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SOLOMONS CONJECTURES AND THE LOCAL FUNCTIONAL 

EQUATION FOR ZETA FUNCTIONS OF ORDERS 

BY COLIN J. BUSHNELL AND IRVING REINER1 

Let A be a finite dimensional semisimple jRC-algebra, where K is either an 
algebraic number field or a complete JP-adic field. Let R be a Dedekind domain 
with quotient field K, and let A be an R-order in A. Louis Solomon [3], [4] 
introduced a zeta function 

rA(')= £ (A:M)~S, 
MCA 

where M ranges over all full left ideals of A. The series converges for Re(s) > 1. 
Here, (A : M) is the number of elements in A/M, and s is a complex variable. 
For the case where A = R, the above is the usual Dedekind zeta function of R, 
namely, 

where a ranges over all nonzero ideals of R. 
Let P range over all maximal ideals of R, and let Rp, Apy etc., denote 

P-adic completions. Solomon showed easily that 

fA(») = n rApto. 
p 

and introduced a "global" zeta function fA(s), which depends on A and R but 
not on A, with the property that the P-part of ÇA(s) coincides with ?AJ>(S) f°r 

almost all P. (To be explicit, this occurs whenever Ap is a direct sum of full 
matrix algebras over fields, and Ap is a maximal .Rp-order in Ap.) Solomon's 
conjectures involve the comparison between ÇA(s) and ÇA(s) at arbitrary P's. 

Let us place the above in the more general setting used by Solomon. Let 
L be a full A-lattice in an A -module V, and define 

fc(')= Z (L:M)~\ 
MCL 

where M ranges over all full A-sublattices of L. To define the "global" function 
Jy(s), we start with the Wedderburn decomposition of A: 

A=Ate^-eAr9 At~MkfPt\ (D,:F,) = e?, Ki<r9 
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where Dt is a division algebra with center Fv Let Wt be a simple left ^4-module, 
and let Rt denote the integral closure of R in Fv We may write 

F - Ü ^ > , 
1=1 

and now define 

M»)=ri $>,#> 
i= 1 i 

where 

Vu«)(s)= n tRfltfip-f). 
rvi j—Q 

In particular, setting nt = fc^, we have (by definition) 

1=1 /=0 

Now put 

S*P(S) = ?Lp(s)/^-part of $y(s), 

where L is a full A-lattice in the A -module V, and let p be the characteristic of 
R/P. Using an ingenious combinatorial argument, Solomon proved that yP(s) is 
a rational function of p~s

9 and conjectured that in fact ipP(s) EZ\p~s] always. 
He verified this conjecture whenever Ap is a maximal order, by using the calcula­
tions of K. Hey. 

Our first main result is 

THEOREM 1. Let R be a complete P-adic ring, and let A' be a maximal 
R-order in A containing A. Let L be a full left A-lattice in the A-module V. 
Then 

where p is the characteristic of R/P. 

In the local case, we have 

SA'L(sMv(s)eZ\P~s] 

by the previous remarks, so as a consequence of Theorem 1 we obtain 

THEOREM 2. For each P, ifp(s) E Z \p~s]. 

The method of proof of Theorem 1 (see below) also supports a second 
conjecture of Solomon's, Let F be a left >i-module, and let {L *, . . . , Lk} be 
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a complete set of nonisomorphic full left A-lattices in V. Define 

M 

where the summation extends over all full A-sublattices M of Lt such that M = 
Zy. Let B be the k x k matrix 

Solomon proved that (det B)"""1 is a polynomial in p~s with integral coef­
ficients, and conjectured that it can always be expressed as a finite product 
H/O - parb(S% where the {at} are nonnegative integers and the {bt} positive in­
tegers. In support of this conjecture, we have proved 

THEOREM 3. The polynomial (det B)""1 is a divisor in Z\p~s] of a finite 
product of the above type. 

Finally, we turn to the existence of a functional equation for the case 
where A is the integral group ring of a finite group G over a complete P-adic 
ring R. In this case, the local zeta function fA(V) has an analytic continuation 
to a meromorphic function on the whole complex s-plane. Our main result is 

THEOREM 4. Let A = RG, where G is a finite group and R is a complete 
P-adic ring. Let A' be a maximal R-order in KG containing A. Then there is a 
functional equation 

f A(s)/rA(i - «) = (A' : A)1"*2^A'0)/rA<i - si 
valid for all s. 

Since ?A'(s) can be calculated from Hey's formula, the quotient 
?A'0O/f A 'O "~ s) c a n be &iven e*plicitly. Furthermore, the functional equation 
can be used to give a more precise form of Theorem 1, namely: 

COROLLARY. Keeping the above notation, let (A' : A) = pn. Then 
JA(s)/fA'(s) is a polynomial in p~~s with the highest degree term pn(l~2s\ 

We prove all of these theorems by applying the methods of Tate's thesis 
to Solomon's zeta functions. For simplicity of notation, let us restrict our at­
tention to the complete local case, with L chosen equal to A. All of the zeta 
functions discussed above can be put in the form 

where c and q are constants, $ is a function on A which is locally constant of 
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compact support, A x is the group of units of A, dxx is a Haar measure on Ax, 
and the map x H-> \\X\\A is the homomorphism from Ax to the group of 
positive real numbers, determined by the formula llxll^ = (A : Ax)""1 whenever 
xGA. 

For example, given a full left A-lattice M in A9 we can form 

Z A ( ^ ) = Z (A:JVP. 
NCA 

Then we get fA(s) = 2 M ZM(M; s), for 71/ ranging over some finite set. Further­
more, 

ZA(M; s) = «T^A :iW)~5 j A x <Kx)\\x\\s
A dxx9 

where 4> is defined by *(x) = 1 if Mx C A, and <I>(x) = 0 otherwise. The con­
stant c is the measure, relative to dxx, of the subgroup AutA M of A. This for­
mula leads to a corresponding expression for f A(s) as an integral. 

The core of the proof of Theorem 1 consists in showing that 

« A ' » } " 1 fA x ^(x)\\x\\s
A dxx G C&T', ps] 

for any locally constant <£ of compact support on A, and any maximal order A' 
in A. Using the obvious fact that ZA(M; s) G Z[[/f5] ] , it follows straightaway 
that 

Z A (M; S ) / f A <s)6Zr s ] 

for each M. This implies Theorem 1. 
For the functions <& as above, we put 

Z($; s) = fAX 9Qc)ixVA dxx. 

This zeta integral converges and defines a holomorphic function of the complex 
variable s in some half-plane Re 5 > a, and admits analytic continuation to a 
meromorphic function of s. Further, let <ï> denote the Fourier transform of $, 
taken in some suitable manner. Then the quotient Z(<J>; s)/Z(*; I - s) 
is independent of <E>. These facts are easily deduced from the functional 
equations in [2]. Theorem 4 is proved by evaluating this quotient for 
certain specifically chosen functions 3>. The restrictive hypothesis, that A be an 
integral group ring, is only needed to ensure that A is self-dual with respect to 
some suitable pairing. 

Proofs of Theorems 1-4 will appear in [1]. 
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