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SMOOTH BOUNDED STRICTLY AND WEAKLY 

PSEUDOCONVEX DOMAINS CANNOT BE BIHOLOMORPHIC 

BY STEVEN BELL 

There is no Riemann mapping theorem in the theory of functions of several 
complex variables; nor is there a Riemann nonmapping theorem. In fact, until 
recently, it was not known whether it is possible for a smooth bounded strictly 
pseudoconvex domain to be biholomorphically equivalent to a smooth bounded 
weakly pseudoconvex domain. The paper [1] answers this question in the nega­
tive by proving 

THEOREM 1. IfD2 is a smooth bounded pseudoconvex domain, and Dx 

is a smooth bounded domain whose b-Neumann problem satisfies global regularity 
estimates, then biholomorphic mappings between Dx and D2 extend smoothly to 
the boundary. 

In particular, it is known (Kohn [6]) that the d-Neumann problem satisfies 
global regularity estimates in smooth bounded strictly pseudoconvex domains. 
Hence, a biholomorphic mapping between a smooth bounded strictly pseudocon­
vex domain and a smooth bounded weakly pseudoconvex domain would extend 
smoothly to the boundary. Since strict pseudoconvexity is preserved under bi­
holomorphic mappings which extend to be C2 up to the boundary, both domains 
must be strictly pseudoconvex. 

Other domains for which the 3-Neumann problem is known to satisfy glo­
bal regularity estimates include smooth bounded weakly pseudoconvex domains 
with real analytic boundaries [7], [2] and certain domains of finite type [7]. 

The proof of Theorem 1 exploits the transformation rule for the Bergman 
projection. If Pt denotes the Bergman orthogonal projection of L2(Dt) onto its 
subspace of holomorphic functions, / = 1,2, and if ƒ: Dt —> D2 is a biholo­
morphic mapping, then 

/ >
1 ( ^ ( 0 ° / ) ) = w-((i>20)o/) 

where u = Det[/'] and 0 € L2(D2). It is possible to construct functions 0 which 
vanish to arbitrarily high order on bD2 such that P20 = 1. If 0 is such a function 
which vanishes to a high enough order on bD2 to make u • (0 o ƒ) smooth up to 
the boundary, then u is the projection of a function which is smooth up to the 
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boundary. Since global estimates for the 3-problem in Dt imply global estimates 
for Pl, we conclude that u is smooth up to the boundary. 

A similar argument reveals that u • (g o ƒ) is smooth up to the boundary 
whenever g is a holomorphic function on D2 which is smooth up to the boundary. 

The final steps in the proof of Theorem 1 depend on Kohn's theory of the 
d-Neumann problem with weight functions [8] and a special Sobolev inequality 
for holomorphic functions: If g and h are holomorphic functions on a smooth 
bounded domain D, then 

u .Dhg\< Q\h\\s 

where \\h\\l = ^\a\<s^a^L2(D\ i s the u s u a l Sobolev s-norm and 
' ( D ) 

W L , = Sup K J , * > 2 I. 
tecZiD) L (D) 

The constant C only depends on D and the positive integer s. This inequality is 
unique to holomorphic functions and must not be confused with the standard 
generalized Schwarz inequality. 

Theorem 1 generalizes and improves several earlier results on biholomorphic 
mappings due to Henkin [5], Rncuk [9], Fefferman [4], Diederich and Fornaesi 
[3]. The Henkin, Rncuk, Diederich and Fornaess results also apply to proper 
holomorphic mappings. At the present time, the techniques used in the proof of 
Theorem 1 do not seem to adapt to the proper mapping case. 
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