K_1 is due to Bass, K_2 to Milnor, Dennis Stein.

Received by the editors November 29, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 18F25, 20G10, 20J06; Secondary 18G40, 18G35.

 $K_3(Z/p^k)$ is isomorphic to $H^4(\operatorname{St} Z/p^k; Z)$ where the special linear group $\operatorname{SL} Z/p^k$ coincides with $\operatorname{St} Z/p^k$ modulo $K_2(Z/p^k)$. For odd primes, $K_4(Z/p^k)$ is recovered from the homology of $\operatorname{SL} Z/p^k$ using the Serre spectral sequence related to the natural inclusion $\operatorname{BSL} Z/p^{k+1} \to K(K_3(Z/p^k), 3)$. Thus the bulk of the proof of the theorem consists of computing the low dimensional group cohomology of $\operatorname{SL} Z/p^k$. Stability results of Wagoner [9] and others mean that it suffices to work with $\operatorname{SL}_n Z/p^k$ for large n prime to the order of the group of units in Z/p^k . In fact, we will assume that n is large and $n \equiv 1 \mod p$. Our method is based on recursive definition of group extensions and detailed comparison of the resulting Lyndon-Serre spectral sequences.

The key set of extensions are those induced by reduction,

$$E(k) G_n^k = \ker r_k > \xrightarrow{i_k} \operatorname{SL}_n \mathbb{Z}/p^k \xrightarrow{r_k} \operatorname{SL}_n \mathbb{Z}/p.$$

The initial step in the recursive analysis is provided at k=2 by the calculations of Snaith (p=2), Lluis (odd primes) and Evens and Friedlander (p>3) of the E_2^{**} terms in the associated spectral sequence with coefficients in Z or Z/p. (G_n^2) is isomorphic to M_n^*Z/p , the zero trace $n\times n$ matrices over Z/p.) A specific resolution-level differential formula is derived, then applied to the spectral sequence $H^*(\mathrm{SL}_nZ/2; H^*(M_n^*Z/2; Z/4)) \Rightarrow H^*(\mathrm{SL}_nZ/4; Z/4)$ to complete the determination of $H^4(\mathrm{SL}_nZ/4; Z/4)$ and thence of $K_3(Z/4)$. For the odd primes, in particular p=3, spectral sequence pairings and the Charlap and Vasquez [2] differential formula are exploited in order to avoid resolution level calculations in the integral spectral sequences associated with E(2). So for all primes p, $H^4(\mathrm{SL}_nZ/p^2; Z)$ is known.

For the recursive step, the modules $H^i(G_n^k; Z)$ for $i \leq 4$ and k > 2 need first to be estimated. This is done through the spectral sequences associated with the central group extensions

$$\hat{E}(k)$$
 $M_n Z/p > \longrightarrow G_n^k \xrightarrow{\pi_k} G_n^{k-1}, \quad k > 2.$

Initially take Z/p coefficients. Because the base group in $\hat{E}(3)$ is an elementary abelian p-group, it is straightforward to apply the Hochschild-Serre formula for the d_2 differential. In an identical calculation to that which would be used to determine $H^*(M_n^- Z/p^2; Z/p)$ from the equivalent filtration, the full graded module $H^*(G_n^3; Z/p)$ is obtained when p is odd. When p=2, an ad hoc computation of desired E^{**} terms must be employed. For k>3 the differential formula cannot be neatly expressed. However, the image of the $d_2^{0,1}$ differential can be shown to be precisely the cokernel of π_{k-1}^* : $H^2(G_n^{k-2}; Z/p) \longrightarrow H^2(G_n^{k-1}; Z/p)$ by comparing low dimensional terms in the spectral sequence

associated with $\hat{E}(k)$ with those in the sequence $H^*(G_n^{k-2}; H^*(M_n^{\sim}Z/p^2; Z/p)) \Rightarrow H^*(G_n^k; Z/p)$. From this, an isomorphism with the k=3 spectral sequence is obtained if p is odd. For p=2, each of the $H^*(G_n^k; Z/p)$ is isomorphic as $\mathrm{SL}_n Z/p$ -modules if k>3, and as groups if $k\geqslant 3$.

The modules $H^i(G_n^k; Z)$, i < 4, are determined from the Z/p-results using the integral spectral sequence associated with $\hat{E}(k)$ and the fact that in this situation, $d_3(1 \otimes \beta) = \beta d_2$ (β the Bockstein $H^*(\neg; Z/p) \longrightarrow H^{*+1}(\neg; Z)$). These modules are expressed in terms of direct summands and quotients of $H^*(M_n^{\sim}Z/p; Z/p)$, in particular, summands which are the $(\pi_3 \cdots \pi_k)^*$ -images of $H^*(G_n^2; Z)$. It is then easy to show that the groups $H^i(\mathrm{SL}_nZ/p; H^j(G_n^k; Z))$ are isomorphic under $(\pi_3 \cdots \pi_k)^*$ for each $k \ge 2$ in total degree less than 6, if $(i, j) \notin \{(0, 5), (1, 4), (2, 3), (0, 4)\}$. Naturality of spectral sequences therefore provides for an isomorphism: $\ker i_2^* \longrightarrow \ker i_k^*$ restricting from the map: $H^4(\mathrm{SL}_nZ/p^2; Z) \longrightarrow H^4(\mathrm{SL}_nZ/p^k; Z)$ induced by reduction.

To find im i_k^* , first reconsider the spectral sequences associated with $\hat{E}(k)$. The $\mathrm{SL}_n Z/p$ -invariants in the E_∞^{**} terms of total degree 4 are determined by specifically examining the action of the differential on invariants in the E_2^{**} terms. The Wagoner-Milgram [10] result that $K_3^c(Z/p)$, defined as $\varprojlim_k \Pi_3(\mathrm{BGL}Z/p^{k+})$, contains a copy of the p-adic integers is interpreted to mean that the subgroup of invariants in $H^4(G_n^k; Z)$ becomes arbitrarily large with increasing k. By studying possible representatives in $p \cdot H^4(G_n^k; Z)$ for decreasing k it can be recursively shown that all E_∞^{**} invariants represent invariants in the full group. With the Z/p results, we find the invariants in $H^4(G_n^k; Z)$ to be $Z/p \oplus Z/p^{2(k-2)+1}$ if p is odd, or $Z/2 \oplus Z/2 \oplus Z/2^{2(k-2)}$ if p=2. Further, π_{k+1}^* may be taken to be the zero map on the first summand, and multiplication by p^2 on the last (and to be an isomorphism between the second summands if p=2).

Next, an injection: $H^4(\operatorname{SL}_nZ/p^k;Z) \longrightarrow H^4(\operatorname{SL}_nZ/p^{k+1};Z)$ induced by reduction is established by recursively determining the E_2^{**} terms in the spectral sequences $H^*(\operatorname{SL}_nZ/p^k;H^*(M_n^\sim Z/p;Z))\Rightarrow H^*(\operatorname{SL}_nZ/p^{k+1};Z)$, then inspecting differentials. This together with the known action of π_k^* permits the determination of the image of i_k^* , $k \geq 2$; it is as shown in the following commutative exact diagram which has now been set up for odd primes p. (The case p=2 is entirely analogous.)

$$\ker i_k^* > \to H^4(\operatorname{SL}_n \mathbb{Z}/p^k; \mathbb{Z}) \longrightarrow \operatorname{im} i_k^* = \mathbb{Z}/p^{2(k-2)+1}$$

$$\cong \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow p^{2(k-2)}$$

$$\ker i_2^* > \to H^4(\operatorname{SL}_n \mathbb{Z}/p^2; \mathbb{Z}) \longrightarrow \operatorname{im} i_2^* = \mathbb{Z}/p.$$

Then information about $H^4(\mathrm{SL}_n \mathbb{Z}/p^2; \mathbb{Z})$ suffices to determine fully $H^4(\mathrm{SL}_n \mathbb{Z}/p^k; \mathbb{Z})$ for all k > 2.

Finally, that $H^5(SL_n \mathbb{Z}/p^k; \mathbb{Z}) = 0$ when p > 3 follows from the natural isomorphisms of the universal coefficient sequences

$$H^{4}(\mathrm{SL}_{n}\mathbb{Z}/p^{k};\mathbb{Z})\otimes\mathbb{Z}/p > \longrightarrow H^{4}(\mathrm{SL}_{n}\mathbb{Z}/p^{k};\mathbb{Z}/p) \longrightarrow \mathrm{Tor}(H^{5}(\mathrm{SL}_{n}\mathbb{Z}/p^{k};\mathbb{Z}),\mathbb{Z}/p)$$

with the corresponding sequences when k = 2. The groups

$$H^i(\mathrm{SL}_n \mathbb{Z}/3; H^j(M_n \mathbb{Z}/3; \mathbb{Z}/3))$$

for (i, j) = (0, 4) and (2, 2) which are needed to obtain $H^4(SL_n \mathbb{Z}/9, \mathbb{Z}/3)$ are not yet available.

REFERENCES

- 1. J. Aisbett, E. Lluis Puebla, V. Snaith and C. Soule, On K_3 and K_4 of \mathbb{Z}/n and of the dual numbers over finite fields (preprint).
- 2. L. S. Charlap and A. T. Vasquez, The cohomology of group extensions, Trans. Amer. Math. Soc. 124 (1966), 24-40.
- 3. L. Evens and E. Friedlander, $K_r(\mathbb{Z}/p^2)$ and $K_r(\mathbb{Z}/p[\epsilon])$ for $p \ge 5$ and $r \le 4$, Bull. Amer. Math. Soc. (N.S.) 3 (1980), 440–443.
- 4. R. Lee and R. H. Szczarba, The group $K_3(Z)$ is cyclic of order 48, Ann. of Math. 104 (1976), 31-60.
- 5. E. Lluis Puebla and V. Snaith, Determination of $K_3(\mathbb{F}_{p^l}[t]/(t^2))$ for primes $p \ge 5$, Proc. Conf. 'Current trends in algebraic topology', Univ. of Western Ont., 1981 (to appear).
- 6. S. Priddy, On a conjecture concerning $K_*(\mathbb{Z}/p^2)$, Lecture Notes in Math., vol. 854, Springer-Verlag, Berlin and New York, 1981, pp. 338-342.
- 7. D. Quillen, Higher K-theory for categories with exact sequences, New Developments in Topology (G. Segal (ed.)), Oxford Univ. Press, 1974, pp. 95-103.
- 8. On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586.
- 9. J. B. Wagoner, Stability for homology of the general linear group of a local ring, Topology 15 (1976), 417-423.
- 10. ———, Continuous cohomology and p-adic K-theory, Lecture Notes in Math., vol. 551, Springer-Verlag, Berlin and New York, 1975, pp. 241-248.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QUEENSLAND, BRISBANE, QUEENSLAND, AUSTRALIA 4067