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cation problems are treated by topological and analytical techniques. Appli­
cations are discussed. The final part is devoted to analysis in the large. The 
Leray-Schauder degree is developed as well as degree for C2 Fredholm maps. 
These, and related notions, are used to investigate nonlinear boundary value 
problems. Critical point theory, with applications, completes the book. 

Globally, I very much like the spirit and the scope of the book. The writing 
is lively, the material is diverse and yet maintains a certain unity, and the 
interplay between the abstract analysis and certain concrete problems is 
emphasized throughout. Locally, more attention could have been paid to 
detail; there are many misprints, some mistatements of results, and some 
proofs need tightening. On balance, the book is a very useful contribution to 
the growing literature on this circle of ideas, and I look forward to the 
author's promised companion volume, 
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Combinatorial set theory, by Neil H. Williams, North-Holland Publishing 
Company, Amsterdam, New York, Oxford, 1977, xi + 202 pp., $26.75, 

Combinatorial set theory is frequently distinguished from axiomatic set 
theory, although the distinction is becoming less and less clear all the time. If 
there is a difference, it is more one of method than substance. Axiomatic set 
theory uses the tools of mathematical logic, such as the method of ultra-
powers and the theory of forcing and generic sets, while the methods of 
combinatorial set theory are purely "combinatorial" in nature. In practice, an 
argument or result is "combinatorial" if it is not overtly model-theoretic, 
topological, or measure-theoretic. 

Both branches of set theory experienced explosions in interest at about the 
same time, in the middle 1960s, but at widely separated places. Combinatorial 
set theory grew up around Erdôs and his school, in Budapest, while axiomatic 
set theory received its impetus from the work of Cohen, Scott and Solovay at 
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Stanford and Berkeley. During the last decade, beginning roughly with the 
work of Silver, the two subjects discovered each other, and the result has been 
a boom of activity which is still continuing. 

The central notion of combinatorial set theory is the partition relation. 
Given cardinals K, À, and /x, and a positive integer «, the partition relation 

means that if A is a set of cardinality K and the set [A]n of (unordered) 
«-element subsets of A is partitioned into p pieces, then there is a set B C A 
such that B has cardinality X and all the elements of [B]n lie in the same piece 
of the partition. The set B is called homogeneous for the partition. The 
simplest infinite partition relation is Ramsey's theorem, which asserts 

N0 -» (No)* f° r aU finite n and k. 

In their 1956 paper [1] Erdös and Rado found a generalization of Ramsey's 
theorem to large cardinals which proved to be useful in areas ranging from 
mathematical logic to set-theoretic topology. Perhaps more importantly for 
combinatorial set theory, however, they also discovered that the partition 
relation is capable of infinite variation. For n = 2 the relation fc -* (A)£ talks 
about partitioning the complete graph on fc vertices. Why not partition other 
graphs, or ask for other kinds of homogeneous sets? One can make the 
relation more precise, and require the cardinality of the homogeneous set B to 
depend on which piece of the partition the elements of [B]n lie in. One can 
make it weaker, and ask only that [B]n does not meet all the pieces of the 
partition. One can consider partition relations for arbitrary order types, 
partial or total, instead of cardinal numbers. And finally, what about the 
connection between these notions and older notions of combinatorial set 
theory, like almost-disjoint sets, transversals, and set systems? 

These and similar problems precipitated the great thrust of activity in the 
early and middle 1960s by Erdôs, Hajnal, Rado, and others. And while 
considerable progress was made, there emerged two kinds of problems which 
remained intractable, and which were ultimately solved using powerful 
methods from mathematical logic. The first kind dealt with "large" cardinals, 
i.e., cardinals which are at least inaccessible. The problem of determining the 
relative sizes of these cardinals was finally solved using the theory of 
ultrapowers and the notion of indescribability of cardinals. 

The second kind of problem concerned the consistency of certain 
combinatorial assertions with the axioms of set theory. Combinatorial argu­
ments naturally involve lots of cardinal arithmetic, and cardinal exponen­
tiation is quite impossible without some simplifying assumptions. Until 
Cohen's method of forcing became available, the tactic universally adopted 
was to assume the generalized continuum hypothesis (GCH) whenever the 
going got sticky. Since then, there has been much reexamination of the old 
arguments to see if they can be improved and, if not, whether forcing 
arguments will show they are best possible. 

It is understood now that most of these logical methods have combinatorial 
counterparts, and even forcing is considered as a combinatorial tool 
Nevertheless the student of combinatorial set theory is obliged to master the 
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logical techniques because of their superior intuitive content. 
But that's the easy part. The hard part has always been to learn the 

fundamental combinatorial results, because they are scattered through many 
journals, in papers which are often immense and written in forbidding 
notation and appalling generality. For that reason Neil Williams' book, 
Combinatorial set theory, is particularly welcome. 

Williams has collected the basic results, from the Erdôs-Rado theorem and 
Hajnal's set-mapping theorem through the theory of almost-disjoint sets and 
graph colorings. There is enough variety so that even many experts will find 
something new. It is a pleasure to see these results presented in standard 
notation (the only exception I found was the use of K' for cf K). The proofs 
are, for the most part, quite well done. Many of them have been considerably 
shortened from their original form. 

The book is entirely classical in the sense that arguments involving large 
cardinals and forcing do not occur. The GCH is assumed "whenever it leads 
to a simplification in the statement or proof of a result". 

One particularly nice feature of the book is the way, when GCH has settled 
a question, the author takes a moment to review all the cases. There are 
usually references to the literature for further results, although the ones on 
consistency results tend to be rather spotty. The book is sprinkled with open 
problems, most of which seem to be culled from the original papers or from 
the problem papers of Erdös and Hajnal. The reader should be warned that a 
significant fraction of the problems has already been solved, and in many 
cases the solutions require techniques far beyond the scope of the book. 

Nearly any specific combinatorial result can be generalized and, particu­
larly if one is studying a partition relation with several cardinal parameters, 
the generalization may be quite incomprehensible. This extreme generality is 
typical of papers in combinatorial set theory and, perhaps inevitably, 
Williams' book suffers from it too. The reader is therefore advised to adopt 
the standard strategy for dealing with such generality: Discover the simplest 
nontrivial case to which the theorem applies, and read the proof with that 
case fixed firmly in mind. The generalization is usually obvious. 

With a book as slender as this one, everyone is sure to miss some favorite 
results. I wish there were more material on trees. And while there is a nice 
treatment of the simplest case of Silver's theorem on the GCH at singular 
cardinals, it would have been nice to see the extension of this theorem due to 
Galvin and Hajnal. On the other hand, it was an unexpected pleasure to find 
included two of the most difficult and beautiful proofs in the field: Larson's 
proof of Chang's partition theorem for the ordinal <ow and Galvin's combina­
torial proof of the relation o)x -» (a)\ for all a < o)x and k < <o. 

There are several minor typographical errors, the only one of consequence 
being the transposition of pp. 67 and 71. 
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