GEOMETRY OF G/P

BY V. LAKSHMIBAI, C. MUSILI AND C. S. SESHADRI

We summarise here the main results of Geometry of G/P-I, ..., IV(cf. [7], [6], [4], [5]). The purpose is to extend the Hodge-Young standard monomial theory for the group SL(n) (cf. [2]) to the case of any semisimple linear algebraic group G. The problem is to give an explicit basis for the space $H^0(G/B, L)$ of sections of a line bundle L on G/B (or more generally for $H^0(X, L)$, X a Schubert subvariety of G/B), in terms of chosen nice bases for $H^0(G/B, L_i)$, where L_i are the line bundles on G/B associated to the fundamental weights. In particular, when the base field is of characteristic 0, by the Borel-Weil theorem, this problem is equivalent to giving explicit bases for all finite dimensional irreducible G-modules in terms of chosen nice bases for the fundamental representations of G. Our results provide a complete solution to this problem when G is a classical group as well as a partial answer when G is exceptional. Apart from their independent interest, our results have important applications, namely: they provide

- (i) another proof of the vanishing theorem of Kempf (cf. [3])
- (ii) explicit (linear) bases for the rings of invariants in classical invariant theory and
 - (iii) a proof of Demazure's conjecture (cf. [1]) for classical groups.

Let G be a semisimple, simply connected Chevalley group (of rank n) over a field k. Fix a maximal (split) torus T, a Borel subgroup $B \supset T$ and the corresponding roots Δ , simple roots S, etc. Let π_1, \ldots, π_n be the fundamental weights. For $\pi \in X(T)$ (= the character group of T), write $\pi = \sum a_i \pi_i$, $a_i \in \mathbb{Z}$. Let $L(\pi)$ denote the line bundle on G/B so that $H^0(G/B, L(\pi)) = \{f : G \to k/f(gb) = \pi(b)f(g)$, for all $b \in B$ and $g \in G\}$. Recall that π is dominant (written $\pi \geqslant 0$) iff $a_i \geqslant 0$ for all i iff $H^0(G/B, L(\pi)) \neq (0)$.

Let $Q \supseteq B$ be any parabolic subgroup of G. Let $W_Q = N_Q(T)/T$ be the Weyl group of Q and write $W = W_G$. For $\theta \in W/W_Q$, let $X(\theta)$ be the Schubert variety in G/Q associated to θ , i.e., $X(\theta) = \overline{B\thetaQ}/Q$ endowed with the canonical reduced structure. We have the Bruhat (partial) order \geqslant on W/W_Q , namely, $\theta_1 \geqslant \theta_2$ if $X(\theta_1) \supseteq X(\theta_2)$.

Received by the editors October 25, 1978.

AMS (MOS) subject classifications (1970). Primary 20G05, 20G15, 17B10, 14M05, 14M15; Secondary 14C20, 14F05, 14N10.

Key words and phrases. Admissible pairs, Young diagrams, standard monomials.

Let $P \supset B$ be a maximal parabolic subgroup of G, associated to a fundamental weight π (or a simple root α). We say that P or π is of classical type if $2(\pi, \beta)/(\beta, \beta) \leq 2$ for all positive roots β (where (,)) denotes a W-invariant inner product on X(T)). More generally, we say that a parabolic subgroup Q of G is of classical type if every maximal parabolic subgroup containing Q is of classical type. We see easily that G is a classical group (i.e., of type A, B, C or D) if and only if B is of classical type. Moreover, any G has at least one parabolic subgroup Q which is of classical type.

Let $[X(\theta)]$ denote the element of the Chow ring of G/P, determined by $X(\theta)$, $\theta \in W/W_P$. If $w_0 \in W$ is the element of the *largest length*, we know that $X(s_\alpha w_0)$ is the unique codimension 1 Schubert subvariety of G/P. Recall that we have

$$[X(\theta)] \cdot [X(s_{\alpha}w_0)] = \sum_i d_i[X(\theta_i)], \quad d_i \in \mathbb{N},$$

where \cdot denotes multiplication in the Chow ring and θ_i runs over the set of all $\theta_i \in W/W_P$ such that $X(\theta_i)$ is of codimension 1 in $X(\theta)$. Using a formula of Chevalley for d_i (cf. [1], [4]), it is seen easily that P is of classical type iff $d_i \leq 2$ for all i (and θ). We say that $X(\theta_i)$ is a double divisor in $X(\theta)$ if $d_i = 2$. A pair of elements (θ, δ) in W/W_P is called an admissible pair if either $\theta = \delta$ or $\theta \neq \delta$ and there exist $\{\delta_i\}$, $1 \leq i \leq s$, $\delta_i \in W/W_P$, such that

(i) $\theta = \delta_1 > \delta_2 > \dots > \delta_s = \delta$, $X(\delta_i)$ is of codimension 1 in $X(\delta_{i-1})$, $2 \le i \le s$ and

(ii) $X(\delta_i)$ is a double divisor in $X(\delta_{i-1})$ for all i. Let W/W_P denote the set of all admissible pairs in W/W_P . We identify W/W_P canonically with a subset of W/W_P . We extend the partial order \geq on W/W_P to an order \geq on W/W_P by defining $(\theta_1, \theta_2) \geq (\delta_1, \delta_2)$ if $\theta_2 \geq \delta_1$ (in W/W_P).

Let P_i denote the maximal parabolic subgroup of G corresponding to the fundamental weight π_i , $1 \le i \le n$. Write $W_i = W_{P_i}$, $1 \le i \le n$. Assume for simplicity of notation that $P_1, \ldots, P_r, r \le n$, are all those which are of classical type. (Viz., r = n if G is a classical group, r = 5 if G is of type E_6 , etc.) Let $Q = \bigcap_{i=1}^r P_i$. Fix an $\mathbf{a} = (a_1, \ldots, a_r) \in (\mathbf{Z}^+)^r$. By a Young diagram of type \mathbf{a} or multidegree \mathbf{a} , we mean a pair (θ, δ) defined as follows:

$$\theta = (\theta_{ij}), \quad \delta = (\delta_{ij}), \quad (\theta_{ij}, \delta_{ij}) \in W/W_P$$

for $1 \le j \le a_i$ and $1 \le i \le r$. We say that a Young diagram (θ, δ) is standard on X(w) (or relative to) $w \in W/W_Q$ (and written $w \ge (\theta, \delta)$), if there exists a pair (α, β) , called a defining pair for (θ, δ) , defined as follows. For i, j as above,

- (i) $\alpha = (\alpha_{ij}), \beta = (\beta_{ij}), \alpha_{ij}, \beta_{ij} \in W/W_Q$,
- (ii) each α_{ii} (resp. β_{ii}) is a lift for θ_{ii} (resp. δ_{ii}) and

(If $a_t = 0$ for any t, $1 \le t \le r$, the family θ_{t-} , δ_{t-} , α_{t-} , β_{t-} is understood to be empty.)

Main results. Let $L_i = L(\pi_i)$ be the ample generator of Pic G/P_i , $1 \le i \le n$. Then we have the following:

THEOREM 1. There exists a basis $\{p(\theta_1, \theta_2)\}\ of\ H^0(G/P_i, L_i)$, parametrised by $(\theta_1, \theta_2) \in W/W_P$, $1 \le i \le r (\le n)$, such that

- (1) $p(\theta_1, \theta_2)$ is a weight vector of weight $\chi(\theta_1, \theta_2) = -\frac{1}{2}(\theta_1(\pi_i) + \theta_2(\pi_i))$,
- (2) for each $w \in W/W_i$, the restriction of $p(\theta_1, \theta_2)$ to X(w) is not zero iff $w \ge \theta_1$ (in W/W_i) and
 - (3) $\{p(\theta_1, \theta_2)/w \ge \theta_1\}$ is a basis of $H^0(X(w), L_i)$.

Let $\pi = \Sigma_{i \leq r} a_i \pi_i$, $a_i \in \mathbb{Z}^+$. To each Young diagram (θ, δ) of multidegree $\mathbf{a} = (a_1, \ldots, a_r)$, we define the monomial $p(\theta, \delta) \in H^0(G/Q, L(\pi))$ as follows:

$$p(\theta, \delta) = \prod_{1 \leq i \leq r} \prod_{1 \leq j \leq a_i} p(\theta_{ij}, \delta_{ij}).$$

Note that $p(\theta, \delta)$ is a weight vector of weight

$$\chi(\theta, \delta) = \sum_{1 \leq i \leq r} \sum_{1 \leq j \leq a_i} -\frac{1}{2} (\theta_{ij}(\pi_i) + \delta_{ij}(\pi_i)).$$

We say that the monomial $p(\theta, \delta)$ is standard on X(w) (or relative to) $w \in W/W_Q$ if (θ, δ) is standard on X(w), i.e., $w \ge (\theta, \delta)$.

THEOREM 2. Let $Q = \bigcap_{i \le r} P_i$ be of classical type and $\pi = \sum_{i \le r} a_i \pi_i$ be dominant. (For example, Q = B if G is of type A, B, C or D.) Then for every $w \in W/W_Q$, we have:

- (1) Standard monomials $p(\theta, \delta)$ on X(w) of multidegree $\mathbf{a} = (a_1, \dots, a_r)$ form a basis of $H^0(X(w), L(\pi))$. Consequently we have the following:
 - (a) Character formula: char $[H^0(X(w), L(\pi))] = \sum_{w \ge (\theta, \delta)} \exp \chi(\theta, \delta)$.
 - (b) For any dominant $\pi' = \sum_{i \leq r} a'_i \pi_i$, the natural map

$$H^0(X(w), L(\pi)) \otimes H^0(X(w), L(\pi')) \longrightarrow H^0(X(w), L(\pi + \pi'))$$

is surjective.

(c) The natural restriction map

$$H^0(G/Q, L(\pi)) \longrightarrow H^0(X(w), L(\pi))$$

is surjective. In other words, if $L(\pi)$ is ample (i.e., $a_i > 0$ for all i), then X(w) is projectively normal for the imbedding given by $L(\pi)$.

(2)
$$H^{j}(X(w), L(\pi)) = (0)$$
 for $j \ge 1$.

REMARK. Theorems 1 and 2 above remain valid when the base ring is Z instead of a field k.

Consequences of the main results.

- 1. Ideal theory of Schubert varieties. One of the most important consequences of standard monomial theory is that it provides a good hold of the ideal theory of Schubert varieties (viz., of their unions, intersections and hyperplane sections, etc.). This allows us to deduce the following:
- 2. Vanishing theorem (cf. [3], [4]). Let Q be of classical type and $\pi \ge 0$ relative to Q. Then for every Q-stable Schubert variety X(w) (in particular X(w) = G/B) in G/B, $H^{j}(X(w), L(\pi)) = (0)$ for $j \ge 1$. (Kempf proved this for the case when Q is maximal parabolic and quasi-minuscule.)
- 3. Invariant theory and Determinantal varieties (cf. [6]). It can be shown that the results of De Concini and Procesi giving a basis of the ring of invariants in classical invariant theory by means of certain "double standard tableaux" are particular cases of Theorem 2; in fact, Theorem 2 allows us to identify the varieties defined by the above rings of invariants with suitable affine open subsets ("determinantal varieties") of certain Schubert varieties in G/P (G a classical group and P a maximal parabolic subgroup of G). These results provided, however, a motivation for our standard monomial theory.
- 4. Demazure's conjecture (cf. [1, p. 83]). It can be shown that this conjecture is a consequence of the statement (1) (c) of Theorem 2. Hence this conjecture holds when G is of type A, B, C or D.

REFERENCES

- 1. M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53-88.
- 2. W. V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cambridge Philos. Soc. 39 (1943), 22-30.
- 3. G. R. Kempf, Linear systems on homogeneous spaces, Ann. of Math. (2) 103 (1976), 557-591.
- 4. V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P-III, (Standard monomial theory for a quasi-minuscule P), Proc. Indian Acad. Sci. 87 (1978) (to appear).
- 5. ———, Geometry of G/P-IV (Standard monomial theory for classical types), Proc. Indian Acad. Sci. (to appear).
- 6. V. Lakshmibai and G. S. Seshadri, Geometry of G/P-II (The work of De Concini and Procesi and the basis conjectures), Proc. Indian Acad. Sci. 87 (1978), 1-54.
- 7. C. S. Seshadri, Geometry of G/P-I (Standard monomial theory for a minuscule P), C. P. Ramanujam: A Tribute, Springer-Verlag, 1978, published for the Tata Institute of Fundamental Research, Bombay.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY 400 005 INDIA