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Notes in Pure and Applied Mathematics, vol. 21, Marcel Dekker, Inc., New 
York, 1976, vii + 183 pp., $19.75. 

General introduction. This article is divided into two parts: Part I quickly 
recalls the basic concepts of differential geometry, including the notions of 
differentiable manifolds and Kâhlerian and Sasakian manifolds, while Part II 
is the review of the Yano-Kon book. (Some readers, familiar with differential 
geometry, may wish to skip Part I. For their benefit I have repeated the 
definitions of Kâhlerian and Sasakian manifolds at the start of Part II.) 

Part I. Review of differential geometry. A topological n-manifold is a 
metrizable topological space M which locally looks like R", in the following 
sense: each pointp E M has a neighborhood U homeomorphic to some open 
set W in R". If JC = (x{,..., xn): U-* W c R" is such a homeomorphism, 
then the pair (U, x) is called a coordinate chart. Two such charts (f/, x) and 
(V,y) are smoothly related if either (a) U n V = 0 , or (b) U n V ^0 and 
the maps x °y~ l: y(U n V)-+x(U n V) and;; o x~

l: x(U n V)->y(U 
H V) (defined on the open subsets y(U n V) and x(U n V) in Rn) are 
smooth (i.e., of class C00). A differentiable n-manifold is a topological w-mani-
fold M on which a class F of coordinate charts has been singled out. The 
class F must satisfy (a) every/? G M is in some chart of F and (b) if (f/, x) 
and ( V9 y) are charts in F, then they are smoothly related. 

If M is a differentiable «-manifold, one can "do calculus on M". For 
example, one can introduce the notion of differentiable functions on M: a 
function/: M-*R is of class Ck if for each chart (£/, x) E F the function 
f ° x~l: x(U)->R is of class Ck on the open set x(U) in R". Similarly, by 
considering compositions of the form x ° y, one can define a notion of 
differentiable maps y from (say) an interval in R to M. 

Associated with each point p of a differentiable manifold M is an w-
dimensional real vector space, the tangent space Tp M. The fact that M admits 
such "linear approximations" is the central feature of the theory of 
differentiable manifolds; in particular, it explains the constant use of linear 
and multilinear algebra so characteristic of this theory. The most intuitive 
description of the tangent space is this: if y: (a, b) -» M is a smooth curve at 
p (i.e., a smooth map into M of an interval a < t < b containing / = 0 such 
that y(0) =/?) and if (£/, x) E F is a chart containing p, then we can 
associate to y a vector in Rn, namely vy = d((x o y)(t))/dt\t=0; we say that 
two such curves at p, y and a, are equivalent if vy = va and we denote the 
equivalence class of y by [y]; then an element of TpM is simply such an 
equivalence class and the vector space structure on Tp M is that induced by 
the bijection [y]H>t?y of TpM with Rn. (This construction does not depend on 
the particular chart at p that we happen to use.) 

Analogously, we define a complex n-manifold to be a metrizable topological 
space M which is covered by a prescribed family F of "holomorphically 
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related complex charts". That is, if (£/, z) G F then U is open in M and 
z — ( z , , . . . , zn) maps U homeomorphically onto an open set in C1; also if 
([/, z) and (V, w) are in F and U n V ¥* 0 then the maps z © w"1: w((/ n 
F) -> z(f/ n V) and w ° z~l: z(U n K) -» w((/ n K) are holomorphic. The 
(analogously defined) tangent spaces are complex vector spaces of (complex) 
dimension n. Of course, any complex «-manifold is at the same time a (real) 
manifold of (real) dimension In. 

EXAMPLES. (1) Suppose that ƒ„ . . • ,fk are smooth functions on an open 
domain D c R"+^. If at each point of D the gradient vectors of these 
functions are linearly independent, and if there is at least one point of D at 
which all the f s vanish, then M = {p E D: fx{p) = • • • = fk(p) = 0} is a 
differentiable «-manifold. (REMARK. According to H. Whitney's celebrated 
theorem, every differentiable manifold can be represented by such a 
"concrete" example.) 

(2) In like manner, one obtains many examples of complex «-manifolds by 
considering the zero-set of a system ƒ , , . . . ,ƒ* of holomorphic functions 
defined in a domain of Cn+k. Because of the maximum modulus theorem, 
none of these examples is compact. 

(3) The most important compact complex manifold is the complex projec­
tive space CP", defined to be the set of complex lines through the origin in 
C + I . Alternatively, it can be defined as the orbit space of the natural action 
ofS1 = {z E C : \z\ = l}on(C"+ ,)* = { ^ 6 C + 1 : ^ 0 } . 

What we have obtained so far is just the framework for differential 
geometry. (It is, incidentally, also the framework for several other branches of 
mathematics, notably differential topology.) In order to get a geometric 
theory we must impose some geometric structure on this framework. In many 
subbranches of geometry, including that studied by the Yano-Kon book, such 
structures arise by imposing certain "linear geometric structures" on each 
tangent space. Here are the main examples we'll encounter. 

(1) An inner product on a real vector space F is a symmetric, positive-
definite bilinear form on V. A Riemannian structure on a manifold M is a 
(smooth) choice of inner products on its tangent spaces (i.e., a field of inner 
products). Imposing a Riemannian structure makes M into a Riemannian 
manifold and allows one to introduce geometric notions such as arclength, 
volume and parallelism. 

EXAMPLE. If M is a submanifold of a Euclidean space R^, then M inherits a 
natural Riemannian structure, obtained by restricting the usual inner product 
on R^ to the tangent spaces of M. 

(2) An almost-complex structure on a real vector space F is a linear 
endomorphism / : K-» V such that J2 = — ƒ, where I is the identity map. If 
V admits such a structure then its dimension must be even. An almost-com­
plex manifold is a (real) manifold with a (smooth) field of such endomor-
phisms on its tangent spaces. 

EXAMPLE. If M is a complex manifold of complex dimension n, so its 
tangent spaces are complex vector spaces, then M can also be viewed as an 
almost-complex manifold with / being multiplication by V— 1 . Not every 
almost-complex structure arises this way; the criterion is that / satisfy certain 
partial differential equations (Newlander-Nirenberg Theorem). 
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(3) Following Yano-Kon, we can define a Kàhlerian manifold to be a 
manifold M with a Riemannian structure g and almost-complex structure J 
such that (a) on each tangent space, J is an isometry with respect to g, (b) J 
satisfies the "Newlander-Nirenberg" equations (so M is actually a complex 
manifold) and (c) the skew-symmetric bilinear form o^v, w) = g(Jv> w) 
satisfies certain differential equations (for those in-the-know: dco = 0). 

EXAMPLES, (a) M = C", with the usual (Euclidean) inner product, (b) 
M = CP", with the "Fubini-Study" structure: first, identify CP" as the orbit 
space of the standard action of S{ on S2n+l = {w G Cn+l: \w\ = 1}; the 
isometric action on S2n+l of the unitary group U(n + 1) c SO(2n + 2) 
commutes with this S '-action and thus induces an action of U(n + 1) on 
CP". Then the Riemannian structure on CP" is (essentially) characterized by 
being invariant under this U(n + 1) action, (c) Any complex submanifold M 
of Cn+k (as described in Example 2 above) or of CP" inherits a natural 
Kàhlerian structure by restriction to M of the Kàhlerian structure on the 
ambient space. 

(4) An almost-contact metric structure on a real vector space F is a 
quadruple (g, <p, £, rç), where g is an inner product on V, <p is a linear 
endomorphism of V, £ is an element of V and cp is a linear functional on V 
(i.e., an element of the dual space V*). These objects must satisfy certain 
conditions: for each u,v E V, g(<p(w)> <p(t>)) = g(u> ^) — v(u)v(^ <P2(Ü) = 

- v + r](v), ri(<p(v)) = 0, <p(0 = 0, ij(ö = 1, and T?(Ü) = g(ü, £)• (Briefly: <p 
maps V onto the orthogonal complement £ x of the unit vector £ and on £ x 

acts as an isometric almost-complex structure.) If V admits such a structure, 
then V is odd-dimensional. A Sasakian manifold is a differentiable manifold 
M with a (smooth) field of almost-contact metric structures on its tangent 
spaces such that the "structure fields" g, <p, £, 17 satisfy certain differential 
equations. (For this article it is not important to know the precise form of 
these equations.) 

REMARKS, (a) Almost-contact metric structures arise naturally in Hamil-
tonian mechanics, (b) There is an important example of a Sasakian manifold 
described in Part II. 

Whenever one has a vector space on which a certain linear object is 
prescribed, it is natural to seek out those subspaces which are particularly 
closely related to that linear object. For example, in the presence of an inner 
product, pairs of mutually orthogonal subspaces are interesting. 

Likewise, if a geometric structure on a manifold M is described by the 
presence of a certain linear object on each tangent space, it is natural to seek 
those submanifolds of M whose tangent spaces are "interesting" subspaces 
(relative to the linear object) of the tangent spaces of M. The object of the 
Yano-Kon book is to study the following kinds of submanifolds of Kàhlerian 
and Sasakian manifolds. 

DEFINITION. If M is a Kàhlerian manifold with almost-complex structure / , 
then a submanifold M in M is an anti-invariant submanifold if for each 
p E M, J(TpM) c (TpM)*- ( "±" denotes orthogonal complement in TpM); 
likewise, if M is a Sasakian manifold with structure field <p, then M c M is 
anti-invariant if y(TpM) c (7^M)X. 
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Submanifold theory has a rather forbidding terminology. I'll end Part I by 
informally describing some of the words from that theory which the Yano-
Kon book frequently uses. 

a. Sectional curvature is the generalization (to any Riemannian manifold) of 
the classical notion of the Gaussian curvature of a surface in R3. All you need 
know for this book review is that if M has constant sectional curvature c then 
M is locally isometric to a domain in one of the following "models": 
Euclidean space (c = 0), spherical space (c > 0), or hyperbolic (i.e., 
Lobachevski) space (c < 0). (If c = 0 one also says that M is flat.) The 
analogous notion in a Kahlerian manifold is constant holomorphic sectional 
curvature c; the corresponding "model spaces" are C" (if c = 0), CP" (if 
c > 0), and the unit disc in C" with the "Bergman kernel metric" (if c < 0). 

B. In Riemannian geometry the "straightest curves" (i.e., the analogs to the 
straight lines of Euclidean geometry) are called geodesies. A submanifold 
whose geodesies are also "straight" (i.e., are geodesies) in the geometry of the 
ambient manifold is said to be totally geodesic. (Examples: linear subspaces in 
R*; equators in SN.) _ 

C. To each point p in a submanifold M of a Riemannian manifold M we 
can associate a bilinear map B: J^(M) X 7^(M)->(r/,(M))-L called the 
second fundamental form of M in M. (The_precise construction of B is not 
important here.) The inner product on Tp(M) determines an inner product on 
the space of such bilinear maps and thus a norm \\B \\ of i?.JIt is worth noting 
that ||B || = 0 on M if and only if M is totally geodesic in M.) If trace(2?) = 0 
we say that M is a minimal submanifold of M. Finally, one can make sense of 
the notion that B is "constant" (or, as it is more commonly said, parallel) on 
M. Good examples are the linear and spherical subspaces of R^, and the 
spherical subspaces of SN. 

Part II. Review of the Yano-Kon book. 

Introduction. The book under review is a carefully organized detailed 
survey of what is known about anti-invariant submanifolds of Kahlerian and 
Sasakian manifolds. The study of such objects began only about eight years 
ago, but already quite a few geometers, for example B. Y. Chen, C. S. Houh, 
G. D. Ludden, K. Oguie, M. Okumura and the authors, have published 
results in this area. 

Notation. I shall write AIS for anti-invariant submanifold, ^-manifold for 
Kahlerian manifold and S-manifold for Sasakian manifold. _ 

DEFINITIONS. First, recall that a ^-manifold is a_Riemannian manifold M 
with a (smooth) field of linear isometries J: TpM -» TpM(p E M) of its 
tangent spaces. This tensor field J (the "almost-complex structure") must 
satisfy J2 = — I (hence dim(Af) is even) as well as certain differential 
equations. _Similarly, an 5-manifold is an odd-dimensional Riemannian 
manifold M with a unit tangent vector field £_(the "structure vector fielcT) 
and a field of linear operators <p: TpM -* TpM such that, fqr_each/? in Af, 
<P(£/>) = 0, <p maps (p-, the orthogonal complement of £p in TpM, isometrically 
onto itself, <p2 = — I on £/-, and the fields <p and £ satisfy certain differential 
equations. Next, a submanifold M of a A'-manifold M is said to be an AIS if 
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for each/? in M, J(TpM) is orthogonal to TpM in TpM. Likewise a submani­
fold M of an S-manifold M is said to be an AIS if for each/? in AT, <p(TpM) is 
orthogonal to TpM. 

RjEMARK.JThe codimension dim(M) - dim(M) of an_AIS must be at least 
dim(M) if M is Kâhlerian and at least dim(M) — 1 if M is Sasakian. Also, an 
AIS in a AT-manifold is often called a totally real submanifold. 

EXAMPLES. (A) The usual embedding of Rm into C". 
(B) The usual embedding of RPm into CP". 
(C) M = S\rx) X S\r2) X • • • >< Sl(rn+l), where S\r) = {z E C: \z\ = 

r) and r\ + • • • + r*+1 = 1, and M = S2n+\ the unit sphere in Cw+1. The 
embedding is simply by set-inclusion. 

(D) M = S1 X S1 X • • • X S1 (n factors) and M = S2,1+1. The embed­
ding is given by the formula (zl9 z2, . . . , z„) -» (z1? . . . , z„, 
(z, «Z2* . . . -zn)~

l)/Vn + 1 . The Riemannian structure on M is that in­
duced by this embedding. 

In Examples (A) and (B) the Kâhlerian structures on C" and CP" (respec­
tively) are the standard ones. In Examples (C) and (D) the Sasakian structure 
on S2n+l is derived from the almost-complex structure on Cn+l: £p = J(p) 
and <p = 7T o j9 where m : Tp(C

n+l) -* Tp(S
2n+l) is the orthogonal projection. 

We may obtain more examples by observing that every submanifold of an 
AIS is also an AIS. Moreover, any submanifold of an S-manifold which is 
everywhere orthogonal to the structure vector field is an AIS. 

The book. The authors were able to compile, in a moderate amount of 
space, a very large number of results. (For example, Chapter III is 36 pages 
long and contains 13 lemmas, 12 propositions, 22 theorems and 10 
corollaries.) Because the book is a compendium, its impact is perhaps more 
diffuse than that of a work which focuses sharply on some single main goal 
(such as a structure theorem). Of course some of the results in the book are 
more interesting than others, but no one theorem overshadows the rest. I'll 
list two results, typical of those presented by the authors, just to give the 
flavor of the theory. 

(Corollary 6.2 of Chapter III). Let M be an_AIS of a ^-manifold M of 
constant holomorphic sectional curvature (e.g., M could be C" or CP"). If M 
is minimal, of constant sectional curvature, and with parallel second funda­
mental form, then either M is totally geodesic or flat. 

(Theorem 5.3 of Chapter IV). Let M be an (n + l)-dimensional compact 
AIS in S2m+l tangent to £. If the second fundamental form is parallel and the 
square of its norm has constant value (5n2 - ri)/(2n - 1), and if M is 
minimal then M is S\l/V3)X Sl(l/V3)X S\l/V3) in some S5 c 
S2m + l. (See Example (C) of this review.) 

I found those theorems which, like the second of these examples, char­
acterize one of the "standard" AIS's to be the most interesting. 

The authors use only standard differential-geometric tools: the Gauss 
curvature equations, the Codazzi equations, the Laplacian of the second 
fundamental form, jntegral formulas and so on; usually they assume that the 
ambient manifold M is a Kâhlerian or Sasakian "space form" (the analogue 
of a Riemannian manifold of constant sectional curvature in Riemannian 
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geometry) although a few results, which_give sufficient conditions for M to be 
conformally flat, require instead that M have vanishing Bochner tensor. The 
well-organized proofs and calculations are cleanly presented in a straight­
forward easy-to-follow manner and, despite the many indices, are nearly 
always free of errors, even typographical. (Two exceptions: The proof of 
Theorem 4.1 of Chapter IH-and its analogues in later chapters-does not 
make it clear whether the distribution L lives in Mm(4) or in the frame 
bundle of that manifold; in Chapter IV, Example 8.1 appears to contradict 
Proposition 10.2, but including the hypothesis c > 1 fixes it up.) 

The organization of the book is straightforward and enhances its role as a 
reference work. Chapters I and II constitute a rapid yet lucid review of 
Riemannian geometry and the theory of submanifolds. Most of the results are 
in Chapters III (AIS's of AT-manifolds), IV (AIS's of S'-manifolds tangent to £) 
and V (AIS's of S'-manifolds normal to £). Within these chapters the results 
are organized into sections so that usually theorems having similar hypotheses 
are grouped together. Chapter VI (AIS's and Riemannian fibre bundles) is 
somewhat different in spirit. In_ it the authors relate the properties of 
submanifolds of an S-manifold M to those of submanifolds of ji_ ^-manifold 
N in the situation in which there is a Riemannian fibration <n: M -^> N whose 
fibres are the integral curves of the structure field £. The most important 
example is the standard S Vibration <n\ S2m+l -» CPm. 

General comments. The major strengths of the book under review are its 
clarity, its organization and its comprehensiveness. Researchers in this topic 
will find it most useful and should appreciate the considerable care which the 
authors (and also the publisher) used in its preparation. 

A weakness of the book, in my opinion, is that it does not give the reader 
sufficient information about the general behavior of anti-invariant submani­
folds. Almost all the results refer only to the AIS's in some highly restricted 
class of submanifolds (e.g., minimal submanifolds, submanifolds with parallel 
second fundamental form, etc.); very few results apply to a "generic" class of 
AIS's. 
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Degree theory, by N. G. Lloyd, Cambridge Tracts in Math., vol. 73, Cam­
bridge Univ. Press, Cambridge, Great Britain, 1978, x + 172 pp., $21.00. 

The classical topological degree is a useful tool for investigating the 
equation F(x) — p, where F: D -> Rn is a continuous map of the closure of a 
bounded open subset D of R" and/? ER", If F(x) i^p for x G 3D one can 
associate an integer deg(F, D,p) to the triple (F, D,p); this integer, called the 
topological degree of F on D with respect top, has certain properties-usually 
referred to as the additivity, homotopy and normalization properties-which 
axiomatically determine the degree and sometimes make its computation 
possible. 


