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There appeared in 1976 an expository paper by the present author [52] 
entitled "What is a group ringV This question, rhetorical as it is, may 
nevertheless be answered directly by saying that for a group G over an 
integral domain R the group ring R(G) is a free unitary iî-module over the 
elements of G as a basis and in which the multiplication on G is extended 
linearly to yield an associative multiplication on R(G), R(G) becoming a ring 
with an identity. While this may answer the question, the underlying aim of 
the author is evidently to draw attention to this particular ring R(G) which, 
over the past decade and especially when G is infinite, has come to be 
intensively studied [51]. In the main R(G) is studied under the assumption 
that R is a field K and so, although K(G) is nowadays commonly called a 
group ring, K{G) in an older and more informative terminology is a linear 
associative algebra. 

The group ring K(G) of a finite group G over a field of characteristic 0 is 
semisimple. Over a sufficiently large extension K of the rational field Q there 
is a well-known theory of group characters by whose means, for example, 
explicit characterisations of the primitive central idempotents of K(G) are 
obtainable. Over a field of prime characteristic p and for G finite the 
Jacobson radical JK(G) of K(G) may be nontrivial but, since around 1940 
[7], the development of Brauer's theory of modular characters has again, for a 
sufficiently large extension of the prime field GF(p), yielded characterisations 
of the primitive central idempotents [44]. All of this work, for which the text 
of Curtis and Reiner is a well-known reference [10], depends heavily on the 
finiteness of G. 

Passman's book is concerned with the case of a group ring K(G) in which 
G is potentially infinite and for which, in consequence, ordinary or modular 
character theory is of little help. The bulk of the work on infinite group rings 
has been done in the period 1967-1977, a major, if not the major, contributor 
being the present author. Prior to the mid-1960s the earliest significant work 
was due to Jennings [33], who for a finite /?-group G over a field K of 
characteristic p obtained group-theoretic descriptions of the dimension sub­
groups Dn(K(G)) formally defined from the ring structure as 

Dn(K(G)) = {JC E G: x - 1 E (JK(G))"} (n = 1, 2 , . . . ). 

Modular theory, apart from confirming the equality of JK(G) with the 
augmentation ideal w(K(G))9 of K{G\ is here of no assistance and, not 
unexpectedly, the arguments of Jennings relating as they do to 'commutation 
properties of the group elements are appropriate also to his own later 
investigation of infinite nilpotent groups [34]. In view of the methods the 
work of Jennings is not expounded in 'Curtis and Reiner' but does appear in 
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'Passman', whose discussion incorporates Lazard's group-theoretic descrip­
tion of the dimension subgroups [36] and finally obtains Hartley's pretty 
result that n„°°=i [<»(K(G))]n = {0} if and only if f l ^ i Dn(K(G)) = {1} [26]. 

Following Amitsur's work on algebras [1], [2] interest has been stimulated 
in the semisimplicity problem for group rings. The nonexistence of nontrivial 
nil ideals in K(G) whenever K has characteristic 0 or JKT has prime characteris­
tic p but G has no nontrivial /7-elements is fairly easy to prove. This result is 
however a long way from establishing a corresponding result for JK(G). 
Combining the results of Amitsur and Passman [2], [45] it follows that if K is 
uncountable then, under the previous hypotheses, JK(G) = {0}. Many 
attempts have been made to remove the assumption of uncountability but 
without some alternative assumption such as, for example, that G is free, or 
solvable or a suitable wreath product there has been no success. By the early 
1960s there had emerged three major and easily comprehended problems, 
namely: 

(1) For all groups G is Q(G) semisimple? 
(2) For all groups G with no nontrivial /^-elements is GF{p){G) semisimple? 
(3) For all torsion-free groups G is it true that K(G) has no proper zero 

divisors? 
Of these three questions it is probably fair to say that group ring theorists 

believe, almost as articles of faith, in affirmative answers to (1) and (2). It is 
simple to demonstrate that if K(G) has no proper zero divisors then neces­
sarily G is torsion-free but the converse assertion seems to be viewed with 
caution. Like Fermat's Last Theorem, whose enunciation is easily compre­
hended and which remains to tantalise, these problems have been an impetus 
for other work. There had been in the early 1960s one further important and 
apparently more sophisticated problem, namely: 

(4) If K{G) satisfies a polynomial identity does G have an abelian subgroup 
of finite index? 

From the work of Kaplansky [35] and Amitsur [3] it had been known that 
the existence in G of such a subgroup is sufficient to ensure that G does 
satisfy a polynomial identity. Isaacs and Passman [29], [30] were to show that 
for characteristic 0 the problem had indeed an affirmative answer. For 
characteristic p > 0 the issue is more complicated and the first attack on it 
was made by Martha Smith [61] who introduced ring-theoretic methods 
utilising Posner's Theorem [55] on the embedding of a prime ring satisfying a 
polynomial identity in a matrix ring over a division ring. Denoting the set of 
elements of G consisting of all elements having at most a finite number of 
conjugates by A(G) Connell had previously shown that K(G) is prime if and 
only if A(G) is torsion-free abelian [9], the work of M. Smith revealed the 
need to bound | G : A(G)|. 

The above results on semisimplicity and polynomial identities together with 
further results on idempotents and annihilator and nilpotent ideals are 
summarised by Passman in an earlier book of 149 pages published in 1971. 
This book, the contents of which are essentially subsumed in the present 
volume, was recommended by the Reviewer for Mathematical Reviews [42] 
who, however, questioned 'whether the subject had sufficient maturity to 
warrant a book, especially because of its specialised nature and limited appeal 
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for a subject in its infancy'. The infant has grown lustily in the brief span of 
six years into the healthy maturity of a comprehensive treatise of 720 pages. 
While the text is inevitably specialised the numbers of papers and research 
workers indicate that the appeal is much wider than was formerly the case. 
Passman has taken considerable pains to ensure that his text is self-contained 
so that, apart from one noteworthy exception, a beginning course in groups, 
rings and fields, in which there is included Sylow's Theorems, Artin-
Wedderburn theory, the Jacobson Density Theorem and some Galois Theory 
of cyclotomic fields, is by and large an adequate prerequisite. The outstand­
ing exception is the quoted result [31] that for a given monic irreducible 
polynomial ƒ(£ ) with integral coefficients of degree strictly greater than one 
there exist infinitely many primes/? such that ƒ(£) (mod/?) has a root which is 
not in GF(p). This assumed result is employed to develop a systematic use of 
places, a place being a mapping <f>: AT-» F u oo, F being a second field and 
oo a symbol such that <f> is a homomorphism on <i>~\F) and <ƒ>(&) = oo if and 
only if <K&-1) = 0- New proofs, using places, are given for the existence of 
nilpotent ideals. Applications are made to obtain ZalesskiFs theorem [71] that 
if e is an idempotent in K(G) then the coefficient of e is in Q or GF(p) and to 
obtain Formanek's theorem [16] that if G is a torsion-free group with 
ascending chain condition on cyclic subgroups and if K has characteristic 0 
then K(G) has no nontrivial idempotents. 

A favorite gambit of group ring theorists has been to impose some well-de­
fined ring-theoretic property on a group ring in the expectation that the group 
may, in some sense, be determined. Villamayor [66] and Connell [9] showed 
that K(G) is von Neumann regular if and only if G is locally finite and has no 
nontrivial elements of order/? in the event that K has characteristic/?. Woods 
showed that K(G) is perfect if and only if G is finite [69]. In the 1970s further 
results in this vein appeared. Following earlier work [9], [20], [40] Renault 
showed [56] and Farkas proved neatly [12] that K(G) is self-injective if and 
only if G is finite. Extending this result the two conditions that K(G) is von 
Neumann regular and that all irreducible #(G)-modules are finite-dimen­
sional over their commuting rings were shown by Farkas and Snider [14], 
under the auxiliary assumption that G is countable, to be equivalent to the 
condition that all irreducible A{G)-modules are injective and the same two 
conditions were shown by Goursaud and Valette [23] to be equivalent to the 
condition that all irreducible A{G)-modules are 2-injective. Passman always 
brings problems of this sort entirely up-to-date and, in this instance, he 
incorporates the recent (1977) work of Hartley [27] which, advancing previous 
work [14], proves that if G is a locally finite group with no elements of order/? 
then all irreducible #(G)-modules are finite-dimensional over their commut­
ing rings if and only if G has an abelian subgroup of finite index. 

More complete results on polynomial identities are now available. There is, 
firstly, the straightforward result of Passman [49] that if K(G) satisfies a 
polynomial identity of degree n then the derived subgroup (A(G))' of A(G) is 
finite and there holds the (sharp) bound \G : A(G)| <\n. If K has prime 
characteristic/? it is now known [48] that K(G) satisfies a polynomial identity 
if and only if G has a subgroup H of finite index such that H' is a finite 
/?-group, a result which had previously proved awkward as K(G) is not, in 
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general, semiprime. The author introduces central polynomials which, invert­
ing chronological order, he uses to reprove Posner's Theorem [55] and thereby 
to rederive the original work of M. Smith [61] on prime polynomial rings with 
a polynomial identity. 

Considerations of semisimplicity seem currently to devolve either into 
determining JK(G) for some wide class of groups or into determining 
conditions for the primitivity of K(G). In the first alternative the problem is 
to determine a nil-ideal which, in the class of groups under consideration, is 
'big-enough' to be the Jacobson Radical. The author introduces his JV*-radi-
cal, which may be defined for any ring and which for K{G) is denoted by 
N*K(G) and is defined as the set of all elements x E K(G) such that xK(H) 
is nilpotent for all finitely generated subgroups H for which x E K(H) [50]. 
For group rings the desirable property that N*(K(G)/N*K(G)) = {0} holds, 
the corresponding result for a general ring being false. He defines two 
subgroups A+(G) and AP(G), analogously to A+(G) and AP(G), by letting 
A+(G) be the set of all elements x E G such that x has finite order and x has 
at most a finite number of conjugates under the action of any finitely 
generated subgroup H of G and by letting AP(G) be the subgroup of A+(G) 
generated by all ^-elements of A+(G). He shows that N*K(G) = 
JK(A+(G))K(G) and that for characteristic p of K N*K(G) -
JK(AP(G))K(G). The author conjectures that always N*K(G) = JK(G\ 
citing, as evidence, the cases of linear and solvable groups. A key issue is to 
determine the existence of a unique subgroup H for which JK(G) = 
JK(H)K(G) and which is minimal with respect to this equality. The most 
recent work of Passman, not mentioned in present text [53], shows that if G is 
locally solvable and if K has characteristic p then JK(G) = JK(W)K(G) 
where W is a subgroup of AP(G) which, at least if G has no nontrivial normal 
/^-subgroup, is generated by all finite subgroups of AP(G) each of which is 
itself generated by /^-elements of AP(G) and each of which is subnormal in 
any larger finite subgroup of AP(G). 

A necessary condition for a ring to be primitive, that is to have a faithful 
irreducible module, is that the ring is prime. Consequently for K(G) to be 
primitive it is required that K(G) is prime or, equivalently, that A(G) is 
torsion-free. It is comparatively easy to show that if G has a subgroup H of 
finite index then K(G) is primitive if and only if K(H) is primitive [59] but no 
actual examples of primitive group rings were known until the result of 
Formanek and Snider [19] proving that if G is locally finite and countable 
then K(G) is primitive if and only if K(G) is prime and semisimple. This 
result depends only marginally on group theory, the pertinent fact being that 
a countable locally finite group is a union of an ascending sequence of finite 
groups, Farkas and Snider showing that a semisimple prime ring which is the 
ascending chain of artinian rings, all with the same identity, is necessarily 
primitive. The free product of two cyclic groups each of order two is 
isomorphic to the infinite dihedral group D and K(D) is certainly not 
primitive, however Formanek [17] showed that if G is the free product of two 
nontrivial groups and if G is not isomorphic to D then K(G) is primitive. The 
argument is here group-theoretic and depends on being able to assign a 
'length' to the elements in a free product. Group-theoretic arguments also 
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establish that the group ring of an algebraically closed group is primitive. The 
fore-going results are independent of the field K but it is also evident that the 
precise nature of K may be critical. Thus if G is a nontrivial polycyclic group 
for which A(G) is trivial and if the transcendence degree of K over the prime 
field of K is at least equal to the Hirsch number of G, then K(G) is primitive 
[47] whereas if K is algebraic over GF(p) then K(G) cannot be primitive [57]. 
Results of a different sort, particularly for solvable groups, were proved by 
Zalesskiï [70], [72] who has obtained various key intersection theorems, 
so-called because in each theorem there is, or there is constructed by 
induction, a well-defined subgroup H of G such that if I is an ideal of K(G) 
then ƒ 7* {0} implies I n K(H) ^ {0}, the primitivity of K(H) then 
implying the primitivity of K(G). Such results move, rather than remove, 
difficulties and this area of group ring theory is perhaps best described in the 
words of Farkas and Passman [13] who remark that "the situation is so 
chaotic that no plausible necessary conditions uniting the host of examples 
have ever been conjectured". 

It is natural to investigate in group rings the consequences of various chain 
conditions (left and right being in group rings usually indistinguishable). 
Connell showed in 1963 [9] that K{G) is right artinian if and only if G is 
finite, there are now available the stronger results of Goursaud [22] and 
Valette [64] showing respectively that K(G)/N*K(G) is artinian if and only if 
either the characteristic of K is 0 and G is finite or the characteristic of K isp 
and G is a locally finite group having a normals-subgroup of finite index and 
that if K is an uncountable algebraically closed field then K(G)/JK(G) is 
artinian if and only if either the characteristic of A' is 0 and G is finite or the 
characteristic of K isp and G has a normals-subgroup H of finite index such 
that JK(H) is the augmentation ideal of K{H). These two similar results 
would simplify if it were always true that JK(G) = N*K(G). It is easy to 
verify, using augmentation ideals, that if K(G) is a noetherian ring then G is a 
noetherian group but the determination of all noetherian groups is unre­
solved, however Hall [24] showed that if G is a finite extension of a polycyclic 
group then K(G) is noetherian. This important result, whose proof has 
affinities with the proof of the Hilbert Basis Theorem, has enabled the 
machinery of noncommutative ring theory to be applied to group rings, the 
first applications being made by P. Smith in the early 1970s [62], [63]. This 
work was extended by Roseblade, a typical result [57], [63] being that if A' is a 
field of characteristic 0 and if G is a polycyclic-by-finite group having a 
normal subgroup H then the three conditions, that if be a finite-by-nilpotent 
subgroup, that the augmentation ideal of K(H) be polycentral and that the 
augmentation ideal of K(H) should generate a right ideal of K(G) having the 
Artin-Rees property, are mutually equivalent. The concept of polycentrality 
is, in fact, somewhat restrictive and Roseblade and Smith have been able to 
extend the notions to consider hypercentral group rings [58]. If K has 
characteristic 0 they show that K(G) is hypercentral if and only if every 
nontrivial homomorphic image of G has a proper normal subgroup which is 
either finite or central, in characteristic p slightly more complicated equiv­
alent conditions are obtained. 

In 1946 Hirsch [28] proved that a polycyclic, and so a polycyclic-by-finite, 
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group is residually finite and in 1959 P. Hall [25] having shown that a finitely 
generated nilpotent extension of an abelian group is residually finite, posed 
the problem of whether 'nilpotent' could be replaced by 'polycyclic', the crux 
of the problem being to show that if G is a polycyclic-by-finite group and if 
M is a finitely generated Z(G)-module, the intersection of whose nonzero 
submodules is nonzero, then M is necessarily finite. An affirmative answer to 
Hall's problem is due to Roseblade [57] and Jategoankar [32] as the culmina­
tion of previous work including that of Malcev [39] and of Bergman [4]. 
Malcev had established that if a solvable group G acts faithfully on a 
finite-dimensional irreducible #(G)-module then G has an abelian subgroup 
of finite index, and Bergman had established an important dichotomy, 
reformulated by Passman, for invariant ideals of K(G) where G is a finitely 
generated abelian group acted on by a group of automorphisms A where A 
acts so that A and all subgroups of A act irreducibly on Q ® z G. 

Until quite recently one of the best results on the nonexistence of proper 
zero-divisors in K(G) was due to Bondi [6] who, extending the notion of a 
polynomial ring over a field, showed that if G has a finite normal series of 
subgroups with torsion free abelian quotient groups then K(G) has no proper 
zero divisors. If G is a free group or even an ordered group it had earlier been 
shown [38], [43] that K(G) is embeddable in a division ring and so, im­
mediately, such a K(G) has no proper zero divisors. In 1972 Lewin [37] 
showed that if G is the free product of two subgroups A and B with an 
amalgamated normal subgroup N such that K(A) and K(B) have no proper 
zero-divisors and K(N) is an Ore Domain then K{G) is an Ore Domain, a 
result whose proof involves the idea of 'length' of an element and the use of 
the Ore condition to link' K(A) and K(B). Here the problem of zero-divisors 
rested until Brown [8] took the novel step of applying homological techniques 
and of invoking a zero divisor theorem of Walker [67] which, ostensibly at 
least, had no connection with group rings. Using a theorem of Grothendieck 
and Serre [60] that if G is a poly-infinite cyclic group then a finitely generated 
projective AT(G)-module is a quotient of two finitely generated free modules, 
Farkas and Snider [15] showed that if G is a torsion free polycyclic group and 
if K has characteristic 0 then K(G) has no proper zero-divisors, a comparable 
result being obtained for prime characteristic. The original proof of Farkas 
and Snider uses the concept of the reduced rank of a module but the proof 
given in the present text by Passman is based on the more direct notion of 
uniform dimension of a module [21]. 

The final topic treated by Passman is the so-called 'isomorphism question', 
namely, if G and H are two groups such that K(G) and K(H) are isomorphic 
does it follow that G and H are isomorphic? If G and H are two finite abelian 
groups of the same order then Q(G) and Q(H) are isomorphic if and only if 
G and H are isomorphic [54] but if K is a sufficiently large extension of Q 
then K(G) and K(H) are always isomorphic. This clearly suggests that the 
answer to the question is field-dependent but, on the other hand, there is the 
striking example of Dade [11] of two finite nonisomorphic metabelian groups 
G and H such that for all choices of the field K K(G) and K(H) are 
isomorphic. As an aside and drawing on Whitcomb's work, [68] regrettably 
never published except in a Chicago Ph.D. thesis, it happens to be true that if 
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G and H are two finite metabelian groups such that Z(G) and Z(H) are 
isomorphic then G and H are isomorphic. By means of Ulm's characteriza­
tion of reduced countable abelian/?-groups Berman [5] and May [41] showed 
that if G and H are two countable abelian ̂ -groups and if K has characteris­
tic/? then the isomorphism of K(G) and K(H) implies the isomorphism of G 
and H. 

The author has written a majestic account of the existing developments of 
the past few years and has contrived to write an exposition which is both 
encyclopedic and lucid. Each chapter has a wealth of exercises, many of 
which contain research work garnished with hints for the reader. It is not 
possible to indulge in the usual reviewer's privilege of comparing the present 
text with other similar texts since in Western European languages there are 
none (cf. [73]). In the main the material of the text has appeared previously 
only in research papers and, accordingly, in the limited space available, only 
a highly selective indication can be given of the contents but an indication 
which, it is to be hoped, has imparted their flavour. It appears to be well-nigh 
obligatory for a reviewer to find something at which he may cavil and the 
present reviewer would not wish to overlook a hallowed tradition. He is 
therefore constrained to record that, somewhat surprisingly, the author's first 
chapter seems to be unsatisfactory in its selection of material and it may 
mislead an unwary reader by introducing twisted group rings, thereby creat­
ing the unwarranted impression that these exotic objects are to be of subse­
quent significance. To make this criticism, however, is to focus attention on a 
minute blemish on an otherwise remarkable book, which has already become, 
and which is destined for many years to remain, a standard reference. 
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