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Dedication 

In memory of Richard Brauer, for his pioneering studies of 
finite simple groups. 

It is indeed unfortunate that Richard Brauer did not live to see the 
complete classification of the finite simple groups. He had devoted the past 
thirty years largely to their study and it is difficult to overestimate the impact 
he made on the subject. Early on, he realized the intimate relationship 
between the structure of a group and the centralizers of its involutions 
(elements of order 2). He established both qualitative and quantitative 
connections. As an example of the first, he showed by an elementary 
argument that there are at most a finite number of simple groups with a 
specified centralizer of an involution [30]; and of the second, he proved that if 
the centralizer of an involution in a simple group G is isomorphic to the 
general linear group GL(2, q) over the finite field with q elements, q odd, then 
either G is isomorphic to the three-dimensional projective special linear group 
L3(q),2 or else q = 3 and G is isomorphic to the smallest Mathieu group Mn 

of order 8 • 9 • 10 • 11 [27], [28]. This last result, which Brauer announced in 
his address at the International Congress of Mathematicians in Amsterdam in 
1954, represented the starting point for the classification of simple groups in 
terms of the structure of the centralizers of their involutions. Moreover, it 
foreshadowed the basic fact that conclusions of general classification 
theorems would necessarily include sporadic simple groups as exceptional 
cases (Mn being the sporadic group of least order). 

The methods which Brauer used were almost entirely representation-
theoretic and character-theoretic. In the middle 1930s he introduced and 
developed the concept of modular characters of a finite group. He soon 
realized the power of these ideas, which played an instrumental role in his 
proof of the Artin conjecture on Ê-series in algebraic number fields. Likewise 
he saw that these techniques provided a powerful tool for investigating simple 
groups. From the middle 1940s until his death, Brauer systematically devel-

Received by the editors May, 1978. 
AMS (MOS) subject classifications (1970). Primary 20D05, 20-02. 
Martially supported by National Science Foundation. 
2The «-dimensional projective special linear group Ln(q) » PSL(n, q) over the finite field 

GF(q) with q elements is the image (modulo scalar matrices) of the group SL(ny q) (the special 
linear group) of all n X n matrices of determinant 1 with entries in GF(q). 

©American Mathematical Society 1979 
0002-9904/79/0000-0003/$39.00 

43 



44 DANIEL GORENSTEIN 

oped the general theory of modular characters and blocks of characters, which 
he subsequently applied to a variety of classification questions. For me at 
least, the culmination of these applications occurred in a joint paper with 
Brauer, and J. L. Alperin [3], [4] in which we determined all simple groups 
with quasi-dihedral3 or wreathed4 Sylow 2-subgroups (the answer being L3(q\ 
q odd, U3(q)9 q odd (U3(q) = PSU(3,q)9 denoting the three-dimensional 
projective special unitary group over the field GF(q)) or Mn). In the 
character-theoretic portions of the argument, about 100 pages in length, 
Brauer gives an unmatched virtuoso performance, bringing to bear all the 
insights about blocks of characters which he had developed over the years. 

Brauer's article in this journal, based on a lecture at the University of 
Connecticut in the fall of 1976, gives a clear picture of the kind of questions 
about finite groups which continually fascinated him. The field has grown 
enormously from the 1940s, when Brauer was a lone figure studying simple 
groups, to the present time, when there are perhaps as many as 300 
mathematicians scattered about the world investigating some aspect of them. 
But long after the simple groups are completely classified, the questions 
Brauer has raised about their representations and characters will continue to 
provide a strong stimulus for research in finite group theory. 
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the results described in this article, especially with the details of the sporadic 
groups. In particular, the discussion of the computer construction of sporadic 
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L. Alperin, Michael Aschbacher, Robert Gilman, George Glauberman, David 
Hunt, and Robert Griess for additional help they have given me. My extra 
thanks to Alperin, Gilman, Griess, and Lyons, who painstakingly read the 
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CHAPTER I. INTRODUCTION 

1. From character theory to local analysis. Brauer's character-theoretic 
techniques turned out to be ideally suited for investigating "small" simple 
groups:5 linear groups of low dimension, alternating groups of low degree, 
groups with very restricted Sylow 2-subgroups (e.g., quaternion,6 dihedral, 
quasi-dihedral, wreathed, abelian, etc.). This was very fortuitous, since at the 
outset of the study of simple groups, it was obviously most natural to focus 
on the smallest ones. Moreover, these methods were so effective that in the 
early years there was a strong conviction that character theory would remain 
a principal tool-if not the primary one-for analyzing simple groups. 

However, even in treating small simple groups, the method had a serious 
drawback: to use it to determine the structure of a group G, one required 
very precise hypotheses on at least one subgroup H of G (e.g., the centralizer 
of an involution). When such conditions prevailed, it was possible to relate 
the characters and modular characters of H with those of G and use this 
connection to obtain information about G. This was the thrust of the Brauer 
methods. 

The difficulty occurs if one asks a broad enough question, for then one 
cannot assert a priori that any critical subgroup H of G has a very restricted 
structure. Let us consider, for example, the problem of determining all simple 
groups G of order paqbrc, p, q, r primes with p < q < r, which Brauer 
discusses briefly in his article. (In view of the classical Burnside result that all 
groups of orderpaqb are solvable, this is a problem of natural interest.) There 
are eight known simple groups having orders of this form:7 A5, A6, L2(7), 
L2(8), L2(17), L3(3), £/3(3), and f/4(2), each of which can certainly be 
considered to be a "small" group (the largest order is, in fact, 25,920). 

For brevity, we call these eight groups Kygroups and call an arbitrary 
group of order paq brc a three prime-group. 

Two special situations exist in which character theory can be used to 
determine the structure of a simple three prime-group G: 

(a) The centralizer of an involution of G is isomorphic to (or at least 
"closely resembles") that of a ^-group; 

(b) The largest prime r dividing the order of G occurs only to the first 
power (or more generally, G has cyclic Sylow r-subgroups). 

If (a) holds, one takes H to be the centralizer of an involution of G and 
investigates the modular characters of H and G for the prime 2; while if (b) 
holds, one takes H to be the normalizer in G of a Sylow r-subgroup and 
investigates the modular characters of H and G for the prime r. 

5The term simple group always refers to a nonabelian simple group. 
6A 2-group S is (generalized) quaternion or dihedral, respectively, if S is generated by elements 

x, y subject to the relations x~ xyx = y ~l and correspondingly x4 = y2" = 1, x2 = y2"~ , n > 2, 
or x2 = y2" — 1, n > 1. 

7 Here A„ is the alternating group of degree n and Un(q) = P5C/(w, q) = 
SU(n, q)/(mod scalars) is the projective special unitary group over GF(q). (See Chapter II for 
the definition of SU(n, q).) 
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We can view conditions (a) and (b) as saying that G "resembles" one of the 
^-groups. Thus character theory enables one to prove the following 
assertion: 

If a simple three prime-group resembles a AT3-group, then, up to 
isomorphism, G is a A^-group. 

But why should an arbitrary such simple group G resemble a J^-group? 
Why cannot the centralizer of any of its involutions have arbitrarily high 
order or its Sylow r-subgroup have arbitrarily complex structure? Clearly 
unless one can establish such a resemblance, there is no hope of proving the 
natural conjecture that every simple three prime-group is a AT3-group. 
Unfortunately character theory does not seem effective for attacking this 
problem. 

However, general methods do exist now for treating such problems. They 
originate in the monumental paper of Feit and Thompson which proved that 
all groups of odd order are solvable [57]. It is in this paper that what has 
come to be called local group-theoretic analysis reached full development. 
(Intimations appear in Thompson's doctoral thesis, in which he proved the 
well-known Frobenius conjecture that a finite group which admits an 
automorphism of prime period leaving only the identity fixed is necessarily 
nilpotent [197].) 

It is immediate that if G is a counterexample of least order to the 
solvability of groups of odd order, then G must be simple and each of its 
proper subgroups is solvable. To establish the theorem, a contradiction must 
be derived from these conditions. Suzuki made the first significant 
breakthrough in the problem, treating the special case in which the centralizer 
of every nonidentity element of G is abelian [187]. Under this assumption, it 
is very easy to determine the structure and embedding of every maximal 
subgroup M of G: 

(1) M = A K, where K is an abelian normal subgroup of M9 A is cyclic, 
A =£ 1, and every nontrivial element of A induces by conjugation an 
automorphism of K leaving only the identity fixed (M is an example of a 
Frobenius group with kernel K and complement A); 

(2) K has order relatively prime to its index in G (one says that K is a Hall 
7r-subgroup of G for some set of primes TT); and 

(3) if g G G, then g~ lKg n K = 1 or K (K is said to be a trivial intersection 
set (T. I. set) in G). 

Under these very restricted conditions, the theory of so-called exceptional 
characters, developed by Brauer and Suzuki (cf. [84, §4.5]), enables one to 
relate certain characters of M with those of G. This connection applies to 
every maximal subgroup of G. Choosing representatives M,, Af2,..., Mn f or 
the conjugacy classes of maximal subgroups and applying the procedure for 
each /, 1 < / < ft, Suzuki was able to obtain information about all the 
characters of G. At this point he was able to derive a contradiction by a 
delicate arithmetical analysis of the character values on the elements of G. 

In a subsequent paper [55], Feit, M. Hall, and Thompson extended Suzuki's 
argument to the case in which it is assumed only that the centralizer of every 
nonidentity element of G is nilpotent. They again showed that the maximal 
subgroups of G are Frobenius groups whose kernels are Hall 7r-subgroups and 
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are T.I. sets in G. Likewise they applied exceptional character theory to reach 
a similar arithmetic contradiction. 

Thus when Feit and Thompson attacked the general solvability problem, 
they had a conceptual framework for a proof: first determine the structure 
and embedding of all the maximal subgroups of G; then determine the 
characters of G using exceptional characters; and finally, hopefully, obtain an 
arithmetic contradiction from this information. 

However, the actual task of determining the structure and embedding of 
these maximal subgroups turned out to be very formidable. In the process of 
carrying through the analysis, Thompson introduced many ideas which have 
come to play a central role in the study of simple groups. In particular, he 
established the first so-called transitivity theorems and uniqueness theorems. 
Thompson's approach looked very elementary: just take normalizers (and 
centralizers) of various nontrivial subgroups of prime power order and 
analyze their relationships. These normalizers, being proper subgroups of the 
simple group G9 were therefore solvable and so their general structure was 
given by P. Hall's classical theory of solvable groups, which deals primarily 
with the so-called extended Sylow theorems [104], [105] (also cf. [84, Chapter 
6]). In fact, Thompson would often say that all he ever used was Sylow's 
theorem. But what an understatement! The truth is that the analysis required 
the most elaborate and ingenious study of the full subgroup structure of G to 
achieve its objective. (A fundamental result of P. Hall and G. Higman 
concerning solvable groups of linear transformations of a vector space over 
the prime field GF{p) [108] (also cf. [84, Chapter ll])-and which has since 
had far-reaching extensions-also had a crucial impact on Thompson.) 

Some time after the Feit-Thompson theorem, Alperin introduced the term 
local subgroup for the normalizer in G of a nonidentity subgroup of prime 
power orderp* (p-local if one wishes to distinguish the prime/?). The term 
local group-theoretic analysis refers to the study of the local subgroup struc­
ture of a group G; its primary objective is, in general, to obtain information 
about the structure and embedding of (a) the maximal subgroups, (b) the 
centralizers of involutions, and (c) the centralizers of elements of odd prime 
order of the group (?, 

I would like to make a few further comments about the odd order theorem 
before resuming the general discussion. In the general case, it was no longer 
possible to prove that every maximal subgroup of G was necessarily a 
Frobenius group-a number of other structures were possible. Moreover, only 
a weakened form of the T.L property could be established for these 
subgroups. This created obstacles to the applicability of exceptional character 
theory, primarily related to the character-theoretic notion of coherence. To 
overcome them, Feit was forced to establish an elaborate extension of the 
entire Brauer-Suzuki theory of exceptional characters. Unfortunately an even 
greater obstacle awaited Feit and Thompson-one of the final configurations 
of maximal subgroups completely eluded the hoped-for arithmetic contra­
diction. It was a full year before Thompson found a way of eliminating this 
last configuration-by essentially getting down to the level of the multi­
plication table of the group. The resulting argument, involving exceedingly 
complex relations among the generators of certain critical subgroups of G> 
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ultimately succeeded in reducing the nonexistence question for G to a 
problem about the number of solutions of a certain equation with coefficients 
in a finite field, which in the end Thompson was able to resolve. 

The interested reader will find a fuller outline of the proof of the odd order 
theorem in my book [84, §16.2]. Although over fifteen years have passed, 
during which time its 255 page proof has been thoroughly analyzed and parts 
of it extended far beyond the original context, no major conceptual 
improvements have been made in it-only a great many technical simpli­
fications in portions of the argument. 

The Feit-Thompson theorem, by showing that a simple group must have 
even order, strikingly reinforced Brauer's contention that the structure of a 
simple group is intimately connected with its involutions. However, as a 
group of odd order has no involutions, the proof itself could furnish no direct 
new insights into the role of the centralizers of involutions in the study of 
simple groups. 

Such insights were provided by the next problem that Thompson attacked-
the determination of all minimal simple groups-i.e., simple groups each of 
whose proper subgroups is solvable [199]. Since Thompson's methods in­
volved primarily an examination of only the local subgroups, his proof 
actually led to the determination of the broader class of simple groups, each 
of whose local subgroups is solvable (for brevity, N-groups). The theorem 
asserts that a simple JV-group is isomorphic to one of the following groups: 
Liiq\ 1 > 3, A79 L3(3), U3(3)9 M n , Sz(q)9 q = 2 2 " + \ n > 1, or 2F4(2)'. Here 
Sz(q) denotes the family of simple groups discovered by Suzuki, related to 
the 4-dimensional symplectic groups over GF(q); and 2F4(2)' denotes the 
derived group of 2F4(2), the smallest member of the family of simple groups 
discovered by Ree, which are related to the exceptional family F4(q)9 q — 
22"+ \ n > 0, of groups of Lie type. (The group 2F4(2) itself is not simple, but 
its derived group, of index 2, is simple.) (See Chapter II for detailed 
definitions.) 

Here one could see for the first time how the local analytic ideas of the odd 
order paper could be used and further developed to yield information about 
the structure of the centralizers of involutions. In particular, the fundamental 
concept of a strongly embedded subgroup, one of the most crucial tools of 
simple group theory, has its origins in the JV-group analysis (suggestions of 
the idea appear in earlier works of Feit and Suzuki). My aim here is solely to 
explain the historical origins of local group-theoretic analysis. I shall therefore 
leave any discussion of the major ideas of the iV-group paper and their 
generalizations to the body of the article. 

Return now to the problem of classifying all simple three prime-groups G, 
Can we hope to apply local group-theoretic techniques to study the subgroup 
structure of G ? In the odd order and iV-group problems, the fact that all the 
critical subgroups were solvable was of overriding importance. But the 
subgroups of G, being quite general three prime-groups, can certainly be 
nonsolvable. In fact, there is no reason why their composition factors cannot 
include simple three prime-groups which are themselves not A^-groups. 

We can at least eliminate the second unpleasant possibility, if instead of 
working with an arbitrary simple three prime-group G, we take G to be a 
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simple such group of least order which is not a A^-group. Clearly to establish 
the stated conjecture, it will suffice to show that no such group G 
exists-equivalently, that G must, in fact, be a J^-group. The advantage of 
dealing with a "minimal counterexample" is that if H is any proper subgroup 
of G, then the (nonsolvable) composition factors of H are simple three 
prime-groups of lower order than G and so are necessarily A^-groups. 

A finite group whose composition factors are known simple groups is said 
to be of known type-for brevity, a K-group. Thus the classification of simple 
three prime-groups is reduced to establishing the following assertion: 

If G is a simple three prime-group, each of whose proper 
subgroups is a AT-group, then G is a !£3-group. 

Therefore in asking whether local group-theoretic methods can be used in 
this problem, we are really asking whether the Thompson techniques for 
studying simple groups with solvable proper subgroups can be extended to 
simple groups whose proper subgroups are ^-groups. A large part of the 
effort of the past fifteen years has been devoted precisely to carrying through 
such a generalization. 

The first general classification theorem involving nonsolvable proper 
subgroups was the determination of all simple groups with dihedral Sylow 
2-subgroups which John Walter and I obtained in the early 1960s, [94], the 
answer being the groups L2(q% q odd, q > 3, and A7. To carry through the 
analysis, we required many very specific properties of the groups L2(q) and 
A7, since these groups could occur as sections of the proper subgroups of a 
minimal counterexample. Thus the proof of our theorem strongly indicated 
that any broad extension of the Thompson methods would involve some sort 
of general theory of K-gronps related to local analysis. 

The full development of these Sylow-type local group-theoretic methods has 
undoubtedly been the single most significant factor in the remarkable recent 
advances that have been made towards the complete determination of the 
finite simple groups. However, not far behind in importance are the internal 
geometric methods, introduced by Bernd Fischer in the late 1960s, which 
grew out of his attempt to characterize the symmetric groups by the fact that 
they are generated by a conjugacy class of involutions (namely, their 
transpositions (//)), the product of any two of which has order 1, 2, or 3 [59], 
[62], [63]. The ideas involved in the solution of this problem have led not only 
to the discovery of several sporadic simple groups, but ultimately to the 
creation of new general methods for studying simple groups. These will be 
fully discussed in the body of the article. 

Just as Suzuki and Feit are products of the Brauer tradition, so Bender, 
Glauberman, Goldschmidt, I, and many others are primarily disciples of 
Thompson; while Aschbacher, O'Nan, and Timmesfeld are largely of the 
Fischer school. However, in the past few years, Aschbacher has succeeded in 
synthesizing the Sylow and geometric analytic methods to such an extent as 
to create a dazzling new approach to simple group theory. 

2. The status of the classification. At the present time the determination of 
all finite simple groups is very nearly complete. Such an assertion is obviously 
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presumptuous, if not meaningless, since one does not speak of theorems as 
"almost proved". But the ultimate theorem which will assert the classification 
of simple groups is unlike any other in the history of mathematics; for the 
complete proof, when it is attained, will run to well over 5,000 journal pages! 
Moreover, it is very likely that at the present time more than 80% of these 
pages exist in either print or preprint form. 

Under such circumstances, it makes more sense to view this classification 
as an entire field of mathematics rather than as an attempt to prove a single 
theorem. Furthermore, it should be emphasized that the portion of the proof 
already in print constitutes primarily a long series of theorems which stand in 
their own right, independent of whether or not a complete classification is 
ever achieved. Many of these represent the determination of all simple groups 
with some specific property (e.g., G has odd order, G has dihedral Sylow 
2-subgroups, G has abelian Sylow 2-subgroups, the 2-local subgroups of G 
have cyclic Sylow /^-subgroups for all odd primes, the centralizer of an 
involution of G closely approximates that in some known simple group, etc., 
etc.). Many represent the development of general techniques which facilitate 
the study of simple groups; others involve the determination of properties of 
^-groups which are needed to carry out local analysis. A large number of 
others deal with a specific individual (sometimes two or three) sporadic 
group-its construction, some characterization, or some properties. Thus finite 
simple group theory really is a total field of mathematics; and, in general, 
each separate result bears the same relationship to the entire subject as does, 
say, a single theorem in differential topology. 

Out of the continued study of simple groups, there has gradually evolved a 
specific program for obtaining their ultimate classification. In the early years, 
many directions were pursued which, interesting in themselves, have turned 
out to have little bearing on the "program" (e.g., the questions of classifying 
groups by the number of conjugacy classes of their elements or whether a 
known simple group can be generated by two elements). Such questions 
simply do not arise in the course of proving any general classification 
theorem. At a later stage, considerable effort was spent looking for new 
sporadic groups in directions which had already produced such groups. With 
a few notable exceptions, this experimental approach was not successful. For 
example, Conway's three simple groups which arise as automorphisms of the 
24-dimensional integral lattice of Leech [42] stimulated a great deal of interest 
in the study of integral lattices and their automorphism groups. 
Unfortunately no other groups have been discovered in this way. This effort 
gave considerable insight into integral representations of groups, but apart 
from one important paper of Feit [54], it has had little impact on the 
development of simple group theory. 

In recent years, as the full outline of the proof has become more sharply 
delineated, investigations of simple groups have become increasingly focused. 
To crystalize these developments, I gave a short series of lectures at the 
University of Chicago in June, 1972 in which I presented a detailed sixteen 
step program for carrying out the classification of simple groups. 

I am including the manuscript of these talks as an appendix to this article, 
for it is very instructive. Indeed, it shows the extent to which it was already 
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possible by 1972 to predict the final shape of the classification theorem. New 
insights have certainly forced modifications of individual steps in the 
program- for example, the key role of "tightly embedded" subgroups was 
missing as was the then undeveloped theory of "pushing up", and the role of 
the odd prime 3 for groups of characteristic 2 type was overemphasized. 
Likewise I did not then appreciate the far reaching impact that Fischer's 
approach would have on simple group theory. Nevertheless the overall 
program has remained essentially intact. In the last few years, as the momen­
tum has gathered, the progress towards its full realization has been very rapid, 
spurred on by the astonishing sequence of fundamental results of 
Aschbacher, which have sharply advanced the time table for the ultimate 
determination of all simple groups. 

The assertion that the classification is nearly complete is really a prediction 
that the presently available techniques will be sufficient to deal with the 
problems still outstanding. In its support, we cite the fact that, with one or 
two exceptions, all open questions are open because no one has yet examined 
them and not because they involve some intrinsic difficulty. Moreover, at 
least on the surface, each of these appears to be similar to other problems 
which have already been successfully attacked. The major single exception 
concerns the classification of so-called groups of "Ree type" which has been 
intensively investigated by Thompson [202] and is still not completely resol­
ved after more than ten years (see Chapter III). 

Implicit in this prediction is a belief that any as yet undiscovered simple 
groups will possess internal structures not unlike those of the known simple 
groups. This will be necessary if the already developed theory of ^-groups is 
to remain intact if and when any such new groups are added to the list of 
simple jST-groups, 

The principal aim of this article is to present a detailed summary of the 
proof of the classification of simple groups, to the extent that this has been 
accomplished at the present time. 

This is an appropriate moment to add a cautionary word about the 
meaning of "proof in the present context; for it seems beyond human 
capacity to present a closely reasoned several hundred page argument with 
absolute accuracy, I am not speaking of the inevitable typographical errors, 
or the overall conceptual basis for the proof, but of "local" arguments that 
are not quite right-a misstatement, a gap, what have you. They can almost 
always be patched up on the spot, but the existence of such "temporary" 
errors is disconcerting to say the least. Indeed, they raise the following basic 
question: If the arguments are often ad hoc to begin with, how can one 
guarantee that the "sieve" has not let slip a configuration which leads to yet 
another simple group? Unfortunately, there are no guarantees-one must live 
with this reality. However, there is a prevalent feeling that, with so many 
individuals working on simple groups over the past fifteen years, and often 
from such different perspectives, every significant configuration will loom 
into view sufficiently often and so cannot remain unnoticed for long. On the 
other hand, it clearly indicates the strong need for continual reexamination of 
the existing "proofs". This will be especially true on that day when the final 
classification of simple groups is announced and the exodus, already begun, 
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to more fertile lands takes place. Some of the faithful must remain behind to 
improve the "text**. This will be one of the first major tasks of the "post 
classification" era. 

3. Why the extreme length? There exists an often expressed feeling in the 
general mathematical community that the present approach to the classi­
fication of simple groups must be the wrong one-no single theorem can 
possibly require a 5,000 page proof! Since most of the known simple groups 
are finite analogues of Lie groups, one should be able to build a geometry 
from suitable internal properties of a simple group G and then determine G 
from its action on this geometry. This is the most frequently suggested 
alternate approach. If successful, it would reduce the classification to the 
presumably more tractable problem of classifying the corresponding 
geometries. After all, this is exactly how the classification of complex simple 
Lie algebras proceeds (and with it the classification of simple Lie groups): the 
entire problem is reduced to the analysis of connected "Dynkin diagrams"; 
equivalently to the solution of a certain question about sets of vectors in 
complex w-space. Just as there are five exceptional complex simple Lie 
algebras and Lie groups~G2, F4, £6, E7, £8~so one could vizualize certain 
exceptional geometries arising from the finite simple groups, each of which 
would lead to one of the sporadic groups. 

The suggestion is so plausible, why has it not been possible to proceed 
along such lines to study simple groups? Let me attempt an answer. Just as in 
the special problem of determining all simple three prime-groups, discussed 
above, so the general classification theorem reduces at once to establishing 
the following assertion: 

If G is a finite simple group each of whose proper subgroups 
is a iC-group, then G itself is a if-group. 

Let G* be a completely arbitrary AT-group, as far from being simple as you 
can conceive. Is there any a priori reason why our simple group G above 
should not have the identical lattice of proper subgroups as G*? If this is so, 
then the internal structure of G bears no resemblance to that of any simple 
group, but rather is equivalent to that of an arbitrary ]£-group. Hence if we 
attempted to construct a geometry directly out of G, the resulting geometry 
would be identical to one constructed out of G*. Thus, if the suggested 
approach were to be followed at the very outset, it would necessarily generate 
as many distinct geometries as there are finite AT-groups. The classification of 
such geometries would appear to be a hopeless task. 

The implication of this discussion is the following: One cannot expect a 
geometric approach to be effective until after one uses the simplicity of G to 
show that its internal structure is, in fact, much more restricted than that of 
the general AT-group GMndeed, until one shows that its internal structure 
"resembles" that of a simple AT-group. It is precisely this resemblance which 
local group-theoretic analysis has as its primary objective. Once G has been 
shown to resemble internally a simple üC-group G*, the proof that G is 
actually isomorphic to G* can be regarded as involving the construction of a 
"geometry*9. This chapter of finite group theory, which deals with so-called 
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"recognition" theorems, is very closely linked to the Lie theory. Thus it is not 
that finite group-theorists have ignored the geometric approach to the clas­
sification of simple groups, but rather that this phase occurs at a late stage in 
the analysis. 

This situation has no analogue in the classification of complex simple Lie 
algebras since there the nondegeneracy of the Killing form gives a sharp 
criterion for semisimplicity, enabling one to reduce the classification of 
semisimple and simple Lie algebras to the above-mentioned geometric prob­
lem. However, there is some evidence that the as yet uncompleted classi­
fication of simple Lie algebras over fields of characteristic p ^ 0 may very 
well involve an analogue of local group-theoretic analysis. 

If, as we are suggesting, the local analytic approach to the determination of 
the simple groups is the only available one, then the question of the length of 
the classification proof reduces to the amount of work involved in settling the 
following two problems: 

(A) Proving that G resembles internally a simple JÇ-group G*. 
(B) Proving that whenever G does resemble such a group G*9 then G must 

be isomorphic to G*. 
Clearly answers to (A) and (B) in turn involve the following two subsidary 

questions: 
I. How uniform are the internal structures of simple jK-groups? In other 

words, how many distinct "types" of simple ^-groups must one consider? 
II. For those groups G which will end up isomorphic to a simple #-group 

G* of a given type, can the analysis under (A) and (B), respectively, be 
carried out uniformly for each of the given types? 

At the minimum it seems necessary to consider the following families of 
^-groups to be of distinct types (the known simple groups will be described in 
detail in Chapter II). 

1. The groups of prime order, 
2. The alternating groups, 
3. The groups of Lie type over GF(q\ q odd, 
4. The groups of Lie type over GF{q\ q even, 
5. The 26 sporadic groups. 
The distinction of 3 and 4 is an essential one, for in a group G* of Lie type 

defined over GF(q), an involution of G* corresponds to a semisimple element 
or a unipotent element according as q is odd or even. Correspondingly the 
centralizers of these involutions have totally distinct structures (see §5). 

Moreover, in treating many situations, one must further subdivide the 
groups of Lie types as follows: 

a. The classical groups: linear, symplectic, orthogonal, 
b. The exceptional groups: G2, F4, E6, El9 E& 
c. The "algebraic twisted" groups: unitary groups, triality D4, twisted E6 

(the finite analogues of the orthogonal groups 02~(C) will also be included 
under c), 

d. The "nonalgebraic twisted" groups: Suzuki groups, Ree groups of 
characteristic 3, Ree groups of characteristic 2. 

Although some collections of sporadic groups arise out of a single context 
(the first two Mathieu groups Afu, Ml2; the remaining three Mathieu groups 
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A/22» ^23> Af24; Janko's second and third groups J2, J^ the three Conway 
groups .1, .2, .3; the first three Fischer groups M (22), M (23), M (24)'; and the 
last two Fischer groups, the so-called "baby monster" F2 and "monster" Fx), 
from the point of view of their classification by internal properties, the 26 
sporadic groups are best considered to be of distinct types. 

The above subdivision gives rise to roughly 40 distinct types of simple 
A'-groups (over half representing individual groups). This means that at 
various stages in carrying through the analysis of (A) and (B) above, up to 40 
distinct cases may have to be treated. 

In addition, there are often many other cases which must be considered, 
unrelated to any known simple group. For example, the final configuration of 
the odd order paper is as "tight" as any in which G has an internal structure 
resembling a simple A -̂group G*. Thus it is not so far-fetched to say in this 
case that the internal structure of G resembles that of a nonexistent simple 
group. The point is that the analysis one is often forced to take to eliminate a 
particular configuration is in spirit not unlike that which one carries out in 
"real" cases, in showing either that G internally resembles some simple 
A-group G*, or, at a later stage, that G is isomorphic to G*. 

As already indicated, special methods are required for investigating small 
simple groups. But beyond that, the analysis in these cases is extremely 
complicated and each specific problem involves its own special configurations 
and its own, ad hoc, arguments. For example, the determination of the simple 
groups with quasi-dihedral or wreathed Sylow 2-subgroups runs to over 300 
pages. Yet, apart from the actual result itself and a few general ideas of the 
proof, no specific proposition or lemma has ever been utilized in any other 
classification problem. 

As a consequence, it is very likely that as much as half of the entire proof of 
the ultimate classification thoerem will be devoted to small groups. This 
analysis, which is very nearly complete at the present time, already covers 
nearly 3,000 journal pages plus a considerable amount of computer time (to 
prove the existence and uniqueness of certain sporadic groups). Given all the 
new methods recently developed, one can certainly expect some simpli­
fication in the already existing proofs of earlier results, However, because of 
the decidedly individual nature of these arguments, it would appear to be 
very difficult, if not impossible, to develop a uniform approach that would 
condense them by a factor of, say, five. 

Here then is an "insider's" explanation of the enormous length of the 
classification proof. 

4. Some standard terminology and results. I should like to conclude this 
introduction by making more precise the major subdivision of the study of 
simple groups as it has evolved to the present time. To do so requires a 
considerable amount of standard notation and terminology. We shall there­
fore review this now together with some equally standard basic results which 
we shall need throughout the article. I apologize for the length of the list, but 
it is impossible to discuss anything meaningfully without a reasonable voca­
bulary. The unfamiliar reader will probably do best to assimilate this material 
as it comes up in the text. 
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We let X be an arbitrary finite group. 
7 < X means Y is a subgroup of X. 
Y < X means F is a proper subgroup of X; i.e., Y < X and Y ^ X. 
Y <i X means Y is a normal subgroup of X; i.e., 7 is invariant under 

conjugation by all elements of X (equivalently, under all inner 
automorphisms of X). 

Y <3 <3 X means Y is a subnormal subgroup of X; i.e., 1" = ^ <1 72 <3 F3 

<3 • • • <3 Yn = X for suitable subgroups Yt of JT9 1 < j < «. 
7 char X means y is a characteristic subgroup of X; ie. 7 is invariant 

under all automorphisms of X. 
7 is a section of A" means 7 = ^t/J5, where A9B < X and B <SA, 
Y is involved in X means 7 is isomorphic to a section of X. 
Y covers a section A/B of X means Y < X and >4 = 5 ( 7 n >4). 
| S | denotes the cardinality of the set S. In particular, | Y\ is the order of any 

subset 7 of X. 
\X : Y\ denotes the index of the subgroup 7 of X; i.e. (^1/171. 
< 7> denotes the unique smallest subgroup of X containing the subset 7 of 

X. < 7> is the intersection of all subgroups of X containing 7. If < 7> = X, Y 
is said to generate X or to be a set of generators of X 

CX{Y) denotes the centraliser in X of the subset 7 of X; i.e., the set of all 
elements of X which commute elementwise with 7. 

NX{Y) denotes the normalizer in X of the subgroup 7 of X; i.e., the unique 
largest subgroup of X containing 7 as a normal subgroup. 

<7*> denotes the normal closure in X of the subset 7 of X; i.e.,the 
subgroup generated by all conjugates of 7 in X, 

Z(X) denotes the center of X. 
Sylp(X) denotes the set of Sylow^-subgroups of X for any prime/?. 
Sol(X) denotes the unique largest normal solvable subgroup of X, 
F(X) denotes the Fitting subgroup of X, the unique largest normal nilpo­

tent subgroup of X. F(X) is the join of all normal nilpotent subgroups of X. 
<t>(X) denotes the Frattini subgroup of X, which is the intersection of the 

maximal subgroups of X. 
Aut(T) denotes the automorphism group of X, 
1 denotes the identity subgroup and element of X as well as the trivial 

group with one element. 
X acts on the group 7 means that there is a homomorphism of X into 

Aut( 7). In particular, if 7 V X, then X acts on 7 by conjugation. 
AB = {ab\a E A, b E B} for any subsets A9 B of X. The notation extends 

in a natural way to any finite number of subsets of X. 
A B = {b~ xab\a EA9b E B] for any subsets A, B of X. 
[a, b] = a~lb~lab = a~xab for any elements a9b E X. 
[A9 B] = <\a9 b]\a E A9 b E B) for any subgroups A9 B of X. 
[a9 b9 c] = [[a9 b\ c] for any elements a9b9c E X. Inductively, one defines 

commutators of arbitrary length; and likewise for sequences of subgroups. 
X' = [X9 X] denotes the commutator subgroup of X. If X = X\ X is 

perfect. 
Zn denotes a cyclic subgroup of order n. 
QT denotes a (generalized) quaternion group of order 2W, n > 3. 
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D2n denotes a dihedral group of order 2w, n > 2. 
An abelian /7-group X is homocyclic if it is the direct product of cyclic 

subgroups of the same order pm. If m = 1, X is called elementary. We write 
Epn for an elementary abelian ^-group of rank n. Note that Ep» can be 
identified with an /i-dimensional vector space over the prime field GF(p). 
Note also that, for example, E% and Z2X Z2X Z2 are isomorphic groups, 

A group isomorphic to Z2 X Z2 is called a four group. 
2„ denotes the symmetric group of all permutations of the set 

{ 1 , 2 , . . , , » } . 
X is a central product of subgroups A, B if X = AB and [A,B]= 1. The 

product is direct if, in addition, A f\ B » 1. In the latter case, we write 
X = A X 5 . On the other hand, if A n £ ^ 1 (note that ,4 n 5 < Z(^) n 
Z(B))9 we write X = A * 5 . These concepts and notation extend in a natural 
way to finite products of subgroups of X. 

If A is a group and B a subgroup of Aut(i4), the semidirect product or split 
extension of A by i? is a group of the form v4*J3* with ^4* ̂  A, B* s 5, 
^ * n i * » U * ^ .4*5*, and the action of B* onA* by conjugation being 
determined by the action of B as a group of automorphisms of A. One 
identifies J * with A9 B* with 5 and writes A * B (or simply AB) for the 
semidirect product. 

To adjoin an automorphism ƒ? to a group A or to extend A by /? means 
simply to form the group A*(fiy. 

The wreath product of a group 4̂ by a group J?, denoted by A J B, although 
conceptually clear, is cumbersome to express. One forms the direct product 
A* of n = \B\ copies of A, indexed from 1 to n9 and identifies B in a natural 
way with a subgroup of 2W.8 The permutation action of B on the set 
{1, 2 , . . . , /i} is then used to induce an automorphism action of B on A*: 
namely, for (al9 a2,..., aj E 4*, a,r e A, I < i < «, and 6 E JB, one sets 

(a„ a 2 , . . . , a„)d = (a;, a2,. . . , <) , where a/ = a, if i = / , 1 < i J < «. 

0) 
Finally, using this action, one defines the wreath product A/B to be the 
semidirect product A * • B, 

For example, if \B\ — 2, then A/B consists of the direct product of two 
copies of A, interchanged under conjugation by the involution of B. In this 
terminology, our earlier definition of a wreathed 2-group is just Z2mfz2 for 
some integer m > 2. 

If 7T is a set of primes, m' denotes the complementary set of primes. 
0„(X) denotes the unique largest normal subgroup of X whose order is 

divisible only by primes in the set ir. It is the join of all normal subgroups of 
X with this property. 

Ov(X) denotes the unique smallest normal subgroup Y of X such that 
X/ Y has order divisible only by primes in TT. It is the intersection of all 

8If X = {xu x2,..., xn) is a group, then for x e X, the map <j>x: J^H»*,*, 1 < / < n, is a 
permutation of the set {*,, x2,...» xn). If we identify this set with { 1 , 2 , . . . , n}, then the map 
0: xt-+<t>x for all x G X9 is an isomorphism of X with a subgroup of 2„, (This is Cayley's 
theorem.) Using 0, one can identify X with a subgroup of 2rt. 
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normal subgroups of X such that the corresponding factor group has this 
property. 

Op(X) is thep'-core of X, the unique largest normal subgroup of X of order 
relatively prime to p,p any prime. 

O (X) = 02>(X) is the core of X, the unique largest normal subgroup of X 
of odd order. 

X has a normal p-complement provided X/Op>(X) is a/?-group (whence 
X = Op(X)P for any P e Sylp(X)). 

If Op (X) = 1, X is p-constrained, p any prime, provided (^((^(JF)) < 
Op(X). 

More generally, X is ^-constrained if X/Op(X) is. (Note that 
Op{X/Op(X)) - 1.) 

The following additional terminology, although not so standard, will be 
very useful. 

Sj, (X) denotes the set of elements of X of order p,p a prime. 
S(X) - i2{X). 
y E $ (X) is p-central if y lies in the center of some Sylow /?-subgroup 

of*. 
Further notation will be introduced as we go along. 
We conclude this section with some elementary terminology and facts 

about permutation groups, generators and relations, and j9-groups. 
2(fi) denotes the symmetric group of all permutations of the (finite) set Q. 

Thus 2„ = 2(B) for Q = { 1 , 2 , . . . , n). 
A (fi) (resp. An) denotes the alternating subgroup of even permutations of 

2(£2)(resp.2„). 
X is a permutation group on Q if X < 2(B). |Q| is the degree of X. 
X is k-fold transitive on £2 if any two ordered A>tuples of elements of £2 can 

be transformed into each other by elements of X. One writes transitive, doubly 
transitive•, f/7/?/>> transitive, etc., for 1-fold, 2-fold, 3-fold transitive, etc. Clearly 
A>fold transitivity implies &'-fold transitivity for all k' < k. 

If X < 2(Q), then for any A < 0, the A-point stabilizer XA of X is the 
subset of permutations of X fixing each point of A. It is clearly a subgroup of 
X. If X is &-fold transitive, then for any subsets A„ A2 of fi of cardinality k, 
XA] and XAi are conjugate subgroups of X. Because of this, we speak simply 
of the k-point stabilizer of X (when X is Mold transitive). It is determined up 
to conjugacy. 

If X < 2(fi) is transitive on Q, it is immediate that the 1-point stabilizer has 
index |Q| in <Y. 

Z < 2(fi) is primitive if X is transitive on fi and its 1-point stabilizer is a 
maximal subgroup of X. 

X < 2(fi!) has (permutation) rank r if X is transitive on ÏÏ and its 1-point 
stabilizer has exactly r orbits on Q. Thus X is doubly transitive on Q if and 
only if X has rank 2. 

A homomorphism <l>of X into 2(B) is called & permutation representation of 
X on fi. |Q| is the degree of <£. <£> is &-/o/d transitive if >̂(X) is A>fold transitive 
onfi. 

If ^ < 2(fi) is transitive on fi, it is immediate that the 1-point stabilizer has 
index |Q| in X. Thus X/kex <j> < 2(0). 
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Two permutation representations <ƒ> and <j>' of X on sets £2, Q' are equivalent 
if there exists a one-one mapping 9 of Q on Q' such that </>' = 6 " {<t>0. 

For Y < X, let flr = { Yl9 Y29..., Yn) be the set of right cosets of Y in X. 
For JC E X, the mapping <J>/. Y)H» Ytx9 1 < i' < n, is a permutation of S2y and 
the mapping <£y: xf~> x̂ for x E X defines a transitive permutation represen­
tation of A" on By having Y as a 1-point stabilizer. Moreover, ker <J>y = 

Similarly let 2'Y = { 7{, Y'l9..., 1̂ '} be the set of distinct conjugates of Y 
in X. Defining <j>'x: Y§h* Yf, 1 < i < w, for x E X and <£r: Jch»^£ for x 6 l , 
<J/r is a transitive permutation representation of X on Q'y- Moreover, <$>Y is 
equivalent to <t>Nx(Yy I*1 particular, <J>'y is equivalent to <j>Y if 7 = iV^C^)-

The significance of these particular permutation representations can be 
seen from the following elementary result. 

PROPOSITION 1. Every transitive permutation representation of a group X is 
equivalent to the transitive permutation representation on the right cosets of 
some subgroup ofX. 

Finally one has the following equally basic fact. 

PROPOSITION 2. The permutation representation of a group X on the right 
cosets of Y < X is doubly transitive if and only if X — Y U YxY for any 
xEX- Y. 

Now for generators and relations. If y is a set of generators of X, a word in 
F is a finite formal product abc . . . of elements a9 b9 c, . . . of Y. A word W 
is called a relator if it represents the identity element of X. The statement 
W = 1 is called a relation. If Pi9 1 < i < «, are relators (in 7), a word Win Y 
is derivable from the Pi9 if the following operations, applied a finite number of 
times, transform W into the empty word: 

(a) Insertion of some P( or Pf~x between any two symbols 
of W or before W or after W; 

(b) Deletion of some JP, or Pf"l if it forms a block of 
consecutive symbols of W. (2) 

Clearly in such a case W itself is also a relator. 
If every relator (in Y) is derivable from the relators Pi9 1 < i < n9 together 

with the trivial relators {aa~~l\a E Y}9 then the Pt are called a complete set of 
defining relators and the equalities P, = 1 a complete set of defining relations 
for X. The set of generators Y together with a complete set of defining 
relators or relations is called a, presentation of X. 

The importance of presentations is that they "characterize" the group X. 
Indeed, if X9 X* are groups with presentations (Y9 {Pi9 1 < i < n}) and 
(Y*9 {Pj*9 1 < i < «*}) and if there exists a one-one mapping 0 from Y to Y* 
(whence 1̂ 1 = 1 Y*\) which induces in the obvious way a one-one map from 
the set {Pi9 1 < i < n) onto the set {P?9 1 < i < w*} (whence n = «*), then 
the natural extension of 0 to the set of all words in Y onto all words in Y* 
induces an isomorphism of X on X*. 

Finally some elementary facts about /^-groups. First, in any group X9 the 



60 DANIEL GORENSTEIN 

chain of subgroups X9 X\ (XJ9... is called the derived series of X; and 
the chain X9 X', \X', X\ [[Xf

9 X\ X]9... is called the lower central series of 
X. By definition, X is solvable if and only if its derived series terminates in the 
identity; and X is nilpotent if and only if its lower central series terminates in 
the identity. If X is nilpotent, it is necessarily solvable. It can also be easily 
shown that X is nilpotent if and only if it is the direct product of its Sylow 
subgroups. In particular, X is nilpotent if X is of prime power order. 

If X is nilpotent, the class of X is 1 less than the number of distinct terms in 
its lower central series. Thus an abelian group is nilpotent of class 1. 

If X is a /?-group, Qê(X) denotes the subgroup of X generated by all 
elements of X of order at most/?'. Clearly üé(X) is characteristic in X, 

If pn is the maximum order of an element of X9 then X has exponent pn. 
Thus if X is abelian of exponent/?, then X is elementary. 

The following properties of /?-groups are very old. 

PROPOSITION 3. IfX is a p-group9 then 
(i) X/<j>(X) is elementary abelian. {In particular, X' < <t>(X)) 
(ii) If a is an automorphism of X of order prime to p and a acts trivially on 

X/<(>(X)9 then a is the identity automorphism. 

A /?-group X is special if either X is elementary abelian or X' = <j>(X) -
Z(X) is elementary. In particular, X has class 1 or 2, Moreover, X is called 
extra-special if X is nonabelian special and \X'\ = /?. 

Extra-special /?-groups are important in simple group theory, in large 
measure because of the following result of P. Hall [84, Theorem 5.4.9]. 

PROPOSITION 4. If a p-group X has no noncyclic character abelian subgroups, 
then 

X = A*B9 

where A is extra-special (or A = 1) and either B is cyclic or p = 2 and B is 
dihedral, quasi-dihedral, or quaternion. 

The structure of extra-special/?-groups can be precisely determined (cf. [84, 
§5.5]). 

PROPOSITION S.IfX is an extra-special p-group, then 

X = Ax * A2 * • • • * An, 

where each Ai is extra-special of orderp3. 

The integer n is called the width of X, For a given /?, there are two 
nonisomorphic extra-special/?-groups of order/?3. If/? is odd, one of these is 
of exponent/? and the other has a maximal cyclic subgroup of order/?2; while 
if /? = 2, one is quaternion of order 8 and the other dihedral of order 8, 
Moreover, it is easily checked that Q% * Q% s D% * D%. 

We introduce the symbol (Q%)k (resp. (D%)k) to denote the extra-special 
2-group of width k9 each of whose factors is Q% (resp. Z)8). In view of this 
discussion, one can easily prove 

PROPOSITION 6. If X is an extra-special 2-group of width n9 then X = (QJ* 
or (QsT~l * D& Moreover, the latter two groups are not isomorphic. 
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Finally a /?-group X with no noncyclic characteristic abelian subgroups is 
said to be of symplectic type. 

The following considerations will explain this choice of terminology. 
Suppose X is extra-special and set Z(X) » <z>, X = X/Z(X). Thus X is a 
vector space over GF{p) and \z\ = p. We define a map 

p:XXXH>GF(p). (3) 

For x, y E X, let x, y be representatives of 3c, ƒ in X. Then 

[x,y] = *' (4) 

for some /, depending on Jc, ƒ, but not on the choice of the representatives x, 
y. Since |z| = /?, we can view j as an element of GF(p). We set pix,y) = i. It 
is now easily verified that p is a nondegenerate alternating bilinear form on X 
Since the symplectic group on a vector space is defined to be the group of 
linear transformations preserving a nondegenerate alternating bilinear form, 
this suggests the term "symplectic" for ̂ -groups of this general form. 

One of the principal procedures of local analysis is to investigate the action 
of an (elementary) abelian ^-subgroup A of a simple group G on ^-invariant 
subgroups y of G for suitable primes/?. The analysis depends critically on the 
generation (or nongeneration) of Y by the centralizers of various subgroups 
of A. The following basic result is used repeatedly [84, Theorem 5.3.16 and 
6.2.4], 

PROPOSITION 7. If the noncyclic elementary abelian p-group A acts on the 
P*-group Y,p a prime, then 

Y-<Cr(B)\B<A9\A :B\<p). 

In particular, 

Y*<Cy(a)\aEA*y. 

The so-called "Frattini argument", which is an immediate consequence of 
Sylow's theorem is also a fundamental tool of local analysis. 

PROPOSITION $.IfY«QX and P E Sylp(Y)for some prime p% then 

X=YNX(P). 

Finally some notational conventions. Throughout the paper, the letter G 
will be reserved for arbitrary simple groups and more generally, for any group 
which is to be investigated by local analytic methods. For x E $p(G\p any 
prime, we shall for simplicity write Cx for CG(x). However, we shall not use 
this contraction in any other connection. 

We shall use the letter G* for ^-groups, and usually the letter X will 
denote an arbitrary finite group. We also adopt the bar convention for 
homomorphic images X of X~i.e., Y will denote the image in I of any 
subgroup or subset Y of X. 

5. The shape of the proof. With the aid of certain of the terms and ideas 
discussed in the preceding section, we can now describe the breakup of the 
analysis of simple groups. We first define some key general concepts that 
were first introduced by John Walter and me in [96] and [97]. An improved 
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approach to some of these ideas was given by Bender in [20]. Again let X be 
an arbitrary group. 

DEFINITION 1. X is quasisimple if X is perfect and X/Z(X) is simple. 
For example, if X = SX(2, q), q odd, q > 3, then if is quasisimple, but not 

simple, Z(X) being of order 2 and generated by (~ô _?). (S£(2, 3) is solvable 
and hence is not perfect.) 

If X is quasisimple, one speaks of X as being a covering group of X/Z(X). 
At the present time (with the exception of at most one sporadic group), the 
possible covering groups of every simple J^-group have been computed. It was 
shown by Schur [164] that a simple (and, more generally, perfect) group X 
possesses a "universal" covering group X with^ the property that every 
covering group of X is a homomorphic image of X. Z{X) is called the Schur 
multiplier of X. Thus the problem of determining the possible covering groups 
of X reduces to computing the center of X. 

For example, An has Z2 as its Schur multiplier except f or n = 6 or 7, in 
which cases the Schur multiplier is cyclic of order 6. Thus A6 and A7 have 
three nontrivial covering groups, whose centers have orders 2, 3, and 6, 
respectively. 

DEFINITION 2. X is semisimple if either A" is a central product of quasisimple 
groups or X = 1. 

If X T^ 1 is semisimple, it is easily shown that the quasisimple factors of X 
are precisely the set of normal subgroups of X which are minimal subject to 
being nonsolvable and, in particular, are uniquely determined by X. They are 
called the components of X. (One includes the trivial group in the definition 
solely for convenience.) 

The following is easily proved. 

PROPOSITION 3. A finite group X possesses a unique maximal normal semi-
simple subgroup. It is called the layer ofX and is denoted by L(X). 

It is immediate that L(X) centralizes Sol(X) and hence F(X). 
The next concept, due to Bender, is fundamental and has its origin in some 

basic properties of solvable groups. 

PROPOSITION 4.I/X is a solvable group, then 

CX(F(X)) < F(X). 

In particular, X is p-constrained for every prime p. 

That the second assertion follows from the first is immediate from the 
definition of ̂ -constraint and the fact that F(X) = Op(X) if Op(X) = 1. 

It is this property of solvable groups which Bender generalized. 
DEFINITION 5. F*(X) = L(X)F(X) is called the generalized Fitting 

subgroup of X. 
Justification for this terminology is given by the following general result of 

Bender (the special case in which Op(X) = 1 is proved in [96] and [97]). 

PROPOSITION 6. For any group X, CX(F*(X)) < F*(X). Moreover, if F(X) 
< Yxi X and CX(Y) < Y, then F*(X) < Y. 

Thus F*(X) is the unique normal subgroup of X which is minimal subject 
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to containing F(X) and to containing its own centralizer in X. For example, 
if F* = F*(X) is simple, the proposition shows that X < Aut(F*). More 
generally if F* is quasisimple, it yields that X/Z(F*) < Aut(F* / Z (F*)). 
Likewise, as an immediate corollary of the proposition, we have 

COROLLARY 7. For any group X, CX(F(X)) < F(X) if and only if L{X) = 
1. In particular', X is p-constrained for any prime p if and only if L(X / Op(X)) 
= 1. 

These concepts enable us to describe in group-theoretic terms the general 
structure of the centralizers of involutions in simple ^-groups. Ree [162], 
Iwahori [128], and Burgoyne and Williamson [37], [38] have described these 
centralizers in the groups of Lie type of odd characteristic (the third pair of 
authors covering more generally the centralizers of "semisimple" elements in 
groups of Lie type of arbitrary characteristic). A detailed statement of their 
results will be given in Chapter IV. On the other hand, the general shape of 
such centralizers in groups of Lie type of characteristic 2 follows from a 
theorem of Borel and Tits [26] which gives the basic general structure of 
/j-local subgroups in any group of Lie type of characteristic p. 

We list here only the following general properties. 

PROPOSITION 8. If G* is of Lie type of characteristic p, t* E S (G*), and we 
set C* = CG*(t*% then we have 

(i) Ifp is odd, then C*/L(C*) is solvable. In particular, either L(C*) i^Xor 
C* is solvable. 

(ii) Ifp = 2, then F*(C*) = 02(C*) (equivalently, C* is 2-constrained with 
trivial core). 

It will be instructive for the reader to compute C* when G* = SL(m, q) in 
the following two cases: 

q odd and /* = 

- 1 

- 1 

with k entries - 1 , k even. (1) 

q even and /* = 

0 1 

0 

1 0 0 1 

(2) 
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In the first case, except for special values of q and k, 

L{C*) « SL(k9 q) X SL(m - k, q). (3) 

In the second case, F*(C*) is a special 2-group of order q2n+l with 
(elementary) center of order q. 

The proposition shows a fundamental dichotomy in the structure of the 
centralizers of involutions in groups of Lie type of characteristic/? according 
as /? is odd or even. For odd /?, their layers are always nontrivial (except in 
some small degenerate cases); while for/? = 2, these layers are always trivial 
and, in fact, their generalized Fitting subgroups are always 2-groups. 

If G* = An and t* E 5 (G*) is a product of k disjoint transpositions, one 
easily checks that £(C*) is isomorphic to the alternating group on the 
remaining n — 2k letters provided n ~ 2k > 5; while in the contrary case, 
L(C*) = 1. In particular, if n > 9 and /* is a "short" involution, then 
L(C*) ¥* 1; while if /* is a "long" involution, then L(C*) = I. 

Likewise in the sporadic groups, the centralizer of some involutions have 
nontrivial layers and of others have trivial layers. 

This dichotomy in the layers of centralizers of involutions is basic for the 
study of simple groups G. However, it is not L(CG(t)), t 6 5(G), which is 
initially important, but rather L(CG(t)/0(CG(t))). In fact, as we shall see 
later, a central problem that must be resolved is the precise relationship 
between these two layers, 

In view of the preceding discussion, it is therefore natural to divide all 
simple groups into two categories, as follows; 

DEFINITION 9. A group X is said to be of component type if 
L{Cx{t))/0(Cx(t)) T^ 1 for some involution / of X; and is said to be of 
noncomponent type if L(Cx(t))/ O (Cx(t)) = 1 for every involution / of X. 

We would next like to make more exact the term "small" simple group, 
which we have introduced here solely for its suggestive qualities. The more 
precise notion is that of "connectedness". 

DEFINITION 10. A group X is said to be connected for the prime p provided 
for any two noncyclic elementary abelian/?-subgroups A, B of X9 there exists 
a sequence A = Al9 A2,..., An = B of noncyclic elementary abelian /?-
subgroups^ of X, 1 < i < n, such that^- centralizes At+l9 1 < / < w — 1. 

If p = 2, one says simply that X is connected. 
The term "connectedness" is a natural one, for if we form a graph T whose 

vertices are the subgroups of X isomorphic to Zp X Zp and connect two 
vertices of T by an edge if and only if the corresponding subgroups centralize 
each other, then X will be connected (for/?) if and only if the resulting graph 
T is connected in the usual sense. 

An essential step in the classification of simple groups is the determination 
of all nonconnected groups (for the prime 2). Connectedness is a basic 
property of groups; in its presence, it is possible to carry out certain general 
lines of argument, which have powerful consequences for the structure of the 
cores of centralizers of involutions in simple groups. We shall give an 
illustration shortly. 

Unfortunately, nonconnectedness is a difficult problem to treat directly 
because the condition is not inductive to sections. In practice, the problem 
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has been treated in two parts, which together constitute two of the major 
achievements of simple group theory. The division is based upon the fol­
lowing facts. A simple group G may be connected, but a Sylow 2-subgroup of G 
may be nonconnected. Alternately, G may be nonconnected, but have a 
connected Sylow 2-subgroup. Janko's second and third groups J2, «̂3 a r e 

examples of the first kind (as shown by Goldschmidt); while the groups 
L2(2

n) are examples of the second. Thus the problem of nonconnectedness 
has been divided into the following two parts: 

A. Determine all nonconnected simple groups having a connected Sylow 
2-subgroup. 

B. Determine all simple groups having a nonconnected Sylow 2-subgroup, 

We should next like to reformulate these problems in the terms in which 
they have actually been studied. A is directly connected with the notion of a 
proper 2-generated core, introduced in [95]. 

DEFINITION 11. Let G be a group,/? a prime, P a Sylow/7-subgroup of G 
and k a positive integer with k < mp(P). Define 

YPtk{G) = <NG(Q)\Q < P^iQ) > *>. 

TPk(G) is called the k-generated p-core of G and is determined up to 
conjugacy by P. lip = 2, we speak of the k-generated core. 

PROPOSITION 12. Let G be a group having a connected Sylow 2-subgroup. 
Then G is disconnected if and only if the 2-generated core of G is a proper 
subgroup. 

Indeed, let TQ be a connected component of the associated graph T of G, let 
T be a vertex of T0 and S a Sylow 2-subgroup of G containing the four group 
T. Every element g of G induces by conjugation a permutation of T and the 
image of T0 under g is the connected component of T containing T8. We 
denote it by T$. Clearly G is connected if and only if G leaves T0 invariant, 
Likewise T§ » F0if and only if T0 n T§ ^ 0 , 

Set H » TS2(G). We shall argue that H acts on T0 and that every vertex of 
T0 is a four subgroup of H9 which will immediately yield that H < G if and 
only if T0 < T and hence if and only if G is disconnected. 

Note that as S is assumed to be connected, its subgraph is connected, so 
the vertices of TQ include every four subgroup of S. Now let R < S with 
m2(R) > 2 and let U be any four subgroup of R. Then for x E NG(R)f U 
and Ux (< R) are two four subgroups of S. Hence U and Ux E T0. But as 
U G IV Ux G Tg, so Ux E T0 n Tg, forcing T0 » TJ. Thus x leaves T0 

invariant, so NG(R) leaves T0 invariant. We conclude that H = TSt2(G) = 
(NG(R)\R < S9 m2(R) > 2> leaves T0 invariant. 

Now let V be an arbitrary vertex of T0. Let T = Tu T2f..., TH = V be a 
chain of vertices of TQ connecting T to V. We have that T = Tx < H. If 
7; < H, then NG(Tt) < H by definition of H, so T^x < H as 7)+, central­
izes 7}. We thus conclude inductively that V < H. This establishes the 
proposition. 

Aschbacher has determined all finite groups having a proper 2-generated 
core [6], generalizing Bender's fundamental classification of groups which 
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possess a "strongly embedded" subgroup (equivalently which have a proper 
1-generated core) [19]. These results will be discussed in Chapter IV. 

On the other hand, a solution of B has been obtained as a corollary of a 
more general theorem classifying all groups of "sectional 2-rank at most 4". 
Because of this, groups of sectional 2-rank at most 4 are considered to be part 
of the category of "small" simple groups. To explain this concept, we 
introduce some general terminology. 

DEFINITION 13. Let X be a /?-group for some prime p. The rank of X, 
denoted by m(X) (not to be confused with the (permutation) rank of a 
permutation group), is the maximum rank (in the ordinary sense) of an 
abelian subgroup of X. (An abelian /?-group is always a direct product of 
cyclic groups, the number of factors being independent of the particular 
decomposition.) The normal rank of X, denoted by n(X), is the maximum 
rank of an abelian normal subgroup of X. The sectional rank of X, denoted 
by r(X) is the maximum rank of an abelian section of X. 

Clearly n(X) < m(X) < r(X). If Y < X, m(Y) < m(X) and r(Y) < 
r(X), but the inequality need not hold for n(Y). Moreover, if S is a section of 
X, then r(S) < r(X), but the inequality need not hold for either m(X) or 
n(X). Thus only the sectional rank is "inductive" to both subgroups and 
homomorphic images. It is for this reason that the concept of sectional rank is 
important in the study of simple groups. 

There are two major results about ^-groups of very low rank or normal 
rank (cf. [84, Chapter 5]). 

PROPOSITION 14. If X is ap-group, we have 
(i) Ifm(X) = 1, then either X is cyclic orp = 2 and X is quaternion, 
(ii) If n(X) = 1 and m(X) > 1, then p = 2 and X is either quaternion, 

dihedral of order at least 16, or quasi-dihedral. 

In particular, r(X) < 2 in either case. 
Results of Blackburn [24], [25] and MacWilliams [142] give deeper 

properties of ̂ -groups of normal rank 2. 

THEOREM 15. If X is ap-group with n(X) = 2, then we have 
(i) Ifp is odd, then m(X) = 2. 
(ii) Ifp = 2, then r(X) < 4. 

We extend these notions of rank to arbitrary groups, as follows. 
DEFINITION 16. For any group X, the p-rank, normal p-rank, and sectional 

p-rank, denoted by mp(X), np(X), rp(X), respectively, is defined to be m{P), 
n{P), r(P), respectively, for any P E Sylp(X). 

One easily proves 

PROPOSITION 17. If X is a 2-group with n{X) > 3, then X is connected. 

Combined with Theorem 15, this yields 

COROLLARY 18. If X is a 2-group with r(X) > 5, then X is connected. 

Thus a simple group of sectional 2-rank at least 5 always has a connected 
Sylow 2-subgroup. The advantage of studying groups G of sectional 2-rank at 
most 4 (instead of the more restricted problem of groups with a nonconnected 
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Sylow 2-subgroup) lies in the fact that this condition is satisfied by every 
section of G and so one can proceed inductively to try to classify all such 
groups. This has indeed been carried out by Harada and me [89]. Our proof 
will be discussed in Chapter V, along with some of the prior classification 
theorems concerning groups of low 2-rank, which are needed for the argu­
ment. 

We conclude this discussion with the statement of a particular case of a 
theorem of John Walter and me, [95], [85], which will give some indication of 
the force of connectedness. (Its proof utilizes several general local group-
theoretic techniques, which will be discussed later.) 

THEOREM 19. Let G be a group of noncomponent type of 2-rank at least 3 
with 0(G) = I. If G is connected or if G has a connected Sylow 2-subgroup9 

then F*(H) is a 2-group for any 2-local subgroup H of G (equivalent ly9 

O (H) = 1 and H is 2-constrained). In particular, this holds for the centralizer 
of every involution of G. 

There are also notions of "smallness" for connected simple groups of 
noncomponent type. Such groups satisfy the conclusion of Theorem 19. To 
put this in its proper context, it will be helpful first to say a few words about 
the groups of Lie type. 

It was Chevalley [41] who gave the first systematic treatment of the finite 
analogues of the complex Lie groups. Because of this, we denote by Chev(p) 
the set of groups of Lie type defined over a field of characteristic p. Their 
structure is well understood in many aspects and will be described in more 
detail in Chapter II. 

Let X e Chev(p) for some prime p. If P G Sylp(X)9 then B = NX(P) is 
called a Borel subgroup of X. By Sylow's theorem, all Borel subgroups of X 
are conjugate. By the Schur-Zassenhaus theorem [84, Theorem 6.2.1] B splits 
over P-i.e., B = CP9 where C is a subgroup of B such that C n P = 1. C is 
called a Cartan subgroup of X. All Cartan subgroups of X are conjugate. It is 
known that C is always abelian and except possibly when p = 2 and X is 
defined over the prime field GF(2) (also in the case X = L2(3))9 C is 
nontrivial. Any proper subgroup of X containing B is called a parabolic 
subgroup of X. It is known that every parabolic subgroup / of X is p-
constrained with trivial //-core; that is, F*(J) is a/7-group for every parabolic 
subgroup ƒ of X. 

The Borel-Tits theorem, mentioned earlier, gives a purely group-theoretic 
characterization of the maximal parabolics. 

THEOREM 20. If X E Chev(p)9 then every maximalp-local subgroup of X is 
a parabolic subgroup. 

Thus F*(H) is a /?-group for every maximal p-local subgroup H of X. 
Combining this with an easy group-theoretic argument, one can obtain the 
following extension of the theorem. 

THEOREM 21. If X E Chev(p)9 then F*(#) is a p-group for every p-local 
subgroup HofX. 

In view of the theorem, it is natural to make the following definition. 
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DEFINITION 22. A group X is said to be of characteristic p type if F*(H) is a 
/?-group for every p-local subgroup H of X. 

Thus Theorem 19 asserts that a connected simple group of noncomponent 
type and 2-rank at least 3 must be of characteristic 2 type. 

In the study of simple groups of component type, the role of centralizers of 
involutions is much more dominant than in groups of noncomponent type 
(and, in particular, groups of characteristic 2 type). This is because the 
"prototypes*9 of such groups are the groups G* E Chev(p), p odd, and in 
such a group G*, involutions correspond to "semisimple" elements (in the Lie 
sense), especially those involutions lying in a Cartan subgroup of G*. 

As we have pointed out in the dedication, Brauer demonstrated this 
domination explicitly in the groups L3(#), U3(q)9 q odd (and later, jointly with 
Suzuki and Wall in the groups L^q) [33]). For a simple group G which 
internally resembles a group G* of Lie type of odd characteristic of higher 
dimension, general methods (not requiring character theory) have been 
developed for passing from the centralizers of involutions of G to either the 
so-called (B9 iV>pair axioms of Tits or the Steinberg relations (to be dis­
cussed later), which in turn enable one to prove that G is isomorphic to G*. 

It is also possible to determine G from the centralizers of its involutions 
when G internally resembles a group G* E Chev(2). In particular, this has 
been done by Suzuki for most of the classical groups [193], [194], [195]. Thus, 
theoretically at least, if one could show that the centralizer of an involution in 
a simple group G of characteristic 2 type resembled that in some simple 
A'-group G*, one should then be able to show that G and G* are isomorphic. 
However, in most situations in such a group G, it can be very difficult to 
force 02(CG(t))9 t E 3(G), to resemble 02(CG*(t*)) for some simple A'-group 
G* and some** E HG*). 

Rather, the crucial objects of investigation in simple groups G of eharac-
tersitic 2 type are the centralizers of elements x of odd prime order p which lie 
in a 2-local subgroup of G. In trying to show that G resembles internally a 
simple group G* E Chev(2)9 the ultimate aim is to choose p to be a prime 
which divides the order of the Cartan subgroup of the corresponding group 
G* and x to correspond to an element of such a Cartan subgroup. Once this 
is achieved, x will again correspond to a "semisimple" element of G* and the 
proof that G and G* are isomorphic follows the same general pattern as the 
corresponding argument for centralizers of involutions in groups of 
component type. (In those cases in which G* has a trivial Cartan subgroup 
-i.e., when G* is Chevalley group defined over GF(2)-one works with the 
prime p = 3.) 

Just as special methods are required for studying centralizers of involutions 
in groups of low 2-rank, the same is true when analyzing centralizers of 
elements of odd prime order in groups of characteristic 2 type which have 
"small" /?-rank for all odd primes p. However, in this case the notion of 
smallness is a "relativized" one, which we proceed to define. 

DEFINITION 23. Let A" be a group of characteristic 2 type. For any odd 
prime p9 the 2-local p-rank of X9 denoted by m2iP(X)9 is the maximum of 
mp(H)9 taken over all 2-local subgroups H of X. Furthermore, we set 
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e(X) = max{m2p(X)\p any odd prime}. 

We call e(X) the odd 2-local rank of X. 
A classical theorem of Frobenius asserts that if e(X) = 0 (equivalently, 

every 2-local subgroup of X is a 2-group), then X has normal 2-complement. 
Thus e(G) > 1 in any simple group G of characteristic 2 type. 

"Smallness" for odd primes in simple groups G of characteristic 2 type 
means precisely that e(G) = 1 or 2. Correspondingly we call G a thin or 
quasithin group. Centralizers of elements of odd prime order dominate the 
analysis when e(G) > 3. In contrast, the analysis of thin and quasithin 
groups focuses directly on the structure of the maximal 2-local subgroups of 
G. (On the other hand, there are strong similarities in later stages of the 
arguments in both the e(G) > 3 and e(G) < 2 problems.) 

There is yet a second notion of "smallness" connected with groups of 
characteristic 2 type which has no counterpart in the study of groups of 
component type. In Thompson's classification of ]V-groups, the proof divided 
into four major subcases: 

(A) e(G)>3; (B) e(G) » 2; (C) e(G) = 1; 

(D) 02 (CG (t)) is of symplectic type for some i G 5(G). 

This last possibility (D) cut across all three of the preceding cases; in its 
presence, certain general lines of argument collapse. To handle it, Thompson 
was forced to produce a completely independent argument. 

Since the analysis of arbitrary simple groups G of characteristic 2 type can 
be viewed in many ways as a direct generalization of Thompson's JV-group 
proof (a further measure of depth of his vision), one can expect the 02 

symplectic type case (i.e. case (D)) to remain an important special problem. 
Moreover, it corresponds to a "real life" situation in many of the groups G* 
of Lie type defined over the prime field GF(2). For example, if G* = 
SL(m, 2) and one takes t* as in (2) above (p. ), then 

F*(C*) = 02 (C*) a (D8)w~2 is extra-special. (1) 
This will explain the following terminology. 
DEFINITION 24. A group X is said to be of GF(2ytype if for some involution 

t of X, F*(Cx(t)) is a 2-group of symplectic type. 
Although our primary interest is in the case in which X is of characteristic 2 

type, note that the definition requires 2-constraint only for Cx(t) itself. 
Remarkably, more than half of the sporadic groups are of GF(2)-type. It is 

for this reason and partly for other aspects of their internal structure that 
sporadic groups are often considered to be pathologies of groups of Lie type 
over GF(2). 

6, The four phases of the classification. Summarizing the preceding 
discussion, we see that the classification of simple groups divides into the 
classification of simple groups in each of the following four categories: 

(A) Nonconnected simple groups, 
(B) Connected simple groups of component type, 
(C) Small simple groups of characteristic 2 type, 
(D) Simple groups of characteristic 2 type of large odd 2-local rank. 
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Specifically, (A) refers to the determination of all simple groups having 
either a proper 2-generated core or sectional 2-rank at most 4; (B) to the 
determination of all connected simple groups of component type of 2-rank at 
least 3; (C) to the determination of all thin and quasithin simple groups of 
characteristic 2 type and of all simple groups of type GF(2); and (D) to the 
determination of all simple groups of characteristic 2 type with e(G) > 3 and 
not of GF(2)-type. 

In Chapters V-VIII, we shall outline in succession the results so far 
established concerning simple groups within each of the four categories (A), 
(B), (C), (D). However, to make that discussion meaningful, it is first 
necessary, on the one hand, to describe the known simple groups in some 
reasonable fashion; and, on the other, to explain the major tools of local 
analysis, at least in general terms. This we shall try to do in Chapters II, III, 
and IV. 

Finally in Chapter IX, we shall present a precise list of the specific 
problems remaining to determine all simple groups.9 

In writing this article, it has been my hope to convince the reader that the 
classification of the finite simple groups can be expected within the next few 
years. However, even after the classification, certain questions about exis­
tence and, uniqueness will very likely remain, related to a single family of 
groups of Lie type and to a few specific sporadic simple groups. These 
unanswered questions will, of course, require resolution before the classi­
fication can be considered to be "complete". This point is discussed more 
fully in §111.2. 

9In referring to statements of results within the paper we use the following notational 
convention: Theorem x.y.z will refer to Theorem z of §y of Chapter x. If the reference is being 
made within Chapter x, we suppress the x and write Theorem y • z. Moreover, within §y of 
Chapter x, we refer to the given result as Theorem z. The same conventions apply to references to 
definitions and to sections. 



CHAPTER II. THE KNOWN SIMPLE GROUPS 

Much of the excitement generated by the developments in simple group 
theory over the past 20 years can be directly attributed to the discovery of 
over 20 new sporadic groups, the first of these, Janko's group of order 
175,560, constructed in 1965, coming almost exactly 100 years after the five 
groups of Mathieu. The existence of these strange objects, discovered at a rate 
of about one per year, revealed the richness of the subject and lent an air of 
mystery to the nature of simple groups. We wish to give a brief account of the 
26 presently known sporadic groups.10 At the same time we shall describe the 
groups of Lie type, including those of Suzuki and Ree. These together with 
the familiar alternating groups comprise the set of currently known simple 
groups. 

It is essential for the reader to distinguish between the notions of discovery 
and classification. The search for new simple groups has been carried out to a 
large extent completely independently of the classification problem. This 
phenomenon can be compared to elementary particle theory, in which one 
must scan a large horizon with the aid of one's intuition and theoretical 
knowledge in the hope of distinguishing a new particle. If the automorphism 
group of a certain integral lattice has yielded a new group, then look for other 
lattices which may have "large" automorphism groups. If Janko's second 
group has turned out to be a primitive rank 3 permutation group, then 
conduct a more general investigation of such permutation groups. If simple 
groups are intimately connected with the centralizers of their involutions, 
choose a likely candidate and investigate whether there can be a new simple 
group with such a centralizer of an involution; etc. Any plausible direction is 
worth considering; just keep in mind that the probability of success is very 
low. 

In contrast, general classification problems are all-inclusive, the goal of the 
analysis being the systematic determination of all simple groups with a given 
property. In particular, the argument can be successful only if it "uncovers" 
every sporadic group having the specified property. 

1. The groups of Lie type. There are four families of simple complex Lie 
groups: An(C), Bn(C)9 Cn(C), Dn(C)9 corresponding, respectively, to the linear 
groups SL(n + 1, C), the orthogonal groups SO (In + 1, C), the symplectic 
groups Sp(2n, C), and the orthogonal groups SO(2n, C). In addition, there 
are five exceptional Lie groups G2(C), F4(C)9 E6(C), E7(Q, ES(C). As Elie 
Cartan showed in the last century, these arise as automorphism groups of the 
corresponding simple Lie algebras. Finite analogues of many of these groups 
were known long before Chevalley-certainly the analogues of the classical 

l0At this writing, the question of the existence of Janko's fourth group and the Fischer monster 
is unresolved, but they are counted among the 26 sporadic groups. 
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groups; but also Dickson had constructed the analogue of (72(C) and E6(C) 
early in the century. However, Chevalley gave the first systematic treatment 
of the whole subject [41]. 

He first proved that every complex Lie algebra £ has an integral basis-i.e., 
with respect to this basis, the coefficients of the Lie product of any two 
elements of t are all integers. (It was known well before Chevalley that a 
basis existed with respect to which the coefficients were rational.) For any 
field K there is a natural ring homomorphism of the ordinary integers Z into 
the prime field of K. Thus, with the aid of this integral basis, Chevalley was 
able to view the exponentiation formulas which describe the automorphisms 
of £ that generate the corresponding Lie group as defined relative to the 
given field K rather than to the complex numbers C. By this method, he was 
led to define, for each choice of £ and K9 a specific group by means of an 
appropriate set of generators (the so-called "adjoint" groups associated with 
£ and K). In particular, these groups are finite when K is finite. 

Thus for each choice of the Galois field K = GF{q) with q elements, q a 
prime power, there exist finite groups An(q)9 Bn(q)9 Cn(q)9 Dn(q), G2{q)9 F4(q)9 

E6(q)9 E7(q)9 Es(q)9 known as the (finite) Chevalley groups. 
The complex unitary group GU(n9C) is an important subgroup of the 

general linear group. It consists of all nonsingular complex matrices U G 
An(C) such that 

U=((Ü)y\ (1) 
where ([/)' denotes the transpose of the complex conjugate U of U. One can 
describe the unitary group more algebraically as follows. For each element 
X E A„(C), set 

« ( * ) - ( ( * ) ' ) ' ' • (2) 

Then a is an automorphism of An(C) of period 2; and the unitary group is 
precisely the set of elements of An(C) left fixed by a. In the Lie notation, the 
unitary group is denoted by 2An(R). It is the compact real form of the linear 
group. 

Conjugation of the orthogonal group SO (2n9 Q, by an orthogonal trans­
formation of determinant - 1 and order 2 induces an outer automorphism of 
period 2. In the Lie theory, such an automorphism corresponds to a so-called 
"graph" automorphism of Dn(C). Moreover, the exceptional group £6(C) also 
has a graph automorphism of period 2. Hence if we let a again denote the 
product of complex conjugation with the corresponding graph automorphism, 
we can similarly define the compact real form 2Dn(R) of the orthogonal 
group Dn(C) and the compact real form 2E6(R) of £6(C). 

Soon after Chevalley, Steinberg [183] showed that Chevalley's ideas could 
be carried over with no essential change to establish finite analogues 2An(q)9 
2Dn{q)9

 2E6(q) of the corresponding compact real Lie groups, where in place 
of complex conjugation (which is an automorphism of C of period 2), one 
uses the Frobenius automorphism <j> of the field GF(q2) of period 2 defined 
by 
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<t>(x) = xq for x G GF(q). (3) 

In particular, one can define in this way the finite general unitary group 
GU(m9 q) and its subgroup SU(m, q) of elements of determinant 1. In the 
Lie notation, one has 

2An(q) = SU(n + 1, q)/ (mod scalars) = Un+X (q) = PSU(n + 1, q). (4) 

A word about the orthogonal groups. Over C, all nondegenerate symmetric 
bilinear forms are equivalent and so for each m, there is a uniquely 
determined group SO(m, Q . However, over GF(q)> there are always two 
such inequivalent forms, which determine two families of orthogonal groups. 
The corresponding groups are distinct if m is even and are denoted by 
SO +(m> q) and SO ~(m, q\ respectively. On the other hand, if m is odd, they 
are the same groups and are denoted by SO(m9q) (sometimes, for 
convenience, by SO+(m, q)). These groups are, in general, nonsimple. One 
denotes their derived groups by ü^(q) and Î2"(q), respectively, and one has 

\SO ± (m, q) : Ü±{q)\ - 1,2, or 4 and \Z(SO ± (m, q))\ - 1 or 2. (5) 

Finally, the factor groups ^(q)/Z(2^(q)) are denoted correspondingly 
by P£l*(q) and Piï~(q). For m odd, one also writes simply S2m(#) and 
Püm(q). In the Lie notation, one has the following isomorphisms, 

PQu+iÜ) - BH(q)> PK(1) = Dn(q) and PÜ2n{q)^DR{ql (6) 
The notation 0*(q) for SO±(m,q)/Z(SO±(m9q)) is also standard 

(likewise Om(q) for m odd). 
The classical group D4(C) is the only complex Lie group having a graph 

automorphism of period 3 (the fixed subgroup of which is the Lie group 
</2(C)). Since C has no automorphism of period 3, it is not possible to use this 
automorphism to construct a twisted group as in the other cases. On the other 
hand, in the field GF(q3)> the Frobenius map <f>(x) = xq for x G GF(q3) is an 
automorphism of period 3 and taking its product with the graph 
automorphism of period 3, we can construct a twisted group just as before, 
called the triality twisted D4(q) and denoted by 3D4(q). 

These twisted groups are referred to as the Steinberg variations of the 
Chevalley groups. 

Although Suzuki did not discover his family of simple groups Sz(2")> n 
odd, n > 1, from the Lie theory, but rather in the process of determining all 
simple groups in which the centralizer of every involution is a 2-group [188}, 
[189], Ree observed that they could equally well be constructed by a suitable 
twisting of the orthogonal groups J52(2

W). Indeed, it was known earlier that 
because of certain degeneracies in the multiplication coefficients, the three 
families B2(2

n% G2(3
rt), and F4(2

n), n odd, possess an "extra" automorphism, 
not accounted for by the general theory. From Suzuki's defining relations for 
his group, Ree was led to play a variation of the Steinberg twisting game with 
each of these automorphisms [160], [161] taking as a the product of the 
"extra" automorphism together with a suitable automorphism of GF(pn) 
(p = 2 or 3), which exists only for odd «. He obtained in this way three 
families of groups, the first of which was just the groups Sz(2n). These 
families are denoted by 2B2(2

n), 2G2Q
n% and 2F4(2

n% n odd. 
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The (finite) groups of Lie type consist of the Chevalley groups together with 
the Steinberg and Suzuki-Ree variations together with all their covering 
groups. As we have stipulated, we denote by Chev(p) the subset of these 
which are defined over GF(pm) for a given prime/?. The combined analysis 
of Chevalley, Steinberg, and Suzuki-Ree (plus Tits [212], who proved the 
simplicity of the group (^4(2))') yields the following results. 

THEOREM 1. If G* is a group of Lie type with Z(G*) = 1, then either G* is 
simple or one of the following holds: 

(i) G* = AXÇL)9A\Q), 2A2(
2)> or 2B2(2), and G* is solvable; 

(ii)G* = 2?2(2)^26; 
(iii) G* = G2(2), |G*: (G*)'| = 2, and(G*)' s 2A2(3); 
(iv) G* = 2G2(3), |G*: (G*y| = 3, and(G*)' s AX(S); or 
(v) G* = 2F4(2), |G*: (G*)'| = 2, and (G*)' is simple. 

Implicit in this statement is the exclusion of the families B{, C{, C2, D2, D3, 
and 2D3 because of the following isomorphisms (D{ does not exist in the Lie 
theory): 

Cj = i>j s v4|, C 2 = i>2, 

D2 = AXXAX, D3^A3,
 2D2(q) s Ax(q

2), 2D3^
2A3. (7) 

Furthermore, one has 

Bn(q)»Cn{q) iorq = 2m. (8) 
There are some other isomorphisms among the simple groups of Lie type of 

low order; namely, 

, 4 , ( 4 ) ^ , ( 5 ) , AX{1)^A2{2) and B2(3) » 2A3(2). (9) 

In addition, three groups of Lie type are isomorphic to alternating groups: 

AX(4)*A59 AX(9)^A69 and A3(2) « A* (10) 

The groups of Lie type have a uniform description in terms of their 
so-called Bruhat decomposition. This was worked out by Chevalley and 
extended by Steinberg to the twisted groups. We need a preliminary 
definition. 

DEFINITION 2. A group W will be said to be a Coxeter group or a group 
generated by reflections provided: 

(1) Wis generated by distinct involutions wi9 1 < i < m; and 
(2) If W;Wj has order kij9 then the relations 

(H,,W /<;= 1, 1 < ij < m, 

constitute a complete set of defining relations for W. 
For example, the symmetric group 2 m + 1 is a Coxeter group with respect to 

the transpositions wt = (/, i + 1), 1 < i < m. 
The integer m is called the rank of W. Note that if m = 1, then | W\ = 2, 

while if m = 2, then W is a dihedral group of order 2A:12. Moreover, the 
involutions wi9 1 < i < m, are called a defining set for FF. 

THEOREM 3. Le* G* G Chev(p), let B be a Borel subgroup of G* (B « 
iVG*(P), P e Sy/^G*)), a«d let H < B be a Cartan subgroup of G* (if is a 
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complement to P in B). Then G* possesses a subgroup N with the following 
properties: 

(i) B n N = H < N and W = N/H is a Coxeter group; 
(ii) G* = BNB; 
(iii) Let wi9 1 < i < m, be a defining set for W and let vt be a representative 

ofwt in N. Then for each v E N and every ƒ, 1 < i < m, we have 

BvBvtB < (BvB) u (B^B); 

and 
(iv) Bv< 7* B, 1 < i < m. 

The integer m is called the Lie rank of G* and W is called the Wiey/ group 
of G*. The double coset multiplication formulas of (iii) give very strong 
restrictions on the structure of G*. In fact, it is not too difficult to prove that 
(ii) is a consequence of (iii) and the fact that G* = (B, N). 

As an immediate corollary of the theorem, one has 

COROLLARY A.IfG* E Chev(p) is of Lie rank 1 with Z(G*)= 1, then G* is 
a doubly transitive group in which the stabilizer of a point is a Borel subgroup of 
G*. 

This doubly transitive permutation representation will be described in more 
detail in the next chapter, where we shall also take a closer look at the 
defining relations for the groups of Lie type. 

2. The Mathieu groups. In the course of searching for highly transitive 
permutation groups, Mathieu discovered, about 1860, two such quintuply 
transitive groups, of respective degrees 12 and 24 and order 8 • 9 • 10 • 11- 12 
and 3 • 16 • 20 • 21 • 22 • 23 • 24 [227], [228], [229]. They are denoted by Mn 

and Af24; likewise Mu denotes the one-point stabilizer in M12, Af23 the 
one-point stabilizer in M24, and Af22 the one-point stabilizer in Af23. (Thus 
\Mn\ = 8-9- 10- 11, |Af23| = 3- 16-20-21-22-23, and |M22| = 3- 16-20 
• 21 • 22.) Each of these five groups is simple and together they represent the 
first five sporadic simple groups. Remarkably, apart from the alternating and 
symmetric groups themselves, they include the only known quadruply and 
quintuply transitive permutation groups. Equally surprising is the fact that it 
took over a hundred years for the sixth sporadic simple group to be 
discovered. 

Since their discovery, many descriptions of the Mathieu groups have been 
given. We shall present three: the first as permutation groups, the second as 
groups of transformations of projective lines and the third as groups of 
automorphisms of so-called Steiner triple systems (cf. [39, Chapter XIII]). 

Let A, B, C be the following three permutations: 

^=(1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10,11) , 

i? = (5,6,4,10)(ll,8,3,7), 

C - (1, 12)(2, 11)(3, 6)(4, 8)(5,9)(7, 10). (1) 

THEOREM 1. Mn = (A, B} and Mn = {A, B, C>. 

Let 2), E, F denote the following three permutations. 
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D = (1,2,3,4, 5,6,7, 8,9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23), 

E = (3,17, 10, 7, 9)(5,4, 13,14, 19)(11,12,23, 8,18)(21,16, 15,20,22), 

F = (1,24)(2,23)(3, 12)(4,16)(5,18)(6,10)(7,20)(8, 14)(9,21) 

(11,17)(13,22)(19,15). (2) 

THEOREM 2. M23 = <2>, E) and Mu = <D, E, F). 

Finally let G9 H91 denote the following three permutations. 

G = (1,2, 3,4, 5,6, 7, 8,9, 10, 11)(12,13, 14,15,16, 17,18,19,20, 21,22), 

H = (1,4, 5,9, 3)(2, 8,10, 7,6)(12,15, 16,20,14)(13, 19,21,18, 17), 

ƒ = (!!, 22)(1,21)(2, 10, 8,6)(12, 14,16,20)(4, 17,3, 13)(5,19,9, 18). (3) 

THEOREM 3. M22 « (G, H, I). 

Consider next the projective line tyt(q) coordinatized by the finite field 
GF(q)9 with the usual convention that a/0 = oo if a ¥* 0, a E GF(q). There 
are q 4- 1 points on 9t(q)t each represented by a/b with a9b E GF(q) and a 
or b 7e 0. The projective linear group PGL(29 q) or "fractional" linear group, 
as it is often called, can be viewed as a permutation group of these q + 1 
points. As is easily checked, it is triply transitive on this set. 

The Mathieu groups Ml2 and Af24 can be defined as extensions of the 
groups 1^(11) and L2(23) (of index 2 in PGL(29 11), PGL(29 23), respectively) 
by certain polynomial transformations of ^ ( U ) and ^1(23), respectively. 

THEOREM 4. If f denotes the transformation of ̂ (11) given by 

ƒ: y = 4JC2 - 3JC7, 

thenMn = (L2{\\)9f}. 

THEOREM 5. If f denotes the transformation of ^(23) given by 

f:x' = -3x 1 5 + 4x4, 

/Ae*M24 = <£2(23),/>. 

Using a nonpolynomial transformation of ^(23), Conway has given the 
following neat description of Af24 [43]. 

THEOREM 6. Let f denote the transformation of ̂ (23) given by 

f: x' = 9?x\ 

where e = — 1 if x is a square in GF(23) and e = +1 if x is a nonsquare in 
GF(23). Then M^ = <L2(23), ƒ>. 

Finally we consider Steiner systems for the Mathieu groups. 
DEFINITION 7. Let ti be a set of n elements. A Steiner triple system 

S(k9 m9 n) on ÏÏ is defined to be a set of (J)/C?) subsets of ti, each of size m9 

with the property that every set of k elements of £2 lies in one and only one of 
these subsets. 

By definition, the automorphism group of S(k9 m, ri) is the subgroup of 
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2(B) whose elements transform the iw-tuples of the Steiner system into 
themselves. 

If one considers the subset of S (k, m, n) containing a given element a of 0, 
one obtains another Steiner system S (k — 1, m — 1, n — 1) on Ü — {a}. In 
this way the Steiner systems for Mn> M22> M2$ can be obtained from those of 
M12 and M24. 

THEOREM 8. There exist unique Steiner triple systems S(59 6,12) and 
S(59 $9 24) such that 

Aut(S(5,6,12)) = M l2 and Aut(S(5, 8,24)) = M24. 

Thus as a corollary one has 

COROLLARY 9. There exist Steiner triple systems 5(4, 5, U), S (4,7,23), and 
S (3,6, 22) such that 

Aut(S(4, 5,11)) = Mlu Aut(S(4,7,23)) = M& 

and Aut(5(2,6,22)) = Aut(M22). 

Note that M22 is of index 2 in Aut(Af22), while M23 and M24 are their own 
automorphism groups. One also has a Steiner system 5(2,5,21) and 
Aut(5(2, 5, 21)) si Aut(L3(4)). However, the subgroup M2l of M22 which acts 
on 5(2, 5, 21) is just L3(4) (M2l is the stabilizer of a point in Af^. 

3. Janko's first group. The family of Ree groups 2<J?2(3
2W-M), n > 1, is a very 

interesting one. If G* is one of its members, then G* has the following 
properties: 

(a) A Sylow 2-subgroup of G* is elementary abelian of order 8; 

(b) If i* G 3(G*), then Cc . (**) a Z2 X Z ^ 2 " * 1 ) ; 

(c) |G*| = (3* - l)33w(33rt 4- 1) and a Borel subgroup B* of G* has 

order (3* - 1)33*; and 

(d) The permutation representation of G* on the cosets of B* is 
doubly transitive and some three-point stabilizer has order 2. (1) 

In attempting to characterize the Ree groups by internal properties, it is 
natural to ask to what extent conditions (a), (b) imply (c), (d) and also 
whether an arbitrary group satisfying conditions (c), (d) must be isomorphic 
to ^ ( 3 " ) . The second question will be discussed in the next chapter; here we 
focus on the first. 

Regarded as a general question, the restriction on the order of a Sylow 
2-subgroup of G and on the order of the characteristic power q in L2(q) are 
clearly artificial. First, H. N. Ward [215] and then Janko-Thompson [135] 
considered this general problem; their combined efforts yield the following 
result. 

THEOREM I. If G is a simple group with abelian Sylow 2-subgroups and the 
centralizer of some involution of G is isomorphic to Z2 X L2(^), q > 3, then one 
of the following holds : 
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(i) q = 3", n odd, n > 1, \G\ = (3" - l)33/I(33/t + 1), <ra/ G is a doubly 
transitive permutation group of degree 33n + 1 in which some 3-point stabilizer 
has order 2; or 

(ii) q = 4 or 5 (rate /to/ L2(4) s L2(5)). 

Let 5 G Syl2(G) and let / 6 5(S) be such that Ct ^ Z2 X L2(#). Since G 
is simple and S is abelian, an elementary transfer argument implies that all 
involutions of S and hence of G are conjugate. If q = 2m, one easily derives a 
contradiction when m > 3 by analyzing NG(S). Hence m = 2 and # = 4 in 
this case. We can therefore suppose q is odd. As S is abelian, this forces 
q = 3, 5 (mod 8) and S n £ is a four group, whence S is elementary of order 
8. If q = 3, S n L <3 L and so S <3 C r Now a theorem of Feit [53] applies to 
yield a contradiction. Hence we can suppose that q > 5. Thus q= pm,p odd, 
and the congruence on q forces m to be odd. 

Character theory is used to conclude that 

\G\= q3(q3 + l)f, (2) 

where ƒ is the degree of an irreducible character of G. Then, assuming p ^ 3, 
a local analytic argument (which utilizes (2)) yields that some element of Ct of 
order 3 centralizes an element of Ct of order p, contrary to the structure of 
L2(p

m). 
If one analyzes the case q = 5 in the same way, one does not reach the 

anticipated contradiction. However, the "first few times around" numerical 
errors camouflaged the true situation. But eventually Janko's dogged persis­
tence showed that everything fit together beautifully and, in particular, that 
such a group G must have a uniquely determined character table and order 
175,560. Ultimately Janko proved the following result, and the modern theory 
of sporadic groups was launched [130]. 

THEOREM 2. If G is a simple group with abelian Sylow 2-subgroups (of order 
8) and the centralizer of some involution of G is isomorphic to Z2 X L2(5), then 
G is a uniquely determined simple group of order 175,560. Moreover, G is 
isomorphic to the subgroup of GL(7, 11) generated by the following two matrices 
Y and Z (with coefficients in Gi<Xll)) of order 1 and 5, respectively: 

Z = 

Y = 

3 
2 
1 -
1 -
3 -
1 
3 

0 
0 
0 
0 
0 
0 

kl 

2 
1 

- 1 
- 3 
- 1 

3 
3 

1 0 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 

- 1 
1 

- 3 
- 1 
- 3 

3 
- 2 

0 0 
0 0 
1 0 
0 1 
0 0 
0 0 
0 0 

- 1 
3 

- 1 
- 3 
- 3 
- 2 

1 

0 
0 
0 
0 
1 
0 
0 

- 3 
1 

- 3 
- 3 

2 
1 
1 

0 
0 
0 
0 
0 
1 
0 

9 

-1 
3 

- 3 
2 

- 1 
1 
3 

- 3 
3 
2 

- 1 
- 1 

3 
1 



THE CLASSIFICATION OF FINITE SIMPLE GROUPS 79 

Once Janko had the order and character table of the unknown group G, he 
analyzed its modular characters for each prime dividing \G\ and eventually 
showed that such a group G had to possess one and only one absolutely 
irreducible representation of degree 7 over GF (11). 

One would imagine it would be easy to decide whether GL(7, 11) contains 
a subgroup G with the prescribed order and properties and no doubt it could 
be settled quickly by a computer. However, it is another matter to accomplish 
this by hand. Janko uses his character-theoretic information to derive further 
internal properties of G. First, B = NG(S) = HS, where H is a Frobenius 
group of order 21 with kernel of order 7 and complement of order 3. 
Moreover, if y G H has order 7 and x E S*9 NG(H) contains an involution 
w such that z = xw has order 5 and CH(w) has order 3. Furthermore, G = 
<;>, z>. Representing y by the matrix Y above, Janko then argues, using the 
various relations among y, je, w which he has established, that there is only 
one possibility for the 7 X 7 matrix over GF (11) representing z: namely, the 
matrix Z above. At this point, uniqueness has been proved-there exists at 
most one group satisfying the given conditions. 

However, to establish existence of such a group, it remains to determine the 
group (Y, Z)> and to show that it satisfies the given hypotheses. This reduces 
without much difficulty to showing that <T, Z> has order 175,560. This 
highly arduous task was carried out by M. A. Ward. Thus / , uniquely exists! 

The group Jx has no doubly transitive or even rank 3 permutation repre­
sentations (as follows directly from its character table), so there is no 
"natural" geometry associated with it. The best that has been done is to show 
that / , is a subgroup of G2(ll) (which was proved by Coppell), but again the 
embedding is not a natural one. Thus no pat reason for the existence of this 
group has been found. The implication of this last remark is that Jx could 
have been discovered only in the process of treating some general classi­
fication problem. (M. Hall has systematically determined all simple groups of 
order less than one million and would have hit Janko's group at 175,560 had 
it not already been known to exist. McKay and also several Caltech students 
were involved in this effort. However, this exhaustive approach is clearly 
limited to groups of low orders.) 

4. Sporadic groups from centralizers of involutions. With the construction of 
/ , , it was natural to experiment with other prospective candidates for 
centralizers of involutions in new simple groups. Given the great effort 
required to construct / , , coupled with the extremely low probability of 
success, it is remarkable that four further sporadic groups-Janko's groups 72, 
y3, J4, and Lyons' group Ly-have arisen as a result of just such a judicious 
guess. Held's group also arose from a centralizer of involution problem, but 
in that case the centralizer was "given" in advance. 

In addition, five other groups-O'Nan's group ON, the Fischer baby mons­
ter JF2, the Fischer monster Fv and its two offspring, the Harada subgroup F5 

and the Thompson subgroup F3~each of which arose in a context distinct 
from centralizers of involutions, have been investigated beginning with the 
structure of the centralizer of one of their involutions. Thus a total of 11 of 
the 26 sporadic groups have been (or are in the process of being) constructed 
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from such a centralizes (Some of these groups have more than one conjugacy 
class of involutions.) 

The following table lists each of these 11 groups with the corresponding 
centralizer of an mvolution. The new notation occurring in it will be 
explained directly below the table. 

group centralizer of an involution 

" 1 ^ 2 5 

J2 ^s/Qs * ®&> 2-constrained 
J3 same 

J A (^22/ (Ds )6) * 2> 2-constrained 

He L3(2)/Ds s Ds * D8, 2-constrained 

Ly An 

ON ( L 3 ( 4 ) ) * 2 

F2 (24(2))-2 

F5 (HS)>2 

F3 A9/ (D8 )
4,2-constrained 

Here the symbol A/B denotes a group X having a normal subgroup 
isomorphic to B with corresponding factor group isomorphic to A; the 
symbol (A)* 2 denotes a group X having a normal subgroup of index 2 
isomorphic to A with a particular action for the elements of X on this 
subgroup of index 2; the phrase "2-constrained" means that the group in 
question is 2-constrained; the symbols M22, Âw L3(4), 2Ê6(2), F29 ffs denote 
perfect central extensions of the corresponding "unhatted" groups by Z3, Z2> 

Z4? Z2, Z2? Z2, respectively; and the symbol HS denotes the Higman-Sims 
sporadic simple group, which will be discussed in §6. 

We make a few comments. Except in the L3(4) case, there is only one 
possibility for the given extension. However, L3(4) has two nonisomorphic 
perfect central extensions by Z4, precisely one of which occurs in O'Nan's 
group. It is interesting to note that in He the centralizer of â  non 2-central 
involution is of the form (L3(4)) • 2, where the symbol £3(4) denotes the 
(unique) perfect central extension of L3(4) by Z2 X Z2. 

Apart from the groups F„ F2, and F5, the involution specified in the table is 
2-central. The centralizer of a 2-central involution in these three groups is as 
follows: 

Fx • 1/(Z)8)
12, 2-constrained 

F2 • 2 / (D8 ) l \ 2-constrained 

Fs (A5/Z2)/ (D8 )
4, 2-constrained 

Here the symbols .1, .2 denote Conway's first and second simple groups, 
which will be discussed in §8. 
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I would like to explain now the precise context in which each of these 
groups has arisen, with the exception of the already discussed / , and the baby 
monster F2, which is best left to a discussion of Fischer's general theory of 
groups generated by a conjugacy class of "transpositions'*. 

A. JANKO'S GROUPS J2, J y I do not know what impulse prompted Janko to 
choose A5/Qs* D% as a propitious centralizer. It does have the virtue of 
being a small group, distinct from the centralizer of an involution in any then 
known simple group, yet closely resembling such a centralizer (e.g., L4(2) a 
A 8 has 23/<28 * Q$ as centralizer of an involution). Janko proved 

THEOREM 1. IfG is a simple group in which the centralizer of an involution is 
isomorphic to A5/Qs * D8, then one of the following holds: 

(i) G has two classes of involutions and \G\ = 27 • 33 • 52 * 7; or 
(ii) G has one class of involutions and \G\ = 27 • 35 • 5 • 17 • 19. 

Furthermore, as is the case for most of the groups to be discussed here, 
Janko determined the complete local structure of such a group G as well as its 
character table in each case. However, this result, in contrast with his work on 
/ „ does not tell you whether there exists a simple group of either order or 
even whether there is at most one such group. All we can say is that Janko's 
work provides "strong evidence" for the existence of simple groups of the 
specified orders; for is it likely, if none existed, that such a detailed analysis 
could have been carried out without reaching some internal contradiction? 
Until now, at least, "strong evidence" has always led to the existence of an 
actual group. The difficulties with Janko's group J4 and the Fischer monster 
F, is not that one expects no group to exist, but rather that because of their 
large orders, it is not easy to carry out the necessary computer calculations 
required for their construction. 

We postpone until the next two sections a discussion of the actual 
construction of J2 and J3 as well as the other eight groups on the list. 

B. HELD'S GROUP He. Held began with the following interesting fact: The 
groups L5(2) and M24 have 2-central involutions with isomorphic centralizers. 
It was natural to attempt to characterize these groups by this property; and 
this was Held's intent when he began the problem. However, in his analysis of 
the conjugacy classes of involutions he was led to three distinct, but self-
consistent fusion patterns. He ultimately proved [112): 

THEOREM 2. If G is a simple group in which the centralizer of an involution is 
isomorphic to L3(2)/D8 * D8 * D8? then one of the following holds: 

(i) G a L5(2) or M24; or 
(h) G has exactly two conjugacy classes of involutions and \G\ = 210 • 33 • 52 • 

73- 17. 

Again Held determines the full internal structure and a good deal of the 
character table. Likewise the theorem says nothing about the existence and 
uniqueness of a group satisfying (ii). In the next chapter we shall describe the 
general methods by which one can identify a known simple group from its 
internal structure. Obviously some procedure is necessary for Held to be able 
to conclude that G s L5(2) or M24. 

C. LYONS' GROUP Ly. McLaughlin's group Mc (to be described in the next 
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section) arises from a primitive rank 3 permutation group problem. However, 
once Mc was constructed, its internal structure could obviously be examined. 
It has only one conjugacy class of involutions and the centralizer of an 
involution is isomorphic to As (An denotes the perfect central extension of An 

by Z2). This was an intriguing answer since it immediately suggests studying 
the class of groups G having An as centralizer of an involution t for any 
n > 5. From the structure of a Sylow 2-subgroup Tn of Ân9 it is immediate 
that such an involution / must be 2-central in G. Also by order con­
siderations, Tn s Tn+l for n even. 

Thompson then made the interesting observation that the group Tl0 ( ^ 
r n ) , of order 28, appears on MacWilliams list of 2-groups of normal 2-rank 2 
which are possible candidates for Sylow 2-subgroups of some simple group, as 
an exceptional case [142], Here then was the place to begin! And Thompson 
suggested the problem to his student Lyons, who proved [141] 

THEOREM 3. If G is a simple group in which the centralizer of some involution 
is isomorphic to An, n = 10 or 11, then n = 11, G has only one conjugacy class 
of involutions, and 

| G | = 2 8 - 3 7 - 5 6 - 7 - 11 -31-37-67. 

The following result shows that there is no more gold to be found in this 
direction! 

THEOREM 4. If G is a simple group in which the centralizer of some involution 
is isomorphic to An, n > 5, then n = 8 or 11, 

The cases n = 5, 6, 7 follow from a theorem of Brauer and Suzuki on 
groups with quaternion Sylow 2-subgroups [32] (cf. Theorem IV.5.5). The case 
n = 9, due to Janko [132] requires a difficult analysis not unlike that carried 
out by Lyons. However, when n > 12, a more uniform argument can be 
given. This was done by Thompson and also by R. Solomon [178]. 

D. O'NAN'S GROUP ON. Some years ago, Alperin and I were investigating 
simple groups of 2-rank 3. This work led Alperin to analyze the possible 
2-constrained groups of the form L3(2)/(Z2« X Z2„ X Z2«) for some n. He 
proved [2]: 

THEOREM 5. For each value of n > 1, there are {up to isomorphism) exactly 
two 2-constrained groups of the form L3(2)/(Z2„ X Z2„ X Z2«), in one of which 
the extension splits and in the other the extension does not split. Moreover, each 
nonsplit group has 2-rank 3. 

Denote these groups by Alpx
n and Alp*, respectively. The group Alp\ occurs 

as a 2-local (mod core in the case of An) in A$, A9, Al0, Aw M22, M23, the 
group Alp\ in G2(q) and 3D4(q), q odd, and the group Alp\ in HS. Here then 
is another natural question: For what values of n > 2 do the groups Alp\ or 
Alpl occur as 2-local subgroups of a simple group G? Note that for n > 2, it 
is easily shown that 02(Alpl

n) is the unique subgroup of Alp*n of type Zr X Z2« 
X Zr and so Alpl

n must then necessarily contain a Sylow 2-subgroup of G. 
Thus for a given n > 2 and i = 1 or 2, G has a uniquely determined Sylow 
2-subgroup. 
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I was hoping to interest a doctoral student in this problem; but O'Nan was 
forced to consider it in connection with his work on doubly transitive 
permutation groups of odd degree in which the one-point stabilizer has a 
nontrivial normal subgroup of odd order [153]. That analysis ultimately 
reduced to determining all groups G of 2-rank r, r a positive integer, such that 
for some elementary abelian 2-subgroup A of G of rank r, N — NG(A) 
transitively permutes the flags of A. Here, by definition, aflag of A is a nested 
sequence of subspaces 

1 <AX <A2 < • • • <Ar = A. 
(Thus, A( is of codimension 1 in Ai+V 1 < i < r — 1.) To say that N acts 
transitively on the flags of A means that for any two flags, some element of N 
conjugates the subspaces of the first into the corresponding subspaces of the 
second. 

In dealing with the case r = 3, one of the possibilities is that N/0(N) s 
Alpl

n. If n = 1, then A E Syl2(CG(A)) and a theorem of Harada (to be 
discussed at the end of Chapter V) implies that G is isomorphic to one of the 
groups listed above (assuming G is simple). Thus O'Nan could restrict himself 
to the case n > 2, in which case G has a specified Sylow 2-group for each n 
and i. 

O'Nan proved [155], using a characterization of HS by its Sylow 2-group 
previously obtained by Harris and me [90]: 

THEOREM 6. If G is a simple group with Sylow 2-subgroup isomorphic to that 
ofAlpl

n, n > 2, / = 1 or 2, then n = 2 and one of the following holds: 
(i) i = I and G ^ HS; or 
(ii) i = 2, G has only one conjugacy class of involutions, and 

| G | = 2 9 - 3 4 - 5 - 7 3 - 11 • 19-31. 

E. JANKO'S FOURTH GROUP. The reader will certainly have observed that 
several of the eleven groups listed in the table of the previous section are of 
CF(2)-type. Moreover, as we have already pointed out, such groups play a 
basic role in the general theory of simple groups. For some time now, it has 
been felt that if any new sporadic simple groups are to be found, this is the 
place to look for them. Timmesfeld's fundamental work which we shall 
describe in Chapter VII (combined with a result of S. Smith [177] which 
completes a case only partially resolved by Timmesfeld) shows that those of 
sufficiently large width are necessarily classical groups over GF(2). Thus the 
search was forced to focus on the narrow width case. It was out of such 
investigations that Janko was led to his fourth group [134]. However, very 
recently S. Smith [177] has completed the analysis in all remaining low width 
cases and has shown that there are no further sporadic groups to be found in 
this direction! 

Janko's main result is as follows: 

THEOREM 7. If G is a simple group in which the centralizer of some involution 
is isomorphic to (M22/(DB)6) • 2, then G has exactly two conjugacy classes of 
involutions and 

|G|= 221 • 33- 5 • 7 • II3- 23 • 29 • 31 • 37 • 43. 
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Janko determined that the centralizer of an involution of the second class 
has to be a nontrivial split extension of an elementary group E of order 2 n by 
Aut(M22). Furthermore, he showed that a maximal 2-local subgroup 
containing this centralizer is necessarily a split extension of E by Af24. In 
particular, any such group G must be of characteristic 2 type. At this time it is 
unknown whether there actually exists a group satisfying these conditions. 

F. THE FISCHER MONSTER AND ITS SUBGROUPS. Out of his work on the baby 
monster Fl9 Fischer was led to believe that there might be a simple group G 
having F2 as centralizer of an involution. In such a group Gt a likely 
candidate for the centralizer of a certain element of order 3 would have the 
form Suz/X9 where Suz denotes the cover by Z2 of the Suzuki sporadic group 
(to be described in §6) and X is extra-special of order 313, the extension being 
2-constrained. (The group Suz is known to have a faithful 12-dimensional 
modular representation over GF(3).) Examining the centralizer in G of the 
involution corresponding to a generator of Z(!MZ)9 one can then argue that it 
must have the form J/(D8)12. Remarkably these calculations were carried out 
independently at the same time by Griess in Michigan and Conway and 
Thompson in Cambridge, England. By a prodigious calculation, using the 
Thompson order formula (Theorem 13 below), Griess determined the exact 
order of such a group G [100]. (Conway and Thompson also obtained this 
value, but only as a possible lower bound for the order of </.) Griess' result is 
as follows: 

THEOREM 9. Let G be a simple group containing involutions x9 y such that 
Cx a F2 and Cy s.l/(J58)12. Then G has exactly two conjugacy classes of 
involutions and 

|C |=2 4 6 -3 2 0 -5 9 -7 6 - 112- 133- 17- 19-23-29-31 -41 • 47 • 59 • 71. 

S. Smith [177] has very recently shown that the structure of Cx and hence 
the order of G follows from the structure of Cy alone. 

Thompson was further able to show that if such a group G existed, then the 
centralizers in G of certain elements of order 3 and 5 would have direct 
factors (of index 3 and 5, respectively), which were themselves new simple 
groups. Moreover, he determined likely candidates for centralizers of 
involutions in these groups: namely, A9/(DS)

4 and (HS) • 2, respectively. The 
suggestive terminology F3 and F5 for these two groups has now become 
standard, the ambient group G being denoted by Fx and dubbed the "mon­
ster". 

With P. Smith's aid on the computer at the University of Cambridge, 
Thompson has proved the existence and uniqueness of F3 [205] and Harada 
(with the assistance of S. Norton) the existence and uniqueness of F5 [110], 
For the present, we content ourselves with the following statements. 

THEOREM 10. If G is a simple group in which the centralizer of some 
involution is isomorphic to A9/(D%)4

9 then G has only one conjugacy class of 
involutions and 

|G|=21 5-31 0»53-72- 13* 19-31. 
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THEOREM 11. If G is a simple group in which the centralizer of some 
involution is isomorphic to (ÉS) • 2, then G has two conjugacy classes of 
involutions and 

| G | = 2 , 4 - 3 6 - 5 6 - 7 - 11 • 19. 

Griess also established some additional local properties of Fx and certain 
information about its character table. In particular, the minimum degree of a 
complex representation of Fx is 196,883. This fact, combined with its order 
(approximately 1054) certainly makes the term "monster" an appropriate 
appellation! 

Since then Norton has determined the conjugacy classes of Fx (up to a few 
indeterminacies) and also many properties of its purported character x of 
degree 196,883 [150]. In particular, he has shown that x is rational-valued. In 
fact, if Fx exists, x must occur as a constituent of the character of G 
"induced" from the trivial character l/2 of its subgroup F2. Likewise he has 
shown that x occurs precisely once as a constituent of its "symmetric square", 
which implies that the corresponding module for Fx has the structure of a 
(nonassociative) algebra. (So far at least it has not been possible to find any 
obvious identities satisfied by this algebra.) I mention these facts as 
indications of possible directions for attacking the extremely difficult question 
of the existence of the monster. (More recently, Livingston and Fischer 
have completed determination of the full character table of Fx> assuming 
the existence of an irreducible representation of degree 196, 883.) 

Let me also say something concerning the method of determining the order 
of one of these groups G from the structure of the centralizer of an 
involution. The first step is to obtain, by 2-local analysis, the precise possibi­
lities for the fusion pattern of involutions of G. If G has more than one class 
of involutions, the next step is to determine the exact structure of the 
centralizers of involutions in the remaining classes. In this case, one is now in 
a position to apply the so-called "Thompson order formula" directly to 
compute the order of G. This formula, which is established by very 
elementary counting arguments, can be viewed as a refinement of classical 
results of Brauer and Fowler [30] on properties of involutions in groups of 
even order. 

For simplicity, we state Thompson's formula only for groups having 
exactly two conjugacy classes of involutions. We need a definition. 

DEFINITION 12. Let G be a group with exactly two conjugacy classes of 
involutions, represented by the involutions x and y. For any involution z of 
G, define a(z) to be the number of ordered pairs (w, v) of involutions «, 
v E G such that u is conjugate to x and v to y in G and such that (uv)* = z 
for some integer i\ 

Note that as <«, v} is a dihedral group, it follows that z centralizes both u 
and v for any such pair (w, t>). Hence a(z) is determined entirely within Ĉ  
and can be computed once the exact fusion pattern of involutions in G is 
known. 

THEOREM 13. If G is a group with exactly two conjugacy classes of 
involutions, represented by the involutions x andy, then 
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\G\=a(y)\Cx\ + a(x)\Cy\. 

When G has only one conjugacy class of involutions, the procedure is 
considerably more complicated. One first determines the /?-local structure of 
G (including the conjugacy classes of elements of order p) for the set of 
"visible" odd primes-namely, those dividing the order of the given centralizer 
of an involution. This determination makes use of the 2-local structure of G 
and involves prior classification theorems. (Such theorems are usually also 
involved in determining the possible involution fusion patterns of G and its 
2-local structure.) 

With this information, one can now obtain a congruence for the order of G 
with the aid of Sylow's theorem and a result of Frobenius concerning the 
number of solutions of the equation xn = 1 in a group. However, in practice, 
several local structures may be possible at this stage. If we take O'Nan's 
group as an illustration, two local structures may occur, one in which G has 
Sylow 7-subgroups of order 7 (Case I) and the other of order 73 (Case II) 
[155]. Correspondingly O'Nan obtains: 

| G | = 2 9 - 3 4 - 5 - 7 - m , where m = 939551 (mod 29- 34- 5 • 7) (Case I); 

|G |=2 9 -3 4 -5 -7 3 -m , where m = 6479 (mod 29 • 34 • 5 • T) (Case II). 

(1) 
To determine m, one must get at the "invisible" primes-those dividing m. 

One is primarily interested in those which are represented by "strongly real" 
elements-i.e., elements which are inverted by some involution of G. These 
strongly real elements break up into n disjoint sets, corresponding to certain 
abelian subgroups of G, with each of which one can associate a certain 
number wt of exceptional characters of G, wt being determined from the 
normalizer of the corresponding abelian subgroup. Using elementary charac­
ter theory and counting arguments (including a result of Brauer and Fowler), 
O'Nan is now able to prove in succession 

m < 2 9 - 5 -7(23 + 2 w\ (2) 

(23 is the total number of strongly real classes of elements of order 2, 3, 5 and 
7.) 

n < 5. (3) 

wt < 45. (4) 

m < 4,500,000. (5) 

Now using (1) in Case I, there are only three possible values of m satisfying 
(5): namely, m = 939551, 2391071, or 3842591 = 71 • 54121, the first two 
being primes. Sylow's theorem yields a contradiction in the first two cases. In 
the third case, one has n < 2, giving the sharper estimate m < 2400000, 
contradiction. 

Hence Case II must hold. This time, using the bound for m and (1), the 
only solution is m = 6479 = 11 • 19- 31 and the order of G is uniquely 
determined. 
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For simplicity, we shall say that any group G having one of these central­
izes of an involution plus any set of further properties derivable from this 
assumption (such as order, local structure, character table, etc.) is of 
type—. Thus we have groups of type Ji9 1 < i < 4, type He, type Ly, type 
ON, and type Fi9 1, 2, 3, or 5. 

To distinguish type J2 from type J3, we must, of course, include the 
condition on the number of conjugacy classes of involutions. 

In this terminology, Theorem 3.2 asserts that there is a unique simple group 
of type ƒ |. 

5. Computer construction of sporadic groups. We must now address the 
question of the existence (and uniqueness) of simple groups G of each of the 
above ten types (excluding Jx). Apart from the group J2, the answer in each 
case seems to require the assistance of a high speed computer. On the other 
hand, J2 has a natural geometry arising from its representation as a rank 3 
permutation group, on the basis of which one can construct it directly. This 
will be described in the next section. The groups F2, F3, and Fs also have 
certain geometries associated with them, but because of their size it does not 
seem possible to make the necessary calculations for their construction by 
hand. The remaining groups appear to have no associated natural geometries. 

From the local analysis, one can obtain rather complete information about 
the local structure of a group G of one of these types. Then, using the theory 
of induced characters-in particular, Brauer's theorem which asserts that every 
irreducible character of G is a Z-linear combination of characters induced 
from so-called "elementary" subgroups [34, Theorem 4.7.1]-one is able to 
calculate a substantial portion and, in some cases all, of the character table of 
G. Thus the real question we are asking is the following: 

How does one construct a (simple) group G from 
(a) Its local structure; and 
(b) Its character table? 
The first point to be made is that we may suspect that our unknown group 

G must also contain certain nonlocal subgroups. The groups J2, J3, He, Ly, 
ON, and F5 each possess such a nonlocal subgroup. Moreover, what is even 
more important, each of these groups has been constructed as a permutation 
group on the cosets of that subgroup. Why should we imagine that our group 
G contains a particular such subgroup-e.g., that a group of type Ly must have 
a subgroup isomorphic to G2(5)? We know that G2(5) is generated by two of 
its local subgroups A*, B*. Suppose our local information about a group G of 
type Ly tells us that G must contain subgroups A, B isomorphic to A*, B*, 
respectively. Isn't it then reasonable to conjecture that for a suitable choice of 
A, B, it will be the case that (A, B) s G2(5)? 

Under such circumstances, there is a very nice procedure which often 
enables one to answer the question in the affirmative, known as the "Brauer 
trick". In fact, apart from generator and relation calculations, it is essentially 
the only known method for proving the existence of nonlocal subgroups. To 
explain the procedure, suppose first that the desired subgroup H of G exists. 
Then the complex representation corresponding to the permutation represen­
tation on the cosets of H decomposes into irreducible constituents. Let x be 
the character of a nontrivial such irreducible constituent. Then x is a 
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constituent of (lH)G
9 the character of G induced from the trivial character \H 

of H. Hence by the Frobenius reciprocity theorem, [84, Theorem 4.4.5] \H 

must be a constituent of the restriction x^ of x to H. It is this observation 
which underlies Brauer's procedure. 

We begin with our subgroups A and B of G (for this purpose we can 
assume G exists). From the character table of G, we can determine a likely 
irreducible character for x- We let f3i be the representation associated with x> 
acting on the (complex) vector space V. For each subgroup Y of G9 we denote 
by VY9 the subspace of V on which $1(7) acts trivially and we set dY = 
dim VY. Thus dY is the multiplicity of \Y in XY* The integer dY is given by the 
following inner product: 

dy = <Xr, ly)- ( 0 
If we have sufficient information about the character table of G and of the 
subgroup Y, we can compute dY. 

To apply the Brauer trick, we must be able to compute dA, dB9 and dC9 

where C = A n B. Since C < A and C < B, we have VA < Vc and VB < 
VC9 so by counting dimensions of subspaces of Vc, we have 

dim (VA n VB) + dc>dA + dB. (2) 

If our calculations should yield that dA 4- dB > dC9 we can conclude from (2) 
that VA n VB ^ 0. This is the goal of the Brauer method, for it immediately 
implies that H = (A9 B) is a proper subgroup of G. Indeed, as <3l(//) acts 
trivially on VA n VB ¥= 0 and $1 is a nontrivial irreducible representation of 
G, $,(H) ¥* 61(G), so H < G. (Of course, (A9 B) may be a proper subgroup 
of G even if dA + dB < dc; but in that case we cannot verify this fact by the 
Brauer trick.) 

The final step in the process requires the identification of the subgroup H. 
This is usually accomplished by invoking some prior classification theorem. 
Thus in the case of a group G of type Ly9 Lyons was able to prove [141], 
using the subgroups A and B and the information he had already obtained 
about G, that H had only one class of involutions and the centralizer of an 
involution in H was isomorphic to that in G2(5) (it has a subgroup of index 2 
isomorphic to SX(2, 5) * SL(29 5)). Now he could invoke a theorem of Fong 
and W. Wong [66] to conclude that H s G2(5). 

Using the Brauer procedure, the following results have been obtained. 

PROPOSITION I. If G is a group of type J2, He, Ly9 ON9 or M(24)', then 
correspondingly G contains a subgroup isomorphic to U3(3)9 Sp(49 4)*, G2(5), 
L3(7)*, or He. 

Here Sp(49 4)* and L3(7)* denote, respectively, the split extension of 
Sp (4, 4) by a field automorphism of order 2 and of L3(7) by the transpose-
inverse automorphism of order 2. 

On the other hand, the generator-relation method has yielded the following 
results. 

PROPOSITION 2. If G is a group of type J3 or F59 then correspondingly G 
contains a subgroup isomorphic to SL(29 16)* or Al2. 

Here SL(29 16)* denotes the split extension of SL(29 16) by a field 



THE CLASSIFICATION OF FINITE SIMPLE GROUPS 89 

automorphism of order 2. It was Thompson who proved the existence of this 
subgroup of / 3 (see [117]). G. Higman and McKay [117], [145], who 
constructed / 3 (and also He% using character-theoretic analysis and computer 
calculations, were only able to give strong evidence that a group of type / 3 

must have such a subgroup, but could not settle the existence question. On 
the other hand, Harada was able to prove the existence of An in a group of 
type F5 fairly directly from the internal properties of such a group [110]. 

Since the Fischer groups M (22% M (23% M (24% and F2 are constructed as 
permutation groups on the cosets of the centralizer of an involution in the 
distinguished conjugacy class, the existence of nonlocal subgroups in these 
cases does not enter into the analysis. 

The Higman-McKay construction of J3 was carried out by a more or less 
direct process of coset enumeration, leading to a presentation by generators 
and relations. This method is very effective for permutation groups of not too 
high a degree (e.g., 73 is of degree 6156 on the cosets of an SL(2> 16)* 
subgroup). However, more elaborate computer techniques are required to 
construct permutation groups of large degree (ON has degree 122760, Ly has 
degree approximately 9 million, and the baby monster has degree approxi­
mately 13 billion). Out of his construction of Ly, ON> and F2 (the third group 
jointly with Leon), Sims has gradually developed a general technique for 
constructing permutation groups of large degree by computer methods [140], 
[172], [113]. To appreciate the technical difficulties involved, consider the fact 
that a modern computer can store just one permutation of the set 1, 
2 , . . . , N, when N is in the range of 150,000 to 200,000. Using secondary 
storage devices one can hold much more information; however, access to 
such devices is comparatively slow. Hence, although it is easy enough to 
multiply two such permutations, the programming for carrying this out can 
be quite tricky. It is clear that to perform such multiplications many times, as 
will certainly be required to construct the required group G, a number of very 
effective algorithms will have to be developed, which require not only a 
profound understanding of both the computer and finite group theory, but 
also a high order of imaginative insight. 

In order to begin, Sims must have a precise description of the repre­
sentation of the proposed one-point stabilizer H on its coset space. For 
example, O'Nan provided this information for his group by establishing the 
following result, based on an analysis of the conjugacy classes of elements 
and the character table of a group of O'Nan type. 

PROPOSITION 3. If G is a group of type ON and H is the subgroup of G 
isomorphic to L3(7)* constructed in Proposition 1, then we have 

(i) | G : H\ = 122760 and the representation of G on the cosets of H has rank 
5; 

(ii) The nontrivial orbits A,, 1 < i < 4, of H on its coset space have length 
6384, 5586, 58653, and 52136, respectively; and 

(iii) If at is a point of A, and Ht is the subgroup of H fixing aiy 1 < j < 4, 
then we have 

(1) Hx is a semidirect product ofZ1 X Z7 by Z$X Z2X Z2; 
(2) H2^Z2X PGL(29 7) a CH(t% where tŒ$(H)- $(H'% 
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(3) H3 is a Sylow 2-subgroup ofH; and 
(4) H4^ Z3 X 24. 

This information describes the required action of H on its coset space. (We 
note that a group G of type ON possesses a second conjugacy class of 
subgroups H* s L3(7)* and if we consider the representation of G on the 
cosets of H*, we obtain a similar, but not identical description for the action 
of H*.) 

Thus, Sims begins with a group H, a collection of subgroups H = H0, 
H2,..., #„, the coset spaces A, = / / / / / , of Ht in //, 0 < i < «, and he 
considers the set 

Q = Ü A, (3) 
1 = 0 

The problem then is to construct a transitive permutation group C on Ö 
having H as its one-point stabilizer with the specified action of H on Ü. (The 
subgroups H{ will be precisely the set of two-point stabilizers of G on the 
corresponding orbits of H.) 

There are four major components to the computer analysis. 
(A) Algorithms for determining the order of a group generated by a given 

set of permutations. 
(B) Techniques for defining permutations on large sets. 
(C) Techniques for verifying relations satisfied by permutations defined as 

in(B). 
(D) Ad hoc methods for finding the right permutations to generate the 

group in question. 
Let I b e a set of permutations of a set Ü. Under (A), one is interested in 

algorithms for determining the order of the group G generated by X. Let 
a E ÏÏ and let A be the orbit of a under G. The elements of A can be 
determined easily from a knowledge of X. Let Xa be the subset of X 
consisting of those permutations fixing a and set Ha = (Xa}. Obviously 
Ha < Ga, the subgroup of G fixing a. The approach is to try to show that 
either Ha = Ga or else to produce an element y 6 G a - Ha. In the latter case, 
one replaces X by X u {y} and repeats the process. 

There are two procedures for carrying this out. 
The Schreier method. For each b E A, choose an element u{b) in G taking a 

to b. For each b in A and x E X, form the element 

y(b,x) = u(b)x(u(bxyl), 

where bx is the image of b under x. 

PROPOSITION 4. Ha = Ga if and only if every y (b, x) E Ha. 

The Schreier-Todd-Coxeter method. Determine some set of relations 
satisfied by the elements in X and let G* be the abstract group generated by 
X defined by these relations. Let H* be the subgroup of G* generated by the 
subset Xa. 

PROPOSITION 5. If \G* : H*\ = |A|, then Ga = Ha. 

Computation of |G* : H*\ is carried out by the standard methods of what 
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is called "coset enumeration". If this coset enumeration does not show that 
\G* : H*\ = |A|, one can find elements yf9 y$ E G* such that H*yf and 
H*y$ appear to be distinct cosets of G*, but if yx,y2 denote the correspon­
ding elements of G9 then the cosets Gayx and Gay2

 a r e equal. Form y = 
y\ yïl> s o that j E Ga. If y is not in Ha9 express y as a product of the elements 
of X and add this word as a new relation. 

To carry this out, one normally assumes that one has first obtained a 
presentation for Ha in terms of the generating set Xa. 

Now for (B). There are two methods for defining permutations on a large 
set fi in such a way that one can work with them effectively on a computer. 
The first of these is to begin with a group H and subgroups Hi9 as above, and 
then to form the coset space £2 = U A,., as in (3). If K is any subgroup of H, 
one can determine the orbits of K on Q when \H : K\ < 200,000. The orbits 
of AT on a given A, are, in fact, in one-one correspondence with the orbits of 
Ht on the coset space of K in H. This is the first method. 

Suppose next that we have defined a permutation group K on a set Ü and 
we know the orbits Tl9 T 2 , . . . , Tm of K on ÏÏ. Assume now that we are given 
points ai9 bt E Ti9 1 < i < m9 a permutation ir of the set (1, 2 , . . . , m}9 and 
an automorphism o of K (as an abstract group), satisfying the following 
condition for each /, 1 < i < m: 

(**)'- KKur (4) 
Here Kc denotes, as usual, the subgroup of K fixing the point c E Q. Thus a 
transforms the one-point stabilizers of K in a well-defined fashion. 

PROPOSITION 6. Under the assumption of (4), there exists a unique 
permutation zofü such that 

(i) z normalizes K and induces by conjugation the given automorphism o ofK; 
and 

(ii) (a? = ^ ( / ), 1 < / < m. 

For example, Leon and Sims [140] constructed the baby monster F2 by 
beginning withthe subgroup H s Aut(M(22)), which they believed to be a 
subgroup of (2£'6(2)) • 2, the centralizer of an involution in a group of type F2. 
(Their construction proved that M (22) is indeed a subgroup of 2E6(2).) They 
then determined approximately 40 subgroups Ht of H in roughly the same 
way as described above for a group of type ON. They then constructed the 
coset space 2 from H and its subgroups Ht as in (3) above, the order of £2 
being approximately 13- 109. At this point, they took two subgroups for K; 
namely, Kx = H and K2 a subgroup of H of index approximately 145,000. 
Then by the method just described, they constructed two permutations z{9 z2 

on £2 relative to Kl9 K29 respectively with zx centralizing Kx and z2 central­
izing K2. Ultimately they showed that the group <#, zX9 z2> had the required 
order. 

Now consider (C). In order to use the Schreier-Todd-Coxeter method to 
determine the order of the group generated by a set of permutations defined 
as in (B), one needs to be able to verify relations satisfied by them. Take the 
baby monster as an example. Let w be a word in zl9 z2, and the elements of 
H9 which we would like to prove is the identity element of G. Since z, and z2 
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centralize K2, we can determine from the elements of H appearing in the 
word w a subgroup KQ of K2 which centralizes w. Assuming that \K2 : K0\ *

s 

not too large, it is possible to find representatives for each of the orbits of KQ 
in Q. Since w centralizes K0, to prove that w = 1, it therefore suffices to show 
that w fixes each of these representatives. 

Finally as to (D), how does one go about making the right choices for the 
ultimate generators of G? Since one begins with a subgroup H of G, which is 
assumed to be known, one has a set of generators for H (and as remarked, an 
actual presentation), so it is the additional generators that we are talking 
about. In the case of the baby monster, the group G is by definition generated 
by a certain conjugacy class of involutions with very special properties, so 
many relations were known to hold and these largely forced the definition of 
the permutations zx and zv On the other hand, in the construction of Ly and 
ON a process of trial and error was required. 

In fact, in the case of a group G of type ON, in order to simplify the 
calculations, Sims assumed that G possessed an outer automorphism a of 
period 2 and then constructed the extended group G(ct). Hence Sims proved 
the existence and uniqueness of a simple group of type ON which admits an 
automorphism of period 2. Thus, although unlikely, there conceivably exists 
another simple group of type ON, not possessing such an outer 
automorphism. In other words, the uniqueness problem for ON is not yet 
settled. However, a student of Sims is presently working on this question and 
we hope it will be resolved well within a year's time.,! 

The remarkable Thompson group F3 is constructed from a certain 248-
dimensional lattice associated with the complex Lie group Es (which posses­
ses a representation of this degree) [205]. Although some computer checking 
(carried out by Peter Smith) is required for its construction, we prefer to 
discuss it in §8 along with the Conway groups and the Leech lattices. 

Harada's group F5, although not a rank 3 permutation group, is construc­
ted by the same general method that Conway and Wales used to construct the 
rank 3 Rudvalis group (see the next section) [44]. Their construction was 
made from a certain 28-dimensional complex representation, whereas Fs is 
constructed from a 133-dimensional representation. It was S. Norton [230] 
who actually carried out this construction, on the basis of the group-theoretic 
information provided by Harada. Both groups Ru and F5 require some 
computer calculations: McKay and Landauer carrying these out for Rudva­
lis' group and P. Smith for Harada's group. We shall therefore say nothing 
further about the construction of F5. 

Summarizing the results of this section (omitting J2, M (22), M (23), M (24), 
and F39 which are to be discussed later), we have 

THEOREM 5. There exists a unique (simple) group of each of the types J3, He, 
Ly, and F2; and there exists a unique group of type ON which possesses an outer 
automorphism of period 2.11 

6. Sporadic groups as rank 3 permutation groups. It was known that the 
classical groups have primitive rank 3 representations as permutation groups: 

11 ADDED IN PROOF. This work has now been completed. Thus Andrelli and Sims have shown 
that there exists a unique simple group of type ON. 
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The linear groups acting on the set of lines of projective space, the symplectic 
and unitary groups acting on the set of absolute points, and the orthogonal 
groups on the set of singular points. These representations are all clearly 
related to their structure as groups of Lie type, since the one-point stabilizers 
are parabolic subgroups in each case. E6 has a similar such rank 3 represen­
tation on the cosets of a suitable parabolic. Likewise any quadruply transitive 
group (hence the alternating, symmetric, and Mathieu groups) have such a 
representation, when considered as permutation groups on the set of 
unordered pairs of distinct letters. In addition, Wielandt has shown that a 
primitive permutation group of degree 2p, p a prime, is either doubly 
transitive or of rank 3 [218], [219]. 

Thus these primitive rank 3 groups constitute an important class of permu­
tation groups, which had been studied first by Wielandt and then in the 1960s 
by D. Higman [114]. But until Janko's group J2 appeared on the scene [131], 
no new simple groups had ever been found through any of these inves­
tigations. However, with the discovery of /2> there followed in rapid 
succession the construction of four more primitive rank 3 permutation 
groups: McLaughlin's group Mc9 the D. Higman-Sims group HS, the Suzuki 
(sporadic) group Suz, and the Rudvalis group Ru. Furthermore, Fischer's first 
three sporadic groups M (22), Af (23), M (24), which arose from his analysis of 
groups generated by a conjugacy class of "3-transpositions" (to be described 
in the next section) were each constructed from a rank 3 permutation 
representation. 

The table below lists each group, its one-point stabilizer, its degree (the 
number of cosets of the one-point stabilizer), and the sizes of the two 
nontrivial orbits of the one-point stabilizer, which are referred to as the 
subdegrees. 

group 
_ _ 

HS 
Mc 

Suz 

Ru 

M {22) 

M (23) 
M (24) 

M(24)' 

one-point stabilizer 

1/3(3} 
M22 

tf4(3) 

G2(4) 
2F4(2) 

<0) 
A/(22) 

Z2 X M (23) 

M (23) 

degree 

ÏÖÖ 
100 
275 
1782 

4060 
3510 

31,671 

306,936 
306,936 

subdegrees 

36 63 
22 77 

112 162 

416 1365 

1755 2304 

693 2816 
3510 28,160 

31,671 275,264 

31,671 275,264 

The group M (24) is not simple, but has a simple subgroup M (24)' of index 
2; and the intersection of the one-point stabilizer with M (24)' is M (23). 

The first method of studying rank 3 groups was in terms of an associated 
combinatorial block design and certain related incidence matrices, the general 
theory being developed by D. Higman, who characterized some of the 
classical groups from this point of view. The initial construction of J2 by M. 
Hall and Wales was carried out along these lines [103]. However, this point of 
view has for the most part been superseded by the use of a natural graph 
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associated with any transitive permutation group, an idea first introduced and 
exploited by Sims [171]. 

DEFINITION 1. Let G be a transitive permutation group on a set Q. For each 
a E:u, let Ga denote the subgroup of G fixing a, and let à(a) be one of the 
remaining orbits of Ga on Q - {a}, chosen so that for a, b E Q, if b = ag, 
then A(b) = (A(a))g. In other words, beginning with a fixed a E ÏÏ, and fixed 
orbit A(#), we consider the translates of (a, A(a)) under the action of G. 

We now define a directed graph T as follows. The vertices of T are the 
elements of £2, so that |r| = |Q|. By definition, the vertex a E T is connected 
by an edge of T to the vertex b ET if and only if b E A(a). 

It is clear from this definition that the action of G on £2 induces a transitive 
action of G on the vertices of T, which transforms edges into edges. We say 
that G is a (transitive) group of automorphisms of T. We define Aut(r) to be 
the group of all edge-preserving permutations of T. 

All this is fine if we have a transitive permutation group G to begin with. 
However, our problem is rather to construct such a group G, given a 
prospective one-point stabilizer H, degree, and a permutation representation 
of H on fi — {a}. Such a group G is called a transitive extension of H. 
Usually we impose additional internal restrictions on G. We have seen how 
difficult such construction can be in the previous section. Is it therefore likely 
that the process can be simplified by turning the problem into the 
construction of a graph having a transitive automorphism group? Well, this is 
indeed the case when the proposed group has rank 3. In that case, one has a, 
A(a), and a single additional orbit <&(#); and from the internal information, 
one can "see" which points of A(a) and $(a) and which pairs of points of 
A(tf), $(#), respectively, to connect by an edge in order that the resulting 
graph possess an automorphism moving a (which is the precise requirement 
for transitivity). Except for the Rudvalis group, it has been possible to carry 
out the construction of the appropriate graph and the proof of transitivity of 
its automorphism group entirely by hand. 

For example, Higman and Sims began with the Steiner triple system 
5(3, 6, 22) associated with M22 and defined the vertices of their graph T to be 

{*} u ÏÏ u A, (2) 

where {*} is a new symbol, ÏÏ is the set of 22 points of 5(3, 6, 22) and A is the 
set of 77 hexads of S(3, 6, 22). To define T, connect {*} to each point of ÏÏ, 
connect each point of fi to those hexads of A which contain it, and connect 
two hexads of A if they are disjoint. 

Higman and Sims proved that Aut(T) is a transitive group having a simple 
subgroup of index 2 and order 44,352,000-a new sporadic group [115]. Their 
construction was carried out in the course of a single 24-hour period, 
following a lecture by M. Hall at Oxford on the group J2\ ! 

It is certainly not obvious that T possesses an automorphism moving {*}. 
However, there is a more geometric description of the Steiner system S = 
S (3, 6, 22) in which the existence of such an automorphism becomes almost 
transparent. 

Indeed, choose a point of ÏÏ, which we denote by oo. Then Af21 (= L3(4)) is 
the subgroup of M22 fixing oo. The 21 = 42 + 4 + 1 points of Ù - {oo} can 
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therefore be identified with the projective plane 9 = ^ (4 ) over GF(4) in 
such a way that M1X acts on ^P. 

Furthermore, M1X has two orbits Aj and A2 in its action on A, with 
|A, | =21 and |A2| = 56. In terms of the projective plane <3\ one has the 
following description of A{ and A2. 

(a) If B E Aj, then B = { oo } u L, where L consists of the five points 
of a line of 9. (Note that 9 has exactly 21 distinct lines. ) 

(b) If B E A2, then B consists of six points of <3\ no three collinear. 

(3) 

There are actually 3 • 56 sets of six points of ^P, no three collinear, the full 
projective group PGL(3, 4) in its natural action on 9 permuting this set 0 of 
168 hexads transitively. However, the "little" projective group L3(4) has three 
orbits 0,, 02, 03 on 0 and A2 = 0, for some /, 1 < i < 3. 

Now the transpose-inverse map a of PGL(3, 4) can be realized as a 
"polarity" of P̂—i.e., a one-one transformation of points to lines and lines to 
points which preserves the incidence relation and has period 2. The re­
markable fact in this particular case is that a induces a permutation (which 
we denote by the same letter) of the set 0. Indeed, any C E 0 is taken by a 
into 6 lines of 9 (no three copunctal), which intersect in exactly 15 points. 
The complementary set D of 6 points of 9 has the property that no three are 
collinear, so D E 0. One now defines 

«(C) = D. (4) 

Since a normalizes the group L3(4), we see that a transforms the orbits 0,, 
02, 03 among themselves. But a has period 2, so it leaves at least one 0, 
invariant. Thus without loss, we can assume that a leaves A2 invariant. 

Furthermore, this polarity a induces a permutation of the set 9 u Ax = (£2 
— {oo}) u Al9 which interchanges the subsets 2 — {oo} and Ax (again deno­
ted by the same letter): namely, if a interchanges the point a E P̂ = 2 -
{oo} and the line L of <?, define 

a{a) = {oo} U L and a({oo} U L) = a. (5) 

Thus a is defined on the 98 points (fil — {oo}) u A of T. One extends a to a 
map of T by defining 

a({*}) = oo and a(oo) = {*}. (6) 

It is now an easy matter to check directly that a preserves the incidence 
relations of the graph and so is an automorphism of T which moves the point 

Suzuki has described a lovely construction of a sequence of graphs, which 
produce larger rank 3 permutation groups from smaller ones, beginning with 
24 and ending with the Suzuki sporadic group, and on the way picking up J2 

[192]. 
Let H be a transitive permutation group and let T0 be an associated graph. 

Construct a graph T with vertices 

{ * } U T 0 U A , (7) 
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where {*} is a new symbol and A denotes the set of involutions of H. 
Connect {*} to each point of Y& connect two points of T0 if they are 
connected as points in the graph of H9 connect a point a of T0 to an 
involution b in A, if b G Ha9 the subgroup of H fixing a, and connect two 
involutions a9 b G A if a and b do not commute, but there is a third 
involution c G A centralizing each of them. 

Beginning with S4 and its natural graph with four points and no edges T^ 
one obtains a graph Ft of order 14 with Aut(ri) a PGL(29 7). If one repeats 
the process with H as PGL(29 7) and with Tt as T& one obtains a graph T2 of 
order 36 with Aut(T2) s G2(2). Continuing the process as long as one can, 
one obtains the following graphs and automorphism groups; (the final 
construction leading to A\xt(Suz) requires a slight modification of the proce­
dure, with A consisting of suitable four groups rather than involutions of H): 

graph order Automorphism group 

~F3 100 Aut(/2) 

T4 416 Aut(G2(4)) 

T5 1782 Aut(Suz) 

Unfortunately this process collapses if one tries to repeat it with Aut(S'wz) 
as H and T5 and T0. We note also that J2 and Suz are of index 2 in their 
automorphism groups. 

McLaughlin's construction of his graph and group was carried out along 
similar lines [147]; however, Conway and Wales' construction of the Rudvalis 
group was trickier. Griess had shown that if Ru existed, it must have a 
nontrivial cover Ru by Z2. Rudvalis gave evidence that Êù would have to 
possess a 28-dimensional complex representation [163] and then Feit proved 
that if Ru existed, Ru would indeed have a representation of this degree. 
Conway and Wales proceeded from this presumed representation and their 
argument involved the determination of a set of 4060 quadruples of vectors 
(v9 iv9 — v9 — iv) in complex 28-space, whose automorphism group is transi­
tive of rank 3 as a permutation group on these 4060 quadruples. Moreover, 
the stabilizer of a quadruple is an extension of 2F4(2) by Z2. Thus they 
constructed Éu. The group Ru (== i?w/center) can be viewed as a 
permutation group of the corresponding 4060 one-dimensional subspaces. 

As for the Fischer groups, their graph is intimately related to the conjugacy 
class of involutions which define them and will be described in the next 
section. 

So much then for existence; what about the question of the uniqueness of 
these groups? Since each is determined from the automorphism group of a 
graph, the question clearly reduces to the uniqueness of the graph. However, 
the specified action of the one-point stabilizer H on each orbit is such a 
strong restriction that it forces in each case only one possibility for the graph 
of a transitive extension of H in which H has the given action. 

Finally, defining groups of type HS9 Mc9 Suz9 and Ru by the conditions of 
the table, we can summarize the above discussion as follows: 

THEOREM 2. There exists a unique {simple) group of type J2, HS, Mc9 Suz9 

and Ru. 
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7. Transpositions and the Fischer groups. To the nonexpert, the name of 
Bernd Fischer is known solely for its connection with a number of sporadic 
simple groups, but to the practitioner, he is recognized as the developer of 
internal geometric analysis, an approach to finite group theory which has not 
only given rise to five new simple groups, but supplemented by the work of 
his disciple Timmesfeld, has provided a fundamental general technique for 
studying simple groups. 

From the outset of his career, Fischer has been interested in the generation 
of a group from a conjugacy class of its involutions by conditions on the order 
of the product of two elements of the class. The underlying motivation here is 
the example of the symmetric groups, which are generated by their transpo­
sitions, which form a single conjugacy class and have the property that the 
product of any two has order 1, 2, or 3. (If a, b are two such transpositions, 
then \ab\ = 1 if a = b, \ab\ = 2 if a centralizes b and a =£ b9 and \ab\ = 3 if a 
and b do not commute, in which case ab is a 3-cycle.) 

If x9 y are any two involutions of a group G, then xy is inverted by x and 
consequently the group (x,y) = <JC, xy) is always a dihedral group of order 
2\xy\. Hence for pairs of involutions, a condition on the order of <Jty> can be 
equivalently expressed in terms of the group <JC,J>. We note, however, that 
from a more general perspective (i.e., in cases when x, y are not necessarily 
involutions), it is the group <JC,y} rather than \xy\ which is the relevant object 
of interest. 

From his considerations, Fischer was led to make the following definition. 
DEFINITION 1. A conjugacy class D of involutions of a group G is said to be 

a class of p- transpositions, p an odd prime, provided the product of any two 
elements of the class D has order 1,2, orp. 

Fischer investigated groups which were generated by a class of /?-trans-
formations and his first classification [59] foreshadowed the major achieve­
ments to come. 

THEOREM 1. Let G be a group generated by a class of p-transpositions D and 
assume the following conditions hold: 

(a) Any threepairwise distinct elements of D do not generate a 2-group\ and 
(b) IfxED, then CD(x) ^ x. 

Then G = 2 4or 25. In particular, p = 3. 

The proof of this result made use of the following earlier result of Fischer's, 
which he established by transforming the problem into a question about 
distributive quasigroups [60]. This was a highly original way of dealing with a 
purely group-theoretic question. 

THEOREM 2. Let G be a group which is generated by a conjugacy class of 
involutions D and suppose that whenever x,y E D with x ^ y, the order of xy 
is a power of a fixed odd prime p. Then G' is nilpotent. 

Note that the hypotheses imply that distinct elements of D never commute. 
Using his result on quasigroups, Fischer similarly proved. 

THEOREM 3. Let G be a group which is generated by a conjugacy class of 
involutions D such that distinct elements of D do not commute. Assume that for 
all x E D, 
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Cx-02(Cx)XO(Cx). 

Then G is solvable. 

(We remark that Theorems 2 and 3 can now be derived from the odd order 
theorem and Glauberman's Z*-theorem (Theorem IV.5.7 below).) 

This last result was used by Fischer to prove the solvability of a finite 
group G admitting a fixed-point-free automorphism a of order 2p, p an odd 
prime (with some restriction on CG{ap)) [61]. 

These results were just "warming up" exercises for Fischer, in preparation 
for the main event, which consisted of the following magnificent theorem [62], 
[63]. 

THEOREM 4. Let G be a group with Z(G) = 1 and G' - (GJ, which is 
generated by a conjugacy class of 3-transpositions. Then one of the following 
holds: 

(i) G s 2„ for some n and except when n = 6, D is the set of transpositions; 
(ii) G = Sp(2n9 2) and except when n = 2, D is the set of symplectic 

transvections; 
(iii) G = 0^(2), and D is the set of transvections leaving the corresponding 

quadratic form invariant; 
(iv) G = Un(2) and D is the set of unitary transvections; 
(v) G s 0*(3)(d), where d G D and given TT = ±1 , D is the set of 

reflections: XH>X + 7T(X, a)a9 where a is a vector such that the inner product 
(a, a) = IT; or 

(vi) G is one of three new finite groups, denoted by M (22% M (23), and 
M (24), and D is uniquely determined for each group. 

The exceptions in (i) and (ii) are due to the fact that 26 SA Sp(4, 2) s 
04~(3X</>. Note that the hypothesis G' = (GJ implies that G is nonsolvable. 

The theorem clearly suggests that the given hypothesis must be closely 
connected with some natural geometric problem, the various solutions of 
which lead to the alternatives of the theorem, the groups M (22), M (23), 
M (24) arising as exceptional cases in roughly the same way as G2, F4, E& E79 

Es occur in the classification of simple Lie algebras. Thus the method of 
attack must be to build a geometry out of the class of 3-transpositions on 
which the group G will act as a group of automorphisms; and then from the 
properties of these geometries, to determine the possibilities for G. 

I would like to describe some of the central steps involved in the proof. 
Denote by E a set of pairwise commuting involutions of D of maximum size 
n. Fischer proves 

PROPOSITION 5. (i) NG(E) contains a Sylow 2-subgroup of G; 
(ii) NG(E) acts doubly transitively on the set E; and 
(iii) NG(E)/CG(E) is isomorphic to one of the following groups: 2„, Ani 

GL(n, 2), Lm(4), where m = [n/2], 22„- GL(n9 2), M22, M23, or M24. 

It is the last three possibilities in (iii) which give rise to the Fischer groups 
and will explain why he adopted the notation M (22), Af (23), Af (24) for them. 

PROPOSITION 6. For x G D, set Dx = CD(x) - {x}. Then Dx is a class of 
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conjugate elements of (Dx}. In particular, (Dx} < CG{x) acts transitively on 
the set Dx. 

This remarkable fact allows Fischer to use induction in the analysis. 
However, there are cases in which {Dx} has a nontrivial center or is solvable, 
so these must be analyzed separately. 

PROPOSITION 7. (i) IfO((Dx}) < Z((DX))9 then G as 25; 
(ii) If02((Dx}) < Z((DX))9 then G s Sp(n9 2) or Un(2); and 
(iii) If (Dxy is solvable, then G a 25, S6, U4(2)9 or U5(2). 

The following result is fundamental and reveals the geometry that lies at 
the heart of this class of groups. 

PROPOSITION 8. For x G D,set Fx = D - (Dx u {*}). Then we have 
(i) (Dx} acts transitively on Fx; and 
(ii) As a permutation of D9 G has rank 3 with one-point stabilizer (Dxy = 

CG(x) having orbits {x}9 Ex9 and Fx. 

Thus the geometry underlying G is that of a graph associated with a rank 3 
permutation group whose vertices can be identified with the elements of D9 a 
given vertex x E D being connected to those elements of D - {x} with 
which it commutes. As we have pointed out in the previous section, the 
symmetric, alternating, unitary, symplectic, and orthogonal groups all have 
natural representations as automorphism groups of such graphs. What 
Fischer has done is to construct these classical graphs (as well as new ones for 
M (22), Af (23), M (24)) from internal properties of G which follow from the 
existence of the class of generating 3-transpositions. The graphs associated 
with D are, in general, of a special type, which Fischer calls triple-graphs and 
the analysis is reduced to the study of these triple graphs and their so-called 
triple-maps. (We shall not attempt to define these terms here.) 

In the previous section, we have also listed the subdegrees, and one-point 
stabilizers of M(22), M(23), M(24). 

At this point, Aschbacher established a beautiful extension of Fischer's 
theorem [7]. To state it, we need the following definition. 

DEFINITION 9. A conjugacy class D of involutions of a group G is said to be 
a class of odd transpositions if the product of any two noncommuting elements 
of D has odd order. 

THEOREM 10. Let G be a group such that Sol(G) = 1 and G' = ((/')', which 
is generated by a conjugacy class D of odd transpositions. Then one of the 
following holds: 

(i) D is a class of 3-transpositions {whence G is determined from Fischer's 
theorem)', 

(ii) G s Sp(n9 q)9 Un(q)9 or 0*(q)9 where q = 2m for some m9 and D is a 
class of transvections; 

(iii) G ^ an extension of 0 / (5) by Z2 and D is a class of orthogonal 
reflections; 

(iv) G s& Sz(q)9 q = 2m, m odd9 m > 1; or 
(v) G « L2(q)/2n9 q = 2m

9m>h 
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Thus Aschbachefs theorem includes all symplectic, unitary, and 
orthogonal groups of characteristic 2, whereas Fischer's hypothesis picks up 
only those over the prime field GF(2). 

Fischer showed that his groups were all rank 3 as permutation groups on 
the set of 3-transpositions. In the course of proving his main theorem, 
Aschbacher derives a converse of this result [7]. 

THEOREM 11. Let G be a group with Sol(G) = 1 which is generated by a 
conjugacy class D of involutions. If G has rank 3 as a permutation group on the 
set D9 then D is a class of 3-transpositions of G, 

As would be expected, Aschbacher's proof of Theorem 10 utilizes many of 
the concepts introduced by Fischer; but if anything, it is even more geometric 
than the 3-transposition theorem. The action of G on the geometry 
determined by the class D and, in the case of the situations giving rise to the 
classical groups, the associated bilinear form preserved by G dominates the 
analysis. For example, to identify the symplectic groups, Aschbacher invokes 
a theorem of Dembowski and Wagner which characterizes projective space 
among "symmetric block designs" [48] to conclude that G is acting on 
projective ii-space over GF(q)9 n odd, q = 2m. Since he also knows in this 
case that D is the set of nontrivial "dations" commuting with a certain 
"symplectic polarity", he is then able to assert that G = <D> « Spn+X(q). 

In cases in which the action of G on the set D has rank 3-and, in 
particular, in the proof of Theorem U-Aschbacher makes strong use of 
various arithmetical relations which D. Higman established for arbitrary rank 
3 permutation groups. 

The next stage in the analysis of groups generated by a class D of 
involutions allows products of pairs of elements of D to have order divisible 
by 4. A theorem of Baer and Suzuki [84, Theorem 3.8.2], disposes of a trivial 
case. 

THEOREM 12. If D is a conjugacy class of elements of prime order p in a group 
G with the property that <#, y} is a p-group for every pair x, y E D9 then 
D < Op(G). 

Thus as a corollary, one has 

COROLLARY 13. If a group G is generated by a conjugacy class D of 
involutions such that the product of any two elements of D has order a power of 
2, then G is a 2-group. 

Hence the first interesting case is incorporated in the following definition. 
DEFINITION 14. A conjugacy class D of involutions of a group G is said to 

be a class of {3, 4}-transpositions if the product of any two elements of D has 
order 1, 2, 3, or 4. In order to exclude the case of 3-transpositions, we say that 
D is nondegenerate if some product of elements of D has order 4. Further­
more, we say that D is a class of {3, 4} +-transpositions provided whenever x, 
y E D and \xy\ = 4, then (xyf E D. 

A natural example is the group GL(n9 2), which is generated by its 
transvections (involutions acting trivially on a hyperplane in the natural 
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representation), these transvections forming a conjugacy class of {3, 4} + -
transpositions. 

Timmesfeld began his investigations with an analysis of groups generated 
by a nondegenerate class of {3, 4}+-transpositions and obtained the fol­
lowing lovely classification theorem [207], [208]. 

THEOREM 15. Let G be a group with Z(G) = 1 and 0(G) = 1 which is 
generated by a nondegenerate class of {3, 4}*-transpositions. Then one of the 
following holds: 

(i) G = GL(n9 2), n > 3; 
(ii) G a Sp(2n9 2), n > 3; 
(iii) G ̂  02«(2)> n > 4; or 
(iv) G « G2(2)\ 3D4(2), F4(2)9

 2E6(2)9 E6(2)9 E7(2)9 or £8(2). 
Moreover, in each case D is a uniquely determined class of 2-central involutions 
ofG. 

Timmesfeld's analysis is again much in the spirit of Fischer's and Asch-
bacher's. In the special case that leads to GL(n9 2), using internal properties 
of G which follow from the existence of the class D9 Timmesfeld constructs a 
vector space over GF(2) on which G acts in a prescribed fashion. He actually 
considers a slightly more general case, which leads to the groups G2(2)\ and 
3Z>4(2) as well as GL(n9 2), the precise hypothesis being that D possesses a 

nontrivial proper subset E such that 

E nEx=0 or E forallx E D . (1) 

To obtain the groups Sp(2n9 2) and 0£(2)9 Timmesfeld shows under 
suitable conditions that G is also generated by a class of 3-transpositions, so 
that the groups can be identified from Fischer's classification theorem. The 
cases leading to F4(2)9

 2E6(2)9 E6(2)9 E^I), and 2?g(2) depend upon a set of 
conditions on the class D which suffice to imply that the multiplication table 
of G is uniquely determined. 

The next step in Timmesfeld's program was to weaken his assumption on 
the class D by replacing "3" by "odd". Thus we have the following definition. 

DEFINITION 16. A conjugacy class D of involutions of a group G is said to 
be a class of {odd, 4} *-transpositions if the product of any two elements x9 y 
of D has order 1, 2,4, or k9 where k is odd, with the additional restriction that 
(xy)2 E D whenever \xy\ = 4 . Again D is called nondegenerate if some 
product of elements of D has order 4. 

This is a fundamental notion, since every group of Lie type of characteris­
tic 2 (apart from the Ree groups 2F4(2

n)) is generated by a class D of 
{odd, 4}+-transpositions, the elements of D being so-called "root 
involutions". For this reason, Timmesfeld refers to a class of {odd,4}*~ 
transpositions as a class of root involutions. 

Timmesfeld's major "root involution" theorem gives a classification of all 
groups generated by a nondegenerate class of root involutions, the degenerate 
case being covered by Aschbacher's and Fischer's prior work [208]. 

THEOREM 17. Let G be a group with Z(G) = 1 and 0(G) = 1 which is 
generated by a nondegenerate class of root involutions. Then one of the following 
holds: 
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(i) G E Chev(2) (with G & Un(2
m) or Sp(4, 2m)); or 

(ii) G m A6or J2. 
Moreover, in (i), either D is the uniquely determined class of root elements 
corresponding to the long roots of the associated Lie algebra of G or G « 
F4(2

m), in which case D may also be the class of root elements corresponding to 
the short roots. 

The proof is again similar to those of the preceding theorems, in that 
Timmesfeld must build up the internal structure of G from properties of the 
class of D. The "root subgroups" play an important role in this construction. 
For x E D, set 

Dx = {yED\CD(y)=CD(x)} and Ex-Dx\j{l). (2) 

Then Ex is called a root subgroup of G. Clearly Ex is determined indepen­
dently of the choice of y E Dx. 

Fix Ex and let 2 be the conjugacy class of Ex in G. Then 2 is called a class 
of root subgroups of G. 

Timmesfeld proves the following result. 

PROPOSITION 18. If 2 is a class of root subgroups of G, then \EX\ = q = 2n 

for some nfor each Ex E 2. Moreover, if Ex, Ey E 2, then one of the following 
holds: 

(i) (Ex, Ey} is elementary abelian; 
(ii) (Ex, Ey) is special of order q3 with center of order q and [Ex, Ey] E 2; or 
(iiï) (Ex,Ey}^L2(q). 

This result is analogous to that proved by Thompson for odd primes in his 
study of so-called "quadratic pairs" (see §4.6). 

The case q = 2 of the root involution theorem is essentially covered by the 
{3, 4}+-transposition theorem, so Timmesfeld can assume q > 2 at critical 
points in the argument. The main idea of the proof is to construct a certain 
graph T(2) whose vertices are the elements of 2 and then to prove that T(2) 
is isomorphic to the corresponding graph T(2*) of a suitable group G* of Lie 
type of characteristic 2. To obtain this isomorphism, Timmesfeld proves a 
"graph extension" theorem, which asserts that a certain collection of "local" 
isomorphisms of T(2) on T(2*) can be extended to an actual isomorphism of 
T(2) on T(2*). He also argues that the group G* is uniquely determined by its 
graph and is thus able to conclude that G s G*. 

While Timmesfeld was investigating {3, 4}+-transposition and root invo­
lution groups, Fischer was looking at the broader class of {3, 4}-transposition 
groups. Fischer had developed a general method for attempting to form, from 
a class E of transpositions of a group H, a larger group G containing H, 
generated by a class D of transpositions containing E, which can be viewed 
as an analogue of the construction of a transitive extension with a given 
one-point stabilizer. The passage from U6(2) to M (22), from M (22) to M (23), 
and from Z2 X M (23) to M (24) are examples in which the extended groups 
exist. 

Now Fischer knew that his group Aut(Af(22)) (a split extension of M (22) 
by Z2) was generated by a class £ of {3, 4}-transpositions (the elements of E 
necessarily inducing outer automorphisms of M (22)). There was also strong 
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evidence that Aut(M(22)) occurred as a subgroup of 2E6(2)- 2. This was a 
natural situation for Fischer to ask whether the latter group could possibly be 
imbeddable in a larger group G in such a way that the class E extended to a 
class of generating {3, 4}-transpositions D of G. Herein lay the origin of the 
baby monster! Fischer was eventually able to derive almost complete infor­
mation about the internal structure of his presumed group G; and, in 
particular, the information which Leon and Sims required for their 
construction of G [64]. Thus their existence and uniqueness theorem for the 
baby monster F2 yields the following additional fact. 

THEOREM 19. The baby monster^ F2 is generated by a class D of (3, 4}-
transpositions such that CF(x) s 2E6(2) • 2 for all x E D. 

This is by no means the end of the Fischer story. In §4.9 we shall describe 
the general fusion theorems of Timmesfeld which are consequences of his 
root involution theorem, 

8. The Leech lattice and the Conway groups. Conway [42] constructed his 
three simple groups from the automorphism group of the remarkable 24-
dimensional Leech lattice, which had its origins in the study of close sphere 
packings [138], [139]. 

DEFINITION 1. A lattice A of Euclidean Rn space is the set of all integral 
linear combinations of n linearly independent vectors wl9 w2,..., wn of R" 
having the property that the inner product (w„ wj) is an integer for all i, y, 
1 < i, j < n. 

In particular, A is an abelian group. If vi9 1 < i < n, is an orthonormal 
basis of R", A is said to be integral (rational) if the coordinates of each w, as a 
linear combination of the vt

9s are all integers (rational numbers). Moreover, A 
is said to be unimodular if the matrix of the change of basis from the v/s to 
the w/s has determinant 1. 

A rational lattice can always be made into an integral lattice by replacing 
the given basis vectors by suitable scalar multiples of themselves. Of course, if 
the original lattice is unimodular, this property will be lost when shifting to a 
corresponding integral lattice. The Leech lattice is, in fact, a rational 
unimodular lattice. However, in describing its related geometry, it was easier 
for Conway to work with an associated integral form of the lattice. 

We remark that a set of so-called "fundamental roots" of a complex 
semisimple Lie algebra £ determines a lattice in Rn, where n is the dimension 
of a Cartan subalgebra of £, the so-called "root lattice" of £. These root 
lattices are, in general, nonrational. 

By definition, the automorphism group Aut(A) of a lattice A in R" is the 
subgroup of the rotation group of Rn which transforms A into itself. The 
elements of Aut(A) are called rotations of A. 

To describe the Leech lattice, one begins with the Steiner system S = 
5(5, 8, 24) on 24 letters fi, whose automorphism group is M24. The set ÏÏ* of 
all 224 subsets of £2 can be viewed as a vector space of dimension 24 over 
GF(2) if A + B is defined to be the symmetric difference (A - B) U (B -
A) for A, B e S2* (i.e., A, B C ti). 

PROPOSITION 2. The octads of S span a Yl-dimensional subspace & of ÏÏ* 
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consisting of 0 , fi, the 759 octads of S9 their 759 complements in fi, and 2576 
sets of cardinality 12. 

We let Cw be the subset of elements of 6 of cardinality n9 so that 

e = <2o u Cg u fi12 u e16 u e * ( i ) 
with fig consisting of the octads of S. 

Now let {v(\l < î < 24} be an orthonormal basis of R24, the index set 
being fi, which we may identify with {1, 2 , . . . , 24}. For any T E Q* and 
any m E Z, define 

[ T, m] = (v\v = 2 *ity where xt E Z, ]>] ** = 4m, and 

x, = m (mod 4) if i g T, x, = m + 2 (mod 4) if i E 7*}. (2) 

For each pair, T, U E fi* and m, w E Z, one has 

[ r , m ] + [tf,#i] = [T + t/,/n + 4 (3) 

DEFINITION 3. Set A = U [T, m], the union over all T E fi, m E Z. In view 
of (3) and the fact that 6 is a subspace, A is an integral lattice. This is the 
Leech lattice. For reasons that will soon become clear, Conway sets .0 = 
Aut(A). 

Conway analyzes A and .0 and establishes all the following facts. First of 
all, for each T E Q*, define 

vT = 2 ty (4) 
J G E F 

It is immediate from the definitions that the vector 2vT is in A for each 

Tee,. 
PROPOSITION 4. (i) A is spanned by the 759 vectors 2vT with T E 6% and any 

one vector of A, all of whose coordinates are odd integers; e.g., the vector 
% ~ 4^24-

(ii) The 759 vectors 2vT, T E 68, span the sublattice [fi, 4Z]. 
(iii) Ifv,w E A, then the inner product (t>, w) is a multiple of 8 and (v9 v) is a 

multiple of 16. 

Here [fi, 4Z] denotes the set of [T9 m] taken over all T E fi, m E 4Z. 
DEFINITION 5. If (v9 v) == 16/? for v E A, v is said to be of type n, The set of 

all v E A of type n is denoted by An, 
The set Aj is empty, so that A2 consists of the vectors of minimum type. 

This set plays an important role in the analysis. 

PROPOSITION 6. (i) A2 has cardinality 196560. 
(ii) If A2(v) denotes the subset of A2 orthogonal to the vector v E A2, then 

A2(v) has cardinality 93150. 

Observe next that any permutation m of fi extends to an orthogonal 
transformation of R24 (denoted by the same letter) under the definition 

(vê)ir = % for all /, 1 < i < 24. (5) 

Clearly m will be a rotation of A provided it preserves fi. Hence the rotations 
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induced from the automorphism group of the Steiner system S = S(59 8, 24) 
determine a subgroup M = M24 of .0. 

Furthermore» to each T E Q*, one can associate an orthogonal reflection eT 

of R24 by setting 

(vdeT = ® i o r — *?ƒ according as i ÇÈ Tor i EL T. (6) 

Likewise e r is a rotation of A provided T E G. Moreover, any two such 
rotations commute and so as | 6 | = 212, they generate an elementary abelian 
subgroup E of .0 of order 212. 

The rotations of M, arising as they do from elements of Au^S), induce an 
action on the elements of E and so M normalizes E. Thus .0 contains a 
subgroup 

N - EM, (7) 

a split extension of E2n by M24, 
Conway proves 

PROPOSITION 7. N contains the subgroup of .0 fixing any one coordinate 
vector vt. 

The crucial result that must be established is the following. 

THEOREM 8. N is a proper subgroup of .0. 

Thus Conway must produce rotations of À which move the coordinate 
vectors. Indeed, let T be any element of S2* of cardinality 4 (a tetrad). From 
properties of the Steiner system S9 T is contained in exactly 5 octads of S> 
which can therefore be expressed as T + Tif I < i < 5, where each Tt is a 
tetrad. Set T0 = Tand 

* ( r ) = {7ï|0< i < 5 } . (8) 

Since any 5 elements of 2 lie in a unique octad, it follows that the I) are 
pairwise disjoint and hence that Ö = \JTi9TéŒ 4>(r). 

Then for each j \ I < j < 24, j lies in a unique tetrad 7] of $(T) (/ 
depending on/). Define the map t\T by setting 

(t>y)ifr = f>y-|ür,, 1 < y < 2 4 . (9) 

Conway shows that for each tetrad T, the transformation t j j ^ is a rotation 
of A and so is an element of .0. Thus N < .0, as asserted. 

With this information available, Conway is now able to argue: 

THEOREM 9. (i) .0 is transitive on A2. 
(ii) IfvEA2 and w E A2(t>), then the subgroup ,0VW of .0 fixing v and w is 

contained in N and is a split extension of M12 by an elementary group of order 
2 io 

Note that as .0 consists of orthogonal transformation and .0 leaves A2 

invariant, .0^ leaves A2(t>) invariant for any v E A2. 
Combined with Proposition 6, Conway immediately obtains the following 

corollary. 

THEOREM 10. (i) |.0| - 196560- 93150- 210« |M22|. 
(ii) N is a maximal subgroup of .0. 
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The group .0 has a center of order 2, generated by the reflection eQ. 
For v E A2,Jhe pair_fü, — v} is called a diameter and the set of diameters 

is denoted^by A2. Thus A2 has cardinality 98280. Also set .1 =.0/<ej2>, so that 
.1 acts on A2. The analysis of the action of .1 on A2 is a consequence of the 
following property of .0. 

PROPOSITION 11. .0 acts transitively on the set of ordered pairs of vectors of 
A2 with any given scalar product. 

The number of w E A2 having scalar product -32, -16, - 8 , 0, 8, 16, 32 
with a given v E A2 is 

1,4600,47104, 93150,47104,4600, 1, (10) 

respectively, and these are the only possible scalar products. 
With this information, Conway is able to prove 

THEOREM 12. A is a simple group (of order \ |.0|). 

Now define .2 to be the subgroup of .0 fixing any one vector of A2. Conway 
also proves 

THEOREM 13. .2 is a simple group of order 93150- 210- |M22|. 

Conway determines yet a third simple group inside .0. 

THEOREM 14. (i) .0 acts transitively on the set A3. 
(ii) If .3 denotes the subgroup of .0 fixing any one vector of A3, then .3 is a 

simple group of order 2n • 37 • 53 • 7 • 11 • 23. 

The groups .1, .2, and .3 are sporadic groups, distinct from any of those 
previously discovered. 

As is clearly evident, there is a rich geometry associated with .0 and the 
Leech lattice. In addition to the groups M22, Af23, M24, also Mc, HS, /2, and 
Suz arise in a natural way as subgroups of .0. For example, .0 acts transitively 
on A5 and on A7. If .5 and .7 denote the corresponding one-point stabilizers, 
then .5 s Aut(Mc) and .7 s HS. Furthermore, .0 has an element of order 3 
which acts fixed-point-free on A. Its centralizer in .0 is the 3-fold cover of 
Suz. Since J2 < Suz, also J2 < .0. 

Thus if Conway had studied the Leech lattice some five years earlier, he 
would have discovered a total of seven new simple groups! Unfortunately he 
had to settle for three. However, as consolation, his paper on .0 will stand as 
one of the most elegant achievements of mathematics. 

As promised earlier, we conclude this section with a brief description of 
Thompson's construction of the group F3. Having determined the character 
table of a simple group G of type F3 (a highly nontrivial task), Thompson 
concluded that G possesses exactly one irreducible rational valued character 
X of degree 248. Since the complex Lie group ^(C) possesses a 248-dimen-
sional representation, it was natural for Thompson to try to relate G to the 
group £8(C) [205], [206]. 

As a further indication of this connection, if G exists, then G must contain 
a subgroup D which is a nonsplit extension of E32 by L5(2). Dempwolff had 
studied groups D with such a structure and shown that at most one such 
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group D exists (up to isomorphism) and, in addition, every faithful represen­
tation of D has degree at least 248 [49]. Furthermore, one can show that the 
subgroup D of the presumed group G must also contain a subgroup Z)0, which 
is a nonsplit extension of Z4X Z4X Z4X Z4 by Âs. Moreover, if F is a 
vector space over C which affords the character x (of degree 248) and if one 
sets V0 = Cv(O2(D0))9 Thompson determined that V0 is 8-dimensional and in 
its action on V0, D0 preserves a certain set of 240 vectors, these vectors 
generating a lattice in V0 isometric to that of a root lattice associated with the 
Lie algebra 2?8. As a consequence, D0 can be considered to be a subgroup of 
£8(C). 

With such a striking conclusion, Thompson was convinced that £8(C) must 
contain a subgroup of the form D. With P. Smith's assistance on the 
computer, he was able to produce an extra element of ES(C)9 which together 
with D0 generated D. Thus ES(C) does indeed contain a subgroup of the form 
D; in particular, this proved the existence of the Dempwolff group. An 
independent construction of Z>, without the use of computers, has been given 
by Griess [234]. Moreover, this showed that there existed a module V of 
dimension 248, affording the character X\D anc^ that D preserved a certain 
lattice A of F (whence D < Aut(A)). Thompson went on to prove that 
Aut(A) s Z2 X G, thus establishing the existence of a unique simple group of 
type Fy 

The quadratic form KonV preserved by the action of D, not surprisingly, 
turned out to be the Killing form associated with the complex Lie algebra 2s8. 
Thompson showed that Aut(A) preserves K. Using K to give V the structure 
of a Lie algebra of type 2?8, Thompson also proved that D was the largest 
subgroup of F3 preserving this Lie multiplication. Finally as A is a lattice, one 
can "reduce mod/?"; and Thompson showed in the case p = 3 that F3 

preserves the corresponding Lie multiplication over GFÇ5). Thus, in fact, 
F3 < £8(3). 

Summarizing Thompson's remarkable results, we have 

THEOREM 15. There exists a unique simple group of type F3 and it is 
isomorphic to a subgroup of Es(3). 

9. Concluding remark. There you have the 26 beautiful, but enigmatic 
sporadic groups with Janko's fourth group and the Fischer monster still 
waiting to be born. Arising out of so many unrelated contexts, is it yet 
possible that there is a single, coherent explanation for their existence? If so, 
it will require some new vision, seemingly beyond the capabilities of the 
present generation, to discover it. 



CHAPTER III. RECOGNITION THEOREMS 

The proof of any classification theorem can be organized so that the last 
line reads: 

Therefore G is isomorphic to . . . , 

the dots to be filled in with some list of known (simple) groups. This means 
that we must have some effective way of recognizing-Le., identifying-^ 
simple üf-groups before we can hope to prove any classification theorem. In 
other words, we must be able to give some set of conditions on an abstract 
group G which are sufficient to imply that G is isomorphic to a specified 
(simple) A'-group <?*, Moreover, these must be intrinsic conditions, in the 
sense that they are attainable from an analysis of the internal structure of the 
group G. For example, the descriptions of Conway's groups in terms of the 
Leech lattice are extrinsic. To obtain intrinsic characterizations, one must 
either show that it is possible to reconstruct the lattice solely from 
information about their subgroups or else prove that their multiplication 
tables are uniquely determined by their subgroup structure. 

The discussion of the known simple groups in the previous chapter has 
clearly indicated the three primary methods of identifying the simple groups: 

A. By a presentation by generators and relations. 
B. By the action of the group on a suitable geometry. 
C. By a primitive permutation representation. 
These methods are not really distinct, for one can usually pass from one to 

the other with a slight addition or variation in the argument. However, in 
general, the form of the recognition theorem to be established depends upon 
the nature of the internal conditions which one expects to impose on the 
group G. Thus the Fischer transposition hypothesis leads most naturally to 
recognition theorems by geometries, especially those related to rank 3 
permutation groups. However, even there, in dealing with the exceptional 
groups over GF(2)9 Timmesfeld found it preferable to work with generators 
and relations. On the other hand, for general classification theorems 
-especially from the point of view of centralizers of involutions-the most 
useful form of recognition theorem is by generators and relations, particularly 
for identifying the groups of Lie type. 

At the present time, every known simple group with the exception of the 
Ree groups 2G2(3

n) and the sporadic groups J4 and Fx possesses such a 
characterization. In this chapter we shall describe some recognition theorem 
for each of the known simple groups, including the partially completed 
characterization of the Ree groups (but excluding J4 and Fj). 

1. The groups of Lie type. It was Tits who first realized that the conclusions 
of Theorem 2.1.3 could be used as a basis for characterizing the groups of Lie 
type [210]. He introduced the following terminology. 

DEFINITION 1. A group G is said to be a (B9 N)-pair provided 
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(1) B9 N < G and G * BNB; 
(2)B nN = H<3 N; 
(3) W = N/His generated by a set of involution w„ 1 < i < m; 
(4) If D, is a representative of w, in JV, then for each v E JV and every i, 

1 < i < m, we have 

JtoDqJ? < (5aB) u (5w,J?); 

and 
(5) Bv< * B, 1 < i < m. 
As noted earlier, these conditions imply that W is a Coxeter group with wif 

1 < i < m, as defining set. FT is the fFey/ group of G and m is the ran/c of G. 
For each subset ?T of °V = {i>f, 1 < i < m}, we set 

G5=<ftf%|f%Ger>. (1) 

Thus Gv = G if 3" = T and G = B if ?T = 0 . If 0 < 5T < % we call G5 a 
(proper) parabolic subgroup of G. 

We note that if we set N$ = iV nj^er an(* *et ^«r ^ e ^ e largest normal 
subgroup of G<$ contained inJB, then G^ = G^/B5 is a (J?, iV>pair relative to 
5^, iV .̂ The Weyl group of G^has generating set {ujt?,- E ?T}. 

We associate an incidence geometry § related to the G^ as follows. The 
objects of § are the cosets G<$g f or ?T C °V and g E; G. Two objects Y^ y2 of 
G are said to be incident if 7, n 72 ^ 0 -

Clearly G acts faithfully on the objects of S by right multiplication and this 
action preserves the incidence relation. We say that G induces a group of 
automorphisms of the geometry S. For example, if G = Ln(q) for some q and 
n, then W = 2W and it can be shown that the corresponding geometry is 
derived from that of 9n(qX projective w-space over GF(q). More precisely, 
this is the geometry of "flags" in $„ (q\ a flag denoting a set of subspaces Vi9 

1 < i < n9 of ^„(q) with F; of dimension i and Vi incident with V^x for all i. 
The group G acts as a group of automorphisms of this flag geometry. 
(Brauer's characterization of the groups L3(q) by the structure of the 
centralizer of an involution also involved the construction of the underlying 
projective 3-space %(q) (but not its flag geometry), which he built up from 
properties of the involutions of G. Ultimately he was able to show that G 
acted as a group of projective transformations of 93(q)9 which yielded at once 
the desired isomorphism G as L3(q).) 

As the example of Ln{q) indicates, we can view these (5, iV)-pair 
geometries as generalizations of the geometries of projective w-space. It is 
known, of course, that projective space of dimension n > 3 is necessarily 
Desarguesian; and, moreover, if the space is finite, then the number of points 
on each line is of the formpF + 1 for some prime/? and the geometry is that 
of ^n(p

ry It is therefore not completely surprising that these (B> iV>pair 
geometries can be classified when the group G has suitably high rank; and, 
furthermore, that such a classification in turn determines the possibilities for 
G. 

It was Tits who first realized this interconnection and in a fundamental 
elegant paper gave a complete classification of these incidence geometries 
[213]. The underlying notions of "apartments" and "buildings" which Tits 
introduced to carry out the classification have had far reaching applicability 
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to the whole theory of algebraic groups, well beyond its direct significance for 
finite group theory. However, as Tits' theorem is primarily a result about 
finite geometries and only indirectly about finite groups, we shall limit 
ourselves here to its statement, which we express in the following form. 

THEOREM 2. If G is a simple (J5, N)-pair of rank at least 3, then G E 
Chev(p) for some prime p. 

Nothing so definitive can be expected when G has rank 1 or 2. In fact, to 
say that G is a (B, JV)-pair of rank 1 is essentially the same as asserting that G 
is doubly transitive on the cosets of B. In the rank 2 case, Feit and G. 
Higman have obtained the following partial result by a difficult 
combinatorial analysis of the corresponding geometries [56]. 

THEOREM 3. If G is a (B, N)-pair of rank 2, then the Weyl group of G has 
order 4, 6, 8, 12, or 16. 

Each of these orders occurs. Indeed, the groups of Lie type of Lie rank 2 
are the groups L3(q\ Psp(49 q), U4(q)9 U5(q)9 G2(q)9

 3D4(q)9
 2F4(2

n) and the 
corresponding Weyl groups have orders 6, 8, 8, 8, 12, 12, and 16, respectively. 
The order 4 case is degenerate and occurs if G = Gx X G2, where Gl9 G2 are 
each (B9 JV)-pairs of rank 1. 

If B is a Borel subgroup of G E Chev(p), then B = HP, where P E 
Sylp(B) and H is a Cartan subgroup. In particular, P is nilpotent. Thus in the 
ranks 1 and 2 cases, one would certainly be content with a classification of 
(B9 TV)-pairs in which B satisfied some splitting condition relative to H. 

DEFINITION 4. A group G is called a split (B9 iV>pair if G is a (J?, iV)-pair 
and B = (B n N)U9 where U is a normal nilpotent subgroup of B. 

Obviously Tits' theorem includes the case of split (B, iV)-pairs of rank at 
least 3. The combined work of Hering, Kantor, and Seitz [113] and Kantor, 
Seitz [136] gives a classification of split (B9 N)-pairs of rank 1. Using these 
results, Fong and Seitz have obtained the following fundamental classi­
fication of split (B9 7V)-pairs of arbitrary rank [65]. 

THEOREM 5. If G is a simple split (B9 N)-pair9 then G E Chev(p) for some 
prime p. 

We shall say a few words about the rank 1 case in the next section as part 
of our discussion of doubly transitive groups. We make a few comments 
here about the rank 2 case. First of all, at the outset Fong and Seitz use the 
results of [113], [136] for the rank 1 case to determine the possible structures 
of a parabolic subgroup G. The bulk of their analysis is then aimed at 
showing that two parabolics of G "resemble" a pair of parabolics in some 
group G* of Lie type (and Lie rank 2). The recognition portion of their 
argument deals only with the problem of turning resemblance into 
isomorphism. 

The primary method used by Fong and Seitz to prove that G » G* is to 
show that the given resemblance conditions force G to have a unique 
multiplication table. Since G* is also a group which resembles G*, G* also 
has this multiplication table and so G and G* must be isomorphic. In view of 
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the double coset multiplication formulas for G as a (B9 iV)-pair, it is only 
necessary to establish the following facts: 

(a) The structures of the groups U and N are uniquely determined; 
(b) The actions of H on U and of N on H are uniquely determined. 

Theorem 5 covers every (simple) group in Chev(p) of Lie rank 2 with the 
single exception of the Tits group T = 2F4(2)'9 which is of index 2 in the 
(B, 7V)-pair 2F4(2) [212]. In proving the simplicity of T9 Tits derived a very 
pretty presentation of the group 2JF4(2). Parrott, in attempting to give a 
characterization of the group T9 first used Tits' presentation to obtain one for 
T by a standard procedure known as the Reidemeister-Schreier method, 
which is a general technique for finding a presentation of a subgroup from 
that of a group [157]. 

Let Pl9 P2 be a pair of parabolic subgroups of 2F4(2) (containing the same 
Sylow 2-subgroup) and let Ql9 Q2 be their intersections with T. Using his 
presentation of T, Parrott then proved the following result. 

THEOREM 6. Let G be a simple group, let S E Syl2(G)9 and let Rl9 R2 be 
2-local subgroups of G containing S such that R; s Gi9 i = 1, 2. Then G ss T. 

The given presentation enabled Parrott to show that the subgroup G0 = 
</?!, R2} « T. It follows easily from this that either G0 is strongly embedded 
in G or G0 = G. Bender's theorem (see §IV.l) now forces G = G0 s T. 

Actually Theorem 6 paraphrases only the very end of Parrott's analysis. 
The 2-local Qx is, in fact, the centralizer of a 2-central involution of T9 02(QX) 
is a metabelian group (i.e., 02(oi)' *s a b e ^ a n ) of order 29 and Qx/02(Qx) *s a 

Frobenius group of order 20. Parrott's main theorem is a characterization of 
T in terms of the approximate structure of Qx. Thus he showed that a simple 
group G in which the centralizer Rx of a 2-central involution closely resem­
bles Qx is necessarily isomorphic to T. The bulk of the proof involves the 
construction of the second maximal 2-local subgroup R2 containing a Sylow 
2-subgroup of Rx and determination of the precise structure of Rx and R2. 

It should be noted that Thompson uses Parrott's result in his classification 
of ^-groups [199]. 

We conclude with a brief description of a second method of identifying 
groups of Lie type by means of a presentation known as the Steinberg 
relations. It is too technical to present in complete detail; we first illustrate 
with the special linear group SL(n9p

m). 
Let H be the Cartan subgroup consisting of diagonal matrices of 

determinant 1. We let htj{t) be the diagonal matrix with 0 *£ t E GF(pm) in 
the /7th position and t~l in the^/th position, and l's elsewhere. Also let Uy be 
the elementary abelian subgroup of SL(n9p

m) of order pm consisting of the 
matrices with l's along the diagonal and 0's elsewhere except in the yth 
position, 1 7̂ =y, 2 < i9j < n. Then each UtJ is irreducible as an //-module, 
H/CH(Uy) is cyclic of orderpm - 1 (and is covered by (hM)\t E GF(pm)}) 
and H/CH(U0) transitively permutes the elements of Ùf. We can identify 
H/CH(Uy) with the multiplicative group of GF(pm) and Uy with its additive 
group. We thus write Uy(t)9 t E GF(pm)9 for the typical element of UtJ. We 
also set 
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U=(UiJ\i<j) and V-(Ug\i>j). (3) 

Then U and V are each //-invariant Sylow /^-subgroups of SL(n9p
m% 

consisting, respectively, of lower and upper triangular matrices with Fs on the 
diagonal 

Using matrix multiplication, we directly verify the following relations: 

[u„(t), ur/(0] = WA-"') + V M ' O (4> 
(where 8U is the Kronecker delta), whenever i ^j, i' ^ ƒ and i ^ ƒ or i' =£j 
(or both); and 

hyit) = ^.(0^(-r»)i4.(0^(-i)^(i)f4(-i) . (5) 
It can be shown that SL{n9p

m) is generated by the elements Uy{t) and that 
the relations (4), (5) together with the relations 

UyWW Uy{i + O and 

WW) - W> for a11 *> *'E GFQO, 
give a presentation of SL(n9p

m). 
Steinberg has shown that every (universal) Chevalley group G* of Lie rank 

at least 2 has an analogous presentation in terms of the elements of two Sylow 
^-subgroups U9 V of G* (p the characteristic of G*), each invariant under a 
given Cartan subgroup H of G* [186]. (Each group of Lie type is a 
homomorphic image by a central subgroup of its universal covering group.) 
Corresponding to the Uy above and their elements, there exist root subgroups 
of U9 V, These are //-invariant elementary subgroups of order pm and are 
labeled xa(t)9 where a is an element (a root) of the so-called root system 2 
associated with the complex Lie algebra £ from which G* has been construc­
ted. These roots are certain linear complex representations (i.e., 1-dimensional 
representations) of a Cartan subalgebra of £. In the SL{n9p

m) case, 
considered above, £ is the algebra of complex matrices of trace 0, the 
diagonal matrices in t are a Cartan subalgebra, and the root corresponding 
to Uy sends the matrix with diagonal complex entries hl9h29... 9hn into the 
complex number ht — hr 

These roots can be divided into positive and negative types and xa(t) E U 
or V according as a is positive or negative, respectively. Furthermore, given 
two roots a, j8 E 2 with a + /? =£ 0 (this is the restriction i ^j' or i' ^ y in 
(4)), the commutator [xa(t)9 x^{u)\ t9u E GF(pm)9 has the following 
expression, known as the Chevalley commutator formula, which generalizes the 
identities of (4): 

[*«(')> M»)] = n*fa+y/,(v v ) , (7) 
Here /,/ are restricted to positive integral values for which ia + jf/? is a root 
and the ĉ  are integers which depend on a, /?, but not on * and u. Steinberg 
showed that these relations together with the relations obtained by substitu­
ting an appropriate root a for the subscript ij and - a for ji in (5) and (6) for 
each a E 2 give a presentation of G* (except in the case G* s SL(29p

m)9 in 
which case slightly different relations are needed to obtain a presentation 
[186]). 
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In the Chevalley groups, the root groups xa(t), x„a(t) together always 
generate a group isomorphic to SL(2,pm). Thus G* is generated in a certain 
natural way from its SL2 subgroups. Curtis has, in fact, obtained a precise set 
of conditions on these SL2 subgroups which suffice to imply the Steinberg 
relations for the Chevalley groups [47]. Furthermore, his results give 
analogous conclusions for the twisted groups of Lie type. Also Phan has 
determined a similar set of conditions for the unitary groups, using its SU3 

subgroups in place of SL^s [159]. In practice, the Curtis-Phan relations make 
it easier to obtain a presentation for the given group G*. 

2. Doubly transitive groups. As already noted, the groups of Lie type of Lie 
rank 1 are doubly transitive groups, so this class of permutation groups plays 
an especially important role in the study of simple groups. As in the rank 2 
Fong-Seitz theorem, the arguments again split into two parts: resemblance 
and isomorphism. Although only the latter portion is strictly concerned with 
recognition, we prefer to treat the entire subject at this time so as to present a 
coherent picture. 

The Frobenius conjecture concerning fixed-point-free automorphisms of 
prime order arose initially from the study of transitive permutation groups G 
on a set ti in which only the identity fixes more than one point. Using 
character-theoretic arguments, Frobenius proved that the stabilizer H oî su 
point has a normal complement U whose nonidentity elements are precisely 
those permutations in G fixing no points of Ö [84, Theorem 4.5.1]. In 
particular, it follows that U is transitive on Ö. Hence, according to the 
definition of the term, U is a regular (normal) subgroup of G. These 
conditions also imply that under conjugation, the elements of H* induce 
fixed-point-free automorphisms of {/, Thus G = HU is a Frobenius group 
with kernel U and complement H, as this notion was defined in §1.1. We see 
then that Frobenius' conjecture is related to the nilpotency of this regular 
normal subgroup. 

As an immediate consequence of Thompson's proof of the Frobenius 
conjecture, one obtains the following result about doubly transitive groups. 

THEOREM I. If G is a doubly transitive permutation group on a set Ö and only 
the identity element of G fixes three points, then G is a split (5, N)~pair of rank 
1 with B the stabilizer of a point a 6 0 and B is a Frobenius group. Moreover, 
the Frobenius complement U of B acts regularly on fl — {a}. 

Indeed, if B is a subgroup fixing the point a E Q, the hypothesis implies 
that B is transitive on fi - {0} and only the identity of B fixes more than one 
point of fi - {a}. Hence by the Frobenius-Thompson theorem, B is a 
Frobenius group with nilpotent kernel U and complement H (where H is the 
1-point stabilizer of £ on 12 - {0} and hence the 2-point stabilizer of G on 
8). Clearly then U acts regularly on fi — {0}. 

In the mid 1930s, Zassenhaus proved the following characterization of 
certain doubly transitive groups satisfying the conditions of Theorem 1 [222]. 

THEOREM 2. Let G be a simple doubly transitive permutation group in which 
only the identity fixes three points and let B be the stabilizer of a point If the 
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Frobenius kernel of B is abelian, then G s L2(q)for some q. In particular, this 
is the case if a 2-point stabilizer has even order. 

The final assertion of the theorem is a consequence of the elementary 
assertion that a group admitting a fixed-point-free automorphism of period 2 
is necessarily abelian. Zassenhaus' argument is essentially geometric; how­
ever, in [84, Theorem 13.3.5], I have presented a generator-relation type proof 
of the theorem. 

Zassenhaus' theorem suggests the following terminology. 
DEFINITION 3. A doubly transitive permutation group in which only the 

identity fixes three points is called a Zassenhaus group or, for a brevity, a 
Z-group. 

The combined work of Feit, Ito, Suzuki, and Zassenhaus [52], [127], [189], 
[222] has produced a complete classification of simple Z-groups. It was in the 
course of determining those of odd degree that Suzuki was led to the 
discovery of the family of simple groups Sz(2n) which bears his name. 
Moreover, it was out of Feit's character-theoretic analysis of Z-groups with 
2-point stabilizers of odd order that his ideas about coherent sets of characters 
developed, which shortly thereafter were to play so fundamental a role in the 
solution of the odd order problem. Here is the main result. 

THEOREM 4. If G is a simple Z-group, then G = L2(p
n),p a prime, n> \,or 

Sz(2"), n odd, n > 1. 

My book includes a proof of Feit's theorem as well as an outline of 
Suzuki's work on Z-groups [84, Theorem 4.6.5] and [84, §16.4]. I shall limit 
myself here to some general comments which will help the succeeding 
discussion. 

Let G be a split (B, 7V>pair of rank 1, so that B = HU, where H = B n N 
and U is a nilpotent normal subgroup of B. Kantor and Seitz have established 
the following result in [136]. 

THEOREM 5. B contains a normal subgroup U0 with U0 < U such that 
B = HU0andH n U0 = 1. 

Thus the theorem reduces the study of split (B, iV)-pairs to the special case 
in which the nilpotent normal subgroup of B is disjoint from B n N. For 
simplicity, we shall say that such a (B, iV)-pair is strongly split. Note that by 
the above discussion, every Z-group is a strongly split (B, iV)-pair. 

Let G be a simple strongly split (B, JV)-pair, so that B = HU with H = B 
H N and U nilpotent and normal in B with i / n £/ = 1. If Ü is a represen­
tative of the generating involution of W = N/H, then every element g E G 
- B has a unique representation of the form 

g = xuxx)U2, where x G H and ux, u2 E U. (1) 

We call (1) the canonical representation of g. 
As in the rank 2 case, the multiplication table of G is completely 

determined by the following data (cf. (2) of the previous section. We note, 
however, that Fong and Seitz show that the analogue of (c) in the rank 2 case 
is a consequence of (a) and (b)). 
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(a) The structures of N and U; 

(b) The actions of H on U and v on H; and 

(c) The canonical representation of the element vuv for each u E U#. (2) 

For u E U#, we can write 

vuv = h(u)f(u)vg(u), (3) 

where /*(w) E //, and /(w), g{u) E £/. A solution of (c) amounts to a 
determination of the functions ƒ, g, A. Using the associative law for G, one 
obtains several, unfortunately implicit, relations among ƒ, g, A. To obtain a 
solution of (c), we must, in effect, solve these implicit equations and find 
explicit expressions for/, g, and h. 

Once the structure of H and U are determined together with the action of 
H on U and v on if, it will clearly suffice to determine the values of/, g, and 
A on some representative in each orbit of if on U#. 

For example, in the doubly transitive representation of L2(q) on the cosets 
of a Borel subgroup B = HU, if v denotes an involution inverting H, there is 
an element u0 E t / # such that 

vu0v = UQVUQ. (4 ) 

Similarly for the analogous representation of Sz(2n) (again v inverts / / ) , there 
is an element u0 E t/ of order 4 such that 

w 0 t ; = UQVUQ. (5 ) 

What we are saying is that L2(q) and Sz(2") are characterized by the 
structure of B, the action of v on /ƒ and equations (4) and (5), respectively 
-i.e., any doubly transitive group satisfying the corresponding set of 
conditions has a uniquely determined multiplication table and so is 
isomorphic to L2(q) or &(2W), respectively. (Zassenhaus' theorem can be 
proved in this maner.) 

In the case of simple Z-groups, it is not difficult to show, in general, that H 
must be cyclic and that H is inverted by v. Moreover, if 

\H\>l(\U\-l), (6) 

it follows easily that U is abelian, so G sa L2(q) by Theorem 2. In the 
contrary case, Feit's theorem implies: 

U is a/7-group for some prime/?; and | U: U'\ < 4(\H|)2+ 1. (7) 

Ito proved, using character theory, that there are no Z-groups satisfying (7) 
with p odd. (Recent general results of Sibley on coherent sets of characters 
yield an easier proof of Ito's theorem.) 

Suzuki, considering the case p = 2, showed first that H transitively permu­
tes the involutions of U. Then, applying a theorem of G. Higman, which 
classifies all 2-groups admitting a fixed-point-free automorphism transitive on 
its involutions [116], Suzuki was able to conclude that | U\ = 22n for some odd 
n > 1, that | # | = 2n — 1, and, furthermore, that the structure of B = HU is 
"almost" completely specified. More precisely, for each automorphism 0 of 
GF(2n), there is a uniquely determined group U{6) and a uniquely 
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determined action of H on U(0\ thus determining a unique extension 
B(0) = HU(0). We say that B is determined up to an element of the Galois 
group of GF(2n) (a cyclic group of order ri). (The groups B(0) are not all 
distinct; e.g., B{0) = B(0~1).) 

In the groups Sz(2n)9 themselves, one has 

02 = 2, (8) 

where 2 denotes the Frobenius automorphism x*-*x2 for x E GF(2n). 
Using the implicit functional relations for ƒ, g, h9 Suzuki was ultimately 

able to prove that «f G is any Z-group satisfying (7) with p = 29 then 
necessarily 02 = 2; and, in addition, he obtained explicit formulas for ƒ, g, 
and h9 thus showing that the multiplication table of G is uniquely determined 
(for each odd n > 1). All that remained was for Suzuki actually to exhibit 
groups satisfying the given conditions! This he did by choosing suitable 4 x 4 
matrices over GF(2n)9 one for each element of his canonical set of generators 
(see [84, p. 470]). 

The groups U3(q) and 2G2(3
W), n odd, are strongly split (2?, JV)-pairs of 

rank 1, but are not Z-groups (the 3-point stabilizers having the respective 
orders q + 1 and 2). In the unitary case, U is of class 2 and order q3 with H 
cyclic of order (q2 - l)/d9 where d = g.c.d.(3, q -f 1); while in the 2G2(3

n) 
case, U is of class 3 and order 33n with H cyclic of order 3n — 1, 

The combined efforts of O'Nan and Suzuki yield the following characteri­
zation of the unitary groups [151], [152], [190], [191], 

THEOREM 5. Let G be a strongly split simple ( J5, N)-pair of rank 1 satisfying 
the following conditions: 

(a) \G : B\ = q3 + 1, where q is a prime power; 
(b) H = B n N is cyclic of order q2 - 1 or (q2 — l) /3 with 3 dividing 

q+\. 
Then G a U3(q). 

The method of proof is similar in spirit to Suzuki's in the Z-group case: one 
must completely determine all the data listed in (2). Again B is determined up 
to an element 0 of the Galois group of GF{q). However, this time one must 
prove 

0 = 1 . (9) 

Although each part of the analysis is very difficult, particularly the explicit 
determination of ƒ and g, the greatest complications arise when q is odd and 
Wl — {q2 — l ) /3 . This case was brilliantly treated by O'Nan in his doctoral 
thesis. Included in his proof is the following preliminary result: 

THEOREM 6. If %q denotes the natural block design associated with the group 
U3(q), then the automorphism group of %q is isomorphic to Aut(U3(q)). 

To describe %q9 let F be a three-dimension vector space over GF{q2) and 
let <$> be a nondegenerate Hermitian form on V (Hermitian with respect to the 
Frobenius automorphism xt-*xq

9 x E GF(q2)). Let I denote the family of 
isotropic one-dimensional subspaces of V with respect to <J>. Then J has 
^ 3 + 1 points and the three-dimensional unitary groups U3(q)9 PGU(39 q)9 
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and Ant(U3(q)) act naturally on ƒ as doubly transitive permutation groups. A 
block of I is by definition the set of isotropic one-dimensional subspaces 
contained in a fixed nonisotropic two-dimensional subspace of V. Thus a 
block consists of q + 1 elements of ƒ. Moreover, there are exactly q4 - q3 + 
q2 blocks, every point of I is contained in exactly q2 blocks, and any two 
distinct points of I are contained in a unique block. Together the set of points 
and blocks of I form the unitary block design %g associated with U3(q). 

A corresponding characterization of the Ree groups 2G2(3
n) has yet to be 

obtained, despite the heroic efforts of Thompson to solve the problem. 
Thompson's analysis follows the same pattern as in the linear, Suzuki, and 
unitary cases. Unfortunately, even in the groups 2G2(3

n) themselves the 
explicit forms of the functions ƒ and g are horrendously complicated, invol­
ving literally hundreds of terms (in total contrast with the other cases). In 
fact, Ree manages to construct these groups using the values of ƒ and g on 
only very special H-orbits of U [161]. Hence a characterization of this family 
of groups appears to involve inherent difficulties. 

Thompson's partial results are as follows [200]: 

THEOREM 7. Let G be a strongly split simple (B, N)-pair of rank 1 satisfying 
the following conditions: 

(a) \G : B\ = 33n + In odd; 
(b)H = B n N is cyclic of order 3n - 1; 
(c) 0(H) has order | (3" - 1) and 0(H)U is a Frobenius group. 

Then we have 
(i) n > I and B is determined up to an element 0 of the Galois group of 

GF(33n); and 
(ii) If 02 = 3 (the Frobenius automorphism of GF(33n))> then G s 2G2(3

n). 

Implicit in Thompson's work is the additional fact that for each choice of n 
and 09 there exists at most one group G (up to isomorphism). Using 
Thompson's prior analysis, Mark Hopkins, in his recent Ph. D. thesis under 
Suzuki, has established this result for all n and 0. Furthermore, using the 
computer at the University of Illinois, he has also shown that, in fact, 02 = 3 
when n < 29. To complete the characterization of the Ree groups, it remains 
to force this same conclusion for arbitrary values of «. In his attempt to 
establish this equality in general, Thompson has determined a single 
polynomial which 0 must satisfy whose degree (but not its coefficients) is 
independent of the value of n. However, it is an equation with a great many 
terms. Perhaps the next generation of computers will be able to show that 
02 = 3 is its unique solution. Let me emphasize that to work on this problem 
requires only a rudimentary knowledge of finite group theory, for it quickly 
reduces to specific combinatorial questions about functional equations with 
coefficients in GF(3n). Hopefully this discussion will tempt some "nonspe-
cialist" to consider the problem. 

In the meantime we must allow for this indeterminacy. Thus we shall say 
that a simple group satisfying the conditions of Thompson's theorem is of Ree 
type (of characteristic 3). We shall write 2G2(3

n)*, n odd, n > 1, for any group 
of Ree type. Thus, for a given n, 2G2(3

n)* may conceivably include other 
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groups than the Ree group 2G2(3
n) itself. To accommodate these possible 

groups, we extend the definitions of ChevQ) and A -̂group to include all the 
groups 2G2(3")*. 

It is important to put the Ree group problem in its proper perspective. 
Obviously a "complete" classification of the finite simple groups requires a 
full determination of all groups of Ree type. Thompson's efforts clearly 
indicate the significance of such a determination for the structure of simple 
groups. As long as this question is unsettled, the classification will remain 
"incomplete". On the other hand, it is equally valid to assert that a solution of 
the Ree group problem is "essentially" irrelevant to the classification. 
Without a solution of the problem, the final list of groups would simply 
include the groups 2G2(3

n)* rather than the groups 2G2(3
n) and the precise 

relationship between these two families would remain unresolved. The crucial 
point is that, whatever the answer to the Ree group problem, it will have no 
further effect on the final list of simple groups. This is based on the fact that 
any property of ^-groups needed for local analysis which can be established 
with the original definition of the term Chev(p) continues to hold under its 
expanded meaning. In other words, the internal structures of the groups 
2G2(3

n) and 2G2(3
n)* are "essentially" indistinguishable. From this point of 

view, the Ree group question is an "isolated" problem. The same is true for 
Fischer's monster and Janko's fourth group. The presently unresolved 
question of the existence of either group will have no additional effect on the 
classification since all analyses proceed on the assumption that these groups do 
exist. 

Thus as a first approximation, the finite group theorists will settle for a 
classification theorem whose list of simple groups includes certain ambiguities 
of existence or nonexistence. The essence of the classification theorem is that 
the resulting list should include every possible simple group. To the extent that 
it leaves certain residual ambiguities, these can then be investigated as totally 
independent problems. Hopefully one will eventually obtain the desired 
"complete" classification, but it is entirely possible that one or more of these 
problems will remain unresolved indefinitely. 

Bender, Hering, Kantor, O'Nan, Seitz, Shult, and Suzuki have each studied 
some further aspect of split (5, JV)-pairs l1 8 l I1 1 3l I136l> [1511> [1521> t 1 6 8] ' 
[189], [190]. Their combined efforts give a complete classification (up to the 
indeterminancy of the Ree groups). We state their result only in the simple 
case. 

THEOREM 8. If G is a simple split (5, N)-pair of rank 1, then G s 
£2(#)> U3(q)9 Sz(2n% or 2G2(3

n)*> n odd, n>\. 

We conclude this discussion with a statement of O'Nan's fundamental 
structure theorem for arbitrary doubly transitive groups [154]. Here if X is a 
simple group and X < Y < Aut(X), we call Y a holomorph of X. Moreover, if 
X is any permutation group on a set Q, we say that X acts semiregularly on £2 
if each orbit of X on Ü has cardinality \X\. If, in addition, X has only one 
orbit (whence X is transitive on £2), then X acts regularly on H. 

THEOREM 9. If G is a doubly transitive permutation group acting on a set Î2, 



THE CLASSIFICATION OF FINITE SIMPLE GROUPS 119 

then one of the following holds: 
(i) A one-point stabilizer of G on SI is a local subgroup of G \ or 
(ii) A one-point stabilizer of G on £2 is a holomorph of a simple group. 

Furthermore, theorems of Holt and O'Nan determine the possibilities for G 
in many of the local cases [124], [153]. 

THEOREM 10. Let G be a doubly transitive permutation group on a set Q in 
which no abelian normal subgroup acts regularly on Q. Suppose a one-point 
stabilizer Gx of G on Ü is a local subgroup of G and assume one of the following 
conditions holds: 

(a) | f i | (= |G: G{\)isodd; 
(b) G, is solvable; or 
(c) Gx has an abelian normal subgroup which does not act semiregularly on £2. 
Then G sa Ln(q)for some n and q, U3(q)for some q9 Sz(2m\ or 2G2(3

m)*for 
some odd m. 

Assuming the local and regular normal subgroup cases can be completed, 
Theorem 10 gives strong indication that the determination of all simple 
groups would yield as a consequence a complete classification of all doubly 
transitive permutation groups. 

3. The alternating groups. There is a classical presentation of the alternating 
groups, which can be used to identify them in any given classification 
problem. It is built up in a natural way from the symmetric group of two 
lower degree, using the involutions (12)(34), (12)(45),..., (\2){n — 1 n) and 
adjoining the 3-cycle (123) to this set. Thus we have 

THEOREM I. If the group G is generated by elements xl9 x2,..., xn_2 subject 
only to the relations: xx = 1, xf = 1, 2 < i < n — 2, (XjXi+l)

3 = 1, 1 < i < n 
- 3, and (XjXj)2 = 1, 1 < i < n — 4, i + I < j , then G = An. 

A proof of this theorem as well as of the corresponding presentation of 2„ 
can be found in Huppert [126, pp. 137-139]. 

4. The sporadic groups. The discussion of the last chapter shows that those 
sporadic groups constructed from the centralizer of an involution are satis­
factorily characterized once both existence and uniqueness is established. 
Hence for this set of groups, only Janko's fourth group and the Fischer 
monster remain to be characterized. Likewise the rank 3 sporadic groups are 
satisfactorily characterized by their one-point stabilizers with specified action 
on the three orbits. 

Thus, apart from J4 and F„ for which no characterizations yet exist, we are 
left with only the five Mathieu groups and the three Conway groups to 
consider. 

A. THE MATHIEU GROUPS. Remarkably the first characterization of Mu is 
due to Jordan in 1872, who proved 

THEOREM I. If G is a quadruply transitive permutation group in which only 
the identity element fixes four letters, then G a 24, 25, A6, or Mn. 

This result has been extended by M. Hall to the case in which the subgroup 
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fixing four letters has odd order (the group A7 representing an added 
possibility) (see [102, Theorem 5.8.1]). The proof divides into the cases n < 7 
and n > 8, where n is the number of letters on which G acts. In the latter 
case, n = 11 is forced and G is shown to be generated by a specific set of 
permutations. This means that G is uniquely determined from the given 
conditions (when n > 8); and as Mn satisfies these conditions, it follows that 

For the applications, the most useful characterization of the Mathieu 
groups is by their orders. Such characterizations have been proved for many 
other simple groups (particularly, sporadic groups) and is probably true for 
most simple groups (although not proved), as the orders of distinct simple 
groups rarely coincide. 

THEOREM 2. If G is a simple group of order \Mn\9 n = 11, 12, 22, 23, or 24, 
then G s Mn, 

Stanton, a student of Brauer's in the late 1940s, treated the cases n = 12 
and 24 in [181]. The cases n = 22, 23 were done by Janko [133] and the case 
n = 11 by W. Wong [221] as part of more general classification theorems. 

One can follow essentially the same proof in each case. From the order of 
G and its simplicity, one first obtains its complete local structure and 
conjugacy classes of elements. From this one derives its character table. Now, 
using the Brauer trick, one produces a subgroup Gx of index n. The permu­
tation character on the cosets of Gx has the form lG •+ x» where x & 
irreducible, which implies that G is doubly transitive on the cosets of Gv 

Finally, using this permutation representation and the character table, one 
forces certain elements of G to be represented by specific permutations, 
which means that the multiplication table of G is again uniquely determined. 
Thus G is uniquely determined by its order; and as Mn is simple of the same 
order as G9 we conclude that G » Mn. 

B. THE CONWAY GROUPS. Characterizations of the Conway groups by the 
centralizers of their involutions have involved two distinct types of 
recognition theorems: 

(a) By construction of an associated graph. 
(b) By construction of a lattice from internal properties of the group. 

F. Smith has proved [176]. 

THEOREM 3. If G is a group with 0(G) = Z(G) = 1 in which the centralizer 
C of an involution is 2-constrained with 02(C) extra-special of order 29 and 
C/02(C) a Sp(6, 2), then G ^X 

By general methods of 2-local analysis, Smith determines the involution 
fusion pattern and the order of G (using the Thompson order formula). Then 
by a delicate generator-relation argument, he shows that G must contain a 
(/?, iV)-pair subgroup HQ, which from known theorems he is able to identify 
as U6(2). The group H » NG(H0) is shown to be a unique extension of l/6(2) 
by an outer automorphism of order 2. Using only local considerations, he 
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then proves 

PROPOSITION 4. G is a primitive rank 3 permutation group on the cosets of H 
with subdegrees 891 and 1408, 

Finally Smith proves the uniqueness of the resulting graph. 
Patterson proceeds in a similar way to characterize .1 [158]. 

THEOREM 5. IfG is a group with O (G) = Z(G) = 1 in which the centralizer 
C of an involution is 2-constrained with 02(C) extraspecial of order 29 and 
C/02(C) s Q+(2) (of index 2 in 08+(2)), then G s . l . 

In this case the corresponding subgroup H is isomorphic to Suz, the cover 
of Suz by Z3, which Patterson constructs inside of G by generators and 
relations and identifies from its associated rank 3 graph. Likewise he 
determines the subdegrees of the permutation representation of G on the 
cosets of H (it is no longer of rank 3) and proves that the resulting graph is 
uniquely determined. 

Perhaps a similar approach is possible for .3, but Fendel, in his dissertation 
under Feit [58], followed a more character-theoretic path, ultimately reducing 
the recognition problem to a theorem of Feit concerning groups having a 
rational-valued representation of degree 23 [54]. Fendel proved 

THEOREM 6. If G is a group with O (G) = Z(G) = 1 in which the centralizer 
C of an involution is isomorphic to that of a 2-central involution of .3 {thus 
C - Sp(692)),then G - . 3 , 

(Here Sp(6, 2) denotes the covering group of Sp(6, 2) by Z2.) 
After completing the local analysis, Fendel obtains the character table of G 

and then argues that G possesses an irreducible rational representation of 
degree 23. Now he can invoke the following theorem of Feit to complete the 
proof. 

THEOREM 7. If G is a group having a faithful irreducible rational-valued 
representation of degree 23 and G has no subgroups of index 23 or 24, then G is 
isomorphic to a subgroup of Z2 X .2 or Z2 X .3, 

Feifs paper on integral representations of groups, of which this theorem is 
only one of the important results, is one of the deepest papers ever written in 
the representation theory of finite groups, intertwining algebraic number 
theory, modular character theory, and group actions on integral lattices. In it, 
Feit establishes criteria for the action of a group G on a lattice £ to force the 
uniqueness of £ up to isometry. Under the assumptions of Theorem 7, he 
argues that there are exactly three possibilities for £, each corresponding to a 
specific sublattice of the Leech lattice. 

C. SPORADIC GROUPS BY CENTRALIZERS OF INVOLUTIONS. In §2.4, we have 
listed the 11 centralizers of involutions which have given rise to sporadic 
simple groups; and we have just described how the Conway groups are 
determined from the centralizer of one of their involutions. Since Af24 (which 
has the same centralizer of a 2-central involution as He) occurs as one of the 
possible conclusions of Held's analysis, we have thus described 15 of the 
sporadic groups by centralizers of involutions and have discussed characteri-
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zations of 13 of them in terms of these centralizers (excluding J4 and F{). 
Each of the remaining 11 sporadic groups have similar characterizations; 

and although such results involve more than solely recognition theorems, we 
shall state them here to round out the discussion. In each case, the involution 
in question is 2-central (with the exception of M (22)). 

group centralizer of an involution 

Mn GL(2, 3) s 2 3 /g 3 , trivial core 
Mn 2 3 / ö 8 * ö8, trivial core 
M22 24/Z?16, 2 4 acting faithfully 
M23 L3 (2)/E l6, 2-constrained 
HS 2 5 / g 8 * <28 * z4,2-constrained 

Mc A% 
Suz Psp(4, 3)/Z>8 * D8 * D8,2-constrained 
Ru 25/X, where X as El6/Qs X El6, 2-constrained 

M (22) Û6(2) 
M (23) JVf(22) 

M (24)' Û4 (3) • 2 / (Ds )
6, 2-constrained 

Here t/4(3) denotes the cover of U4(3) by Z3. 
We now state 

THEOREM 8. If G is a simple group in which the centralizer of an involution is 
isomorphic to one of the 14 groups listed in this section (including those for 
.1, .2, .3) or one of the 12 groups listed in §11.4 (including M24), then one of the 
following holds: 

(i) G is isomorphic to one of the known sporadic groups; 
(ii) G is of type J4 or F{; or 
(iii) G « L3(3) or L5(2). 

The last two groups arise from 2 3 / g 8 and L3(2)/Ds * Z>8 * Z)8, respec­
tively. 

Many of the sporadic groups which are described here by involutions with 
2-constrained centralizers contain other involutions with non 2-constrained 
centralizers. For example, Z2 X 25, Z2 X Aut(^l6) and Z2X Z2X Sz(S) 
occur as centralizers of non 2-central involutions in M12, HS, and Ru, 
respectively. For the general analysis of groups of component type, it is 
important to have characterizations of these groups by such centralizers. 
However, it is better to leave this until the general discussion of "standard 
form" problems in Chapter VI. The same comments apply to the groups of 
Lie type of odd characteristic and the alternating groups. 



CHAPTER IV. GENERAL TECHNIQUES OF LOCAL ANALYSIS 

In this chapter we shall describe the principal methods and results which 
underlie local group-theoretic analysis. We shall not attempt the same for 
character theory, but shall limit our discussion of those techniques to the few 
specific places in the text in which they are needed. 

It is often difficult to distinguish between a "technique'* and a "classi­
fication theorem", for once a result of the latter type is proved, it becomes a 
tool for all subsequent classification theorems. We have not troubled oursel­
ves here with this distinction; rather our aim is to lay out for the reader the 
most important general ideas of local and internal geometric analysis which 
have provided the basis for the major results that have been established 
within the four phases of the classification of simple groups. 

1. Strong embedding. As we have already pointed out, the simplicity of G 
must somehow be used to force G to have an internal structure resembling 
that of a simple K-group G*. The single most general tool for accomplishing 
this is by means of the construction of a strongly embedded subgroup of G, 
followed by invocation of Bender's complete classification of groups which 
possess a strongly embedded subgroup (almost always in order to obtain a 
contradiction). 

There is a certain analogy between the nonexistence of strongly embedded 
subgroups in the general finite simple group and the nondegeneracy of the 
Killing form in the study of semisimple Lie algebras £. The latter enables one 
to conclude that £ has a trivial radical, which has profound effect on its 
internal structure. The appropriate analogue for finite groups G of the radical 
of £ is the core O(G) of G. If G is simple, 0(G) is, of course, trivial (since all 
groups of odd order are solvable). The nonexistence of a strongly embedded 
subgroup enables us to translate this condition into internal structural proper­
ties of G. 

Typically, the argument goes as follows. To show that the core of the 
centralizer C of an involution of G resembles that of some known simple 
group (the nature of this resemblance will be made clear in Chapters V and 
VI), one assumes false and on the basis of this assumption constructs inside 
of G a subgroup M with nontrivial core which is strongly embedded in G. But 
a consequence of Bender's theorem (Corollary 8 below) implies that 0(M) < 
0(G). However, 0(G) = 1 as G is simple, contrary to the fact that 0(M) ^ 1 
by construction. Thus we can deduce significant properties of 0(C) from the 
nonexistence of a strongly embedded subgroup in G. 

On the other hand, there are fundamental uses of Bender's theorem 
unrelated to cores, which occur at a later stage of the analysis, after one has 
shown that G resembles internally some simple AT-group G*. This time one 
constructs inside of G by purely group-theoretic means a subgroup G0 

isomorphic to G*. To obtain the desired conclusion that G a G*, one must 
obviously prove that G0 = G. Assuming this to be false, one argues that 
NG(G0) is strongly embedded in G. Bender's theorem (Theorem 5 below) then 

123 
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yields that G s L£F\ U3(2
n)9 Sz(2n) for some n. One now simply checks that 

none of these groups possesses a subgroup of the structure of G0. 
There are many equivalent definitions of a strongly embedded subgroup; 

we take the following: 
DEFINITION 1. Let X be a finite group and H a proper subgroup of X of 

even order. H is said to be strongly embedded in X provided NX(T) < H for 
every nontrivial 2-subgroup T of H. 

Clearly by Sylow's theorem, it suffices to impose the condition on sub­
groups T of a fixed Sylow 2-subgroup S of H. 

In the terminology of Definition 1.5.11, it follows that TSX(X) < X. Thus 
the assertion that a group X has a strongly embedded subgroup is equivalent 
to X having a proper 1-generated core. 

As a consequence of the definition, one can easily prove 

PROPOSITION 2.1f H is a strongly embedded subgroup ofX, then the following 
conditions hold: 

(i) If S E Syl2(H), then S E Syl2(X); 
(ii) For anyxEX-H9\Hf\ Hx\ is odd. In particular, H = NX(H); and 
(iii) In the permutation representation of X on the conjugates of H in X9 the 

l-point stabilizer has even order and every 2-point stabilizer has odd order. 

Further properties of groups with a strongly embedded subgroup H are 
established in [84, §9.2]. In particular, X and H each have only one conjugacy 
class of involutions and each coset of H in X — H contains precisely one 
involution. The latter condition implies that any conjugate H, of H distinct 
from H has the form Hx — H' for some involution / of X. In addition, if 
y E $(H), then H = Cx(y)K9 where K has odd order. Thus the embedding 
and structure of a strongly embedded subgroup is very restricted. 

A particular case of the split (J?, iV)-pair rank 1 theorem, proved by Suzuki 
in his study of doubly transitive groups of odd degree [189] is the following: 

THEOREM 3. Let G be a simple group having a strongly embedded subgroup 
H. If the permutation representation of G on the conjugates of H is doubly 
transitive and if H possesses a normal subgroup which acts regularly on the 
conjugates other than H9 then G ^ L2(2

n)9 n > 2, Sz(22n+l)9 n > 1, or (73(2
W), 

n >2% 

Bender took up the general strongly embedded problem at this point. His 
classification [19] proceeds in two steps, He first proves 

THEOREM A. If G is a group with a strongly embedded subgroup H9 then one 
of the following holds: 

(i) G is doubly transitive on the conjugates of H in G; or 
(ii) G has cyclic or quaternion Sylow 2-subgroups and 0(G) is transitive on 

the conjugates of H in G. 

Note that as H * NG(H) by Proposition 2, the permutation-theoretic 
assertion that an element x E G fixes a given conjugate of H is equivalent to 
the statement that x lies in that conjugate. 

The proof of the theorem is by induction on \G\ and involves a careful 
analysis of the normalizers in G of /̂ -subgroups of H which lie in at least 
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three conjugates of H,p an odd prime. Ultimately the proof is reduced to the 
special case in which G has cyclic or quaternion Sylow 2-subgroups (in which 
case G = 0(G)H and H = CG(z) for z 6 !(f l) by the Brauer-Suzuki theo­
rem to be discussed in §5). 

Bender's main result (stated here only for simple groups) is the following. 

THEOREM 5. If G is a simple group with a strongly embedded subgroup Hf 

then G a L2(2"), n > 2, Sz(22rt+l), n>\>or U£Ln\ n>X 

In view of Theorems 3 and 4, Bender can assume that G is doubly 
transitive on the conjugates of H in G and that a Sylow 2-subgroup S of H is 
not normal in H. Moreover, he can also take G to be a minimal counterexam­
ple (to a more general theorem classifying arbitrary finite groups with a 
strongly embedded subgroup). 

The following lemma enables Bender to apply induction. 

LEMMA 6. Let Y < H and suppose that both \Y n H\ is even and | Y n H8\ 
is even for some g E G - H'. Then Y n H is strongly embedded in Y. 

With the aid of the lemma, Bender proves the following key result 

PROPOSITION 7. Let Y be a subgroup of H which lies in at least three 
conjugates of H. Then we have 

(i)\CH(Y)\isodd;and 
(ii) CG(Y) transitively permutes the set of conjugates of H containing Y< 

To establish the theorem, Bender must derive a contradiction from his 
assumptions. This is obtained by a careful analysis of a certain nontrivial 
subgroup E of H of odd order. Let g E G — H and set D •» H n Hg, so 
that \D\ is odd. By Proposition 2, H « DS. Since S is not normal in H by 
assumption, a normal subgroup W of H chosen minimal subject to H » DW 
is necessarily distinct from S. This implies that D n ^ l , otherwise 
\W\ = \S\ and then W = 5, The pertinent subgroup E is defined to be 
D nw. 

Bender's theorem has the following fundamental corollary. 

COROLLARY 8. If the group G contains a strongly embedded subgroup H, then 
0(H) < 0(G), 

The corollary can be viewed as a nonsimplicity criterion, since it asserts, 
under the assumption of strong embedding, that the core of a proper 
subgroup lies in the core of the entire group. 

We come now to Aschbacher's generalization of Bender's strong embed­
ding theorem to groups with a proper 2-generated core, which as we have 
pointed out earlier yields as a corollary the classification of nonconnected 
simple groups with a connected Sylow 2-group. We state Aschbacher's result 
only in the simple case [6]. 

THEOREM 9. If G is a simple group with a proper 2-generated coret then 
G a L2(q\ q>3, Sz(22n+l)9 n > 1, t/3(2

w), n > 1, Mn> or Jv 

Aschbacher considers a minimal counterexample G (to a more general 
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theorem classifying all groups with a proper 2-generated core). The following 
lemma is easily proved. 

LEMMA 10. If z is an involution of G_such that Cz < G, m2(Cz) > 3, and Cz 

has a proper 2-generated core, then Cz = Cz/0(Cz) has a normal subgroup 
L^L2(T), £/3(2"), Sz(2"), &(8), SL2(5), or SL(29 5) * SL(2,5); and 
m 2 (Qr(L) )= l . 

Here Sz($) denotes a covering group of Sz(%) by Z2. Centralizers of 
involutions of the above general form were first considered in [95], where 
such involutions were called exceptional (actually our definition had not 
covered the cases in which L s SX(2, 5) or SX(2, 5) * SL(29 5)). In particular, 
we had there proved all but one case of the following result, which Asch-
bacher handles. 

PROPOSITION 11. If z is an exceptional involution of the simple group X and z 
is 2-central in X, then X ss Jx. 

This result depends in part upon Janko's characterization of Jx by the 
centralizer of an involution of the form Z2 X L2(4). 

To establish his main theorem, Aschbacher reduces the problem to a 
second major theorem which gives a basic criterion for a group to possess a 
strongly embedded subgroup. The reduction is carried out as follows. First, 
he argues easily that a minimal counterexample G (to the general theorem) is 
quasisimple with 0(G) = 1 and |Z(G)| < 2. If G is not simple, a careful 
analysis of a Sylow 2-subgroup S of G = G/Z(G) shows that S is isomorphic 
to a Sylow 2-subgroup of A9 and the fusion pattern of involutions in G is the 
same as that in A9. A theorem of Harada and me [87] is now applicable and 
yields that G s A9. It follows at once that G s A9, which is one of 
Aschbacher's possible conclusions. 

Thus the minimal counterexample G is simple. If m2(G) < 2, G is de­
termined from known classification theorems [2] and as G has a proper 
2-generated core, G s L2(q) for suitable odd q or Afu, so G is not a 
counterexample. Hence also m2(G) > 3. 

Let S E Syl2(G) and set M = TS2(G% so that M < G by hypothesis. Let z 
be an involution of Z(S). Then S < Cz, so m2(Cz) = m2(S) > 3. If Cz 4 M, 
then TS2(CZ) < Cz, so Cz has a proper 2-generated core. Hence z is excep­
tional by Lemma 10 and consequently C s / j b y Proposition 11. Again G is 
not a counterexample. We thus conclude that Cz < M. Furthermore, by 
definition of M, clearly M n M8 has cyclic or generalized quaternion Sylow 
2-subgroups whenever M =£ M8. Since Cz < M, this immediately yields that 
z E M8 if and only if g E M. 

Now let u be any involution of Cz such that Cu ^ M and let H be the 
subgroup of Cu generated by all (^-conjugates of z which lie in Cu. It is easily 
seen that either u is exceptional or m2(Cu) = 2. Now with the aid of Glaub-
erman's Z*-theorem (see §5), Aschbacher argues that H n M is strongly 
embedded in H. Thus he can invoke the following theorem (which we again 
state only in the simple case) to conclude that G has a strongly embedded 
subgroup (whence G s L2ÇLn\ Sz(2n% or U3(2

n) by Bender's theorem) and so 
is not a counterexample. 
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THEOREM 12. Let G be a simple group, S a Sylow 2-subgroup of G, M a 
proper subgroup of G containing S, and z an involution of Z(S). Assume the 
following: 

(a) z8 E M for g E G if and only if g E Af; and 
(b) If u is an involution of Cz with Cu 4 M and H = (zG n CM>, then 

H n M is strongly embedded in H 
Under these conditions, H is strongly embedded in G. 

We shall not outline the proof of the theorem. In spirit it is similar to that 
of Bender's strong embedding argument. In particular, Aschbacher shows 
that a minimal counterexample G is simple and acts doubly transitively on 
the set fi of G-conjugates of M. To obtain a contradiction, Aschbacher must 
carry out a deep analysis of the structure of this doubly transitive group G in 
terms of its action on Q. This analysis utilizes some key ideas from Shult's 
proof of his involution fusion theorem [169]. 

Recently Holt [125] and F. Smith [231] have independently determined all 
groups satisfying condition (a) alone. We state their result in permutation-the­
oretic language. 

THEOREM 13. Let G be a primitive permutation group on a set £2. If 
O(G) = Z(G) = 1 and some 2-central involution of G fixes exactly one point of 
£2, then either G has a strongly embedded subgroup or G ^An or 2„, n odd. 

Finally combining Theorem 9 with Theorem 1.5.12, we obtain the following 
result, which solves one of the major parts of the nonconnected simple group 
problem. For simplicity, we limit ourselves to the 2-rank at least 3 case. 

THEOREM 14. If G is a nonconnected simple group of 2-rank at least 3 with a 
connected Sylow 2-subgroup, then G ss L2(2"), n > 3, Sz(22n+l), n > 1, U3(2

n), 
n > 3, or Jx. 

2. Signalizer functors. As a first step in proving that the centralizer C of an 
involution in an arbitrary simple group G resembles the centralizer C* in 
some simple A -̂group G*, one would naturally try to prove that the core 0(C) 
bears a close relationship to 0(C*). However, as the following result shows, 
the structure of 0(C*) is very restricted. 

PROPOSITION 1. If G* is a simple K-group, then the core of the centralizer of 
an involution of G* is cyclic. 

In view of this result, we clearly need some general method for limiting the 
structure of the cores of centralizers of involutions in arbitrary simple groups. 
Signalizer functors represent the principal tool which has been developed to 
accomplish this purpose. I should like now to motivate this concept. 

To do so, let us suppose that our simple group G resembles internally a 
K-group G* (as far from simple as you wish). If t* E 5 (G*), then clearly 
Q>(G*)('*) < 0(CG*(t*)). (For general ^-groups, equality certainly need not 
hold.) If t is an element of G which corresponds in the "resemblance" to /*, 
there "ought to be" some subgroup of 0(CG(t)) = 0(Ct) which corresponds 
to C0(G*)(/*). To conceptualize the situation, let us put 0(Ct) for this 
hypothetical subgroup and let us set 
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0(G) - (0(Ct)\t E <f(G)>. 
If G truly resembles G*, then as G is simple, G* must be simple, too, and we 
should have 0(G*) = L But then 0(G) = 1 and hence 0(Ct) = 1 for each 
t E 5(G). Hence our objective must be to show that each 0(Ct) is trivial. If 
the resemblance is not quite so strong, we might hope as a reasonable first 
approximation to show that 0(G) has odd order inasmuch as each 0(Ct) 
corresponds to a subgroup of 0(G*). That such a conclusion would be very 
helpful in proving the triviality of each 0(Ct) can be seen by the following 
theorem, which deals with a special case. 

THEOREM 2. Let G he a simple group, S a Sylow 2-subgroup of G9 and assume 
the following: 

(a) W = (0(Cx)\x E $(S)) is of odd order; and 
(b) C„r(x) « 0(Cx)for every x E $ (S), 

Then 0(Ct) « 1 for every t E 5(C). 

It will be instructive to prove this theorem since it involves a typical 
application of the Bender-Aschbacher results. First, as G is simple, the 
Brauer-Suzuki theorem (see §5) implies that m2(G) > 2. Hence G contains a 
four subgroup U. For any such U9 set 

Wu = (0(Cu)\uEU"), (!) 

If U < S9 then by (1) and assumption (b), we have 

^ = {^(«)|«et/#)' (2) 
Since \W\ is odd and U is noncyclic abelian, it follows from (2) and 

Proposition 1.4,7 that 

W=WV. (3) 

Furthermore, if g E G9 it is immediate from (1) that 

(WvY-Ww. (4) 
Now set N = NG(W). We claim that 

TSt2(G)<N. (5) 

Indeed, let T < S with m2(T) > 2. We must show that NG(T) < N for any 
such T. It will suffice to prove that y E N for any y E NG(T). Since 
m2(T) > 2, T contains a four subgroup F. Then Vy < T and Vy is also a four 
group. Hence (3) holds for both V and Vy> whence 

W=WV= Wv,. (6) 

But by (4), Wy, = (Wvy9 so by (6), we have 

W = Wy. (1) 

Thus y E N = NG(W)9 proving (5). 
Suppose W 7*= 1. Since | W| is odd, W < G and as G is simple, it follows 

that N « A^WO < G. Hence rS 2(G) < G by (5) and $o G has a proper 
2-generated core. Now Aschbacher's classification theorem yields that G = 
L^tf), r̂ > 3, 5z(22,ï+1), n > 1, l /a^) , /a > 2, M„ or / , . However the precise 
centralizers of involutions in each of these groups is known and in none of 
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them does the subgroup W turn out to be nontrivial of odd order. Hence we 
reach a contradiction and so we conclude that W = 1. 

It follows now from (b) that 0(CX) = 1 for every x E §(S). Hence by 
Sylow's theorem, we obtain the desired conclusion 0(C$) = 1 for every 
t E 5(G). 

The theorem suggests that to prove that 0 ( Q = 1 for all t E 5(G), it 
would suffice to show for S E Syl2(G) that 

0(G;S) = (0(Cx)\x E 5(£)> has odd order; and 

Q(G;S)(X) = 0(CX) for each x E 5(5), 

There is a serious technical difficulty in trying to prove such a result 
directly-namely, if x & Z(S), then S < Cx9 so we do not even know at the 
outset that our hypothetical subgroup 0(CX) is S-invariant. This difficulty can 
be overcome if instead of working with S9 we limit ourselves to abelian 
subgroups A of Sy for then if x E §(A\ we shall at least have A < Cx. 
Clearly there will be no loss if we restrict ourselves to elementary abelian 
subgroups of S. 

Thus we should like to be able to prove, for suitable elementary abelian 
A < S, that 

0(G;A) = (0(Cx)\x E y l # ) has odd order; and 

CO(G,A)(X) = O(Cx) for every x E A#. 

In the presence of connectedness (see Definition 1.5.10), such a result will be 
entirely sufficient; and this will help to explain the fundamental importance 
of this condition. Indeed, we have 

PROPOSITION 3. Let G be a connected group (or a group with a connected 
Sylow 2-subgroup) of 2-rank at least 3 and let S E Syl2(G). If (9) holds for 
every abelian subgroup A of S with m2(A) > 3, then (8) holds for S. 

PROOF. If A is an elementary subgroup of S with m2(A) > 3 and B a 
noncyclic subgroup of A% it is immediate from (9) that 9(G;B) = 0(G;A). 
Using this equality together with the connectivity of G (or S), it is an easy 
exercise to prove the following statement: 

0(G;U)~0(G;V) (10) 

for any pair of four subgroups U and V of $, Since any involution of 5 lies in 
some four subgroup of S9 this implies that 

0(G;S) = 0(G;U) (11) 
for any four subgroup U of $. Also connectivity implies that U < A for some 
elementary A < S with m2(A) > 3, so \0(G;U)\ is odd by (9) and hence 
\0(G;S)\ is odd. Since any x E i(S) lies in some such A, it also follows 
(using (9)) that Q(G;S)(x) » 0(CG(x)), so (8) holds. 

This entire discussion has been based on the assumption that G resembles a 
^T-group G*% so that we have been implicitly assuming that a likely candidate 
for 0(Ct), t E 5(G), is actually available. How then do we identify a "good" 
candidate in an arbitrary simple group? Again we can use the case that G 
resembles G* as a guide. Indeed, if x*9 y* are commuting involutions of G*, 
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the following equality holds 

CoiG*>{x*) fi CG. (y*) - Comiy*) PI CG. (x*)9 (12) 

inasmuch as both of these groups are equal to Q>(G*)«.x*,.y*». 
This identity suggests that good candidates for 0 ought to satisfy the 

following condition for every pair of commuting involutions x,y of G: 

0(cx) n cy = 0(cy) n cx. (13) 

These were the kind of considerations which first led me to the concept of a 
signalizer functor and to the original version of what is now known as the 
signalizer functor theorem [82], [83]. However, a major underlying influence 
was Thompson's prior analysis of maximal subgroups in the odd order paper. 
That analysis begins with the so-called Thompson transitivity theorem, which 
we can state in the following extended form (cf. [84, Theorem 8.5.4]). 

THEOREM 4. Let G be a group in which all p-local subgroups are p-con-
strained for some prime p. Let P E Sylp(G) and let A be an abelian normal 
subgroup of P maximal under inclusion. Suppose A has rank at least 3. Then for 
any prime q ^p, any two maximal A-invariant q-subgroups of G are conjugate 
by an element of CG(A). 

The condition mp(A) > 3 is critical, so that the result only applies to primes 
p for which mp(G) > 3 (Definition 1.5.16). 

In the odd order context, this was the first step in establishing the following 
crucial result [57]. 

THEOREM 5. Let G be a simple group of odd order with all proper subgroups 
solvable, let P E Sylp(G) for some prime /?, and let A be an abelian normal 
subgroup of P maximal under inclusion. If mp(A) > 3, then the set of all 
A-invariant p'-subgroups of G generates a pf-group. 

Call this group 0(G;A). For a E A#, it follows from the assumptions of 
the theorem that Ce{G.A){a) < Op(Ca). Since Op(Ca) is itself an ^-invariant 
//-group, equality must hold. Hence we obtain as a corollary: 

COROLLARY 6. Under the assumptions and notation of Theorem 5, (Op>(Ca)\a 
E A#) is a //-group. 

Since A <\7 P by hypothesis, P permutes the set of all ^-invariant //-sub­
groups of G under conjugation and so normalizes their join 0(G ; A). Since 
every P-invariant //-subgroup of G is certainly ^-invariant, we obtain the 
following further corollary, which was the goal of this phase of Thompson's 
analysis. 

COROLLARY 7. Under the assumptions and notation of Theorem 5, G possesses 
a unique maximal P-invariant p'-subgroup. 

Thompson referred to any P-invariant //-subgroup of G as a P-signalizer; 
and the fact that there was a unique maximal P-signalizer in G was crucial for 
his subsequent analysis of the maximal subgroups of G, the aim of which was 
to prove that the 2-generated /?-core TP2(G) was a proper subgroup of G. 
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(Here already we get a clue to the importance of strong embedding and 
proper 2-generated cores.) 

Except for the fact that p is odd, we can see how closely these results 
parallel the earlier discussion of the section. In fact, Thompson was able to 
carry these ideas over to the prime 2 as well in the case of iV-groups. Thus 
signalizer functors represented an attempt to abstract the Thompson methods 
from the specific context in which all critical subgroups were assumed to be 
solvable, so that they could be applied to arbitrary simple groups (of suitably 
high rank). Not only was this true conceptually, but in addition, our proof of 
the signalizer functor theorem is very closely patterned on Thompson's proof 
of Theorem 5. 

Some time later, Goldschmidt [77], [78], utilizing ideas of Bender in his 
simplification of Thompson's odd order results [21], established a significant 
extension and improvement in the proof of the signalizer functor theorem. 
We shall follow Goldschmidt's terminology here. Since signalizer functors are 
also important in studying centralizers of elements of odd prime order, all 
definitions will be made for arbitrary primes. 

DEFINITION 8. Let X be a group and A an elementary abelian ̂ -subgroup of 
X for some prime/?. Suppose that for each a Œ A*9 there is associated an 
A -invariant //-subgroup (i.e. of order prime top) 9(Cx(a)) of Cx(a) such that 
for each a,b G A*9 

9{Cx{a)) n Cx(b) « 9(Cx(b)) n Cx(a). 

Then 9 is said to be an A-signalizer functor on X. 
We set 

9(X;A) = (9(Cx(a))\aeA*) 

and call 9(X;A) the closure of 9. 9 is said to be complete provided 

9(X;A) is a//-group; and 

C0(x;A)(a) = 9{CX (a)) for a E A *. ( M ) 

9 is said to be solvable if 9(Cx(a)) is solvable for each a E A # . 
Note that if p = 2, then each 9(Cx(a)) has odd order and so is solvable by 

the Feit-Thompson theorem. Hence in this case, every A -signalizer functor on 
G is necessarily solvable. 

The solvable signalizer functor theorem asserts: 

THEOREM 9. Let X be a group, p a prime, A an elementary abelian p-subgroup 
of X of rank at least 3, and 9 a solvable A-signalizer functor on G. Then 9 is 
complete. 

Goldschmidt's theorem covers all cases except when/? is odd and mp(A) = 
3, a case which was subsequently treated by Glauberman [72]. Bender has 
given an alternate proof of Goldschmidt's theorem [22], 

Since we have spent so much time motivating this theorem, we shall limit 
ourselves to the statement of a "generational" result which plays a key role in 
the proof of the theorem and which is also used to prove the existence of 
suitable signalizer functors. We refer the reader to Goldschmidt's highly 
readable solvable signalizer functor paper for a proof of the theorem. 
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PROPOSITION 10. Let A be an elementary abelian p-group with m^A) > 4 
which acts on the solvable pf-group X. Suppose for each D <A with Mp(D) = 
2, there is given an A-invariant subgroup X(D) of CX(D) such that 

(a) X - (X(D)\D < A, mp(D) = 2>; and 
(b) X{D) n CX(E) « X(E) n CX(D) for all D9E < A with m AD) -

mp{E) - 2. 
Then for any D < A with mp{D) = 2, we /im# 

C^D) = X(D). 
In particular, if Y is any A-invariant subgroup ofX9 we have 

Y = < Y n * ( £ ) ! # < ^ , "*,(£) = 2>, (15) 

Recently Lyons and I have obtained an extension of the theorem to 
nonsolvable signalizer functors, in which assumptions are made on the 
nonsolvable composition factors of the groups 0(Cx(a)) [92]. Our result has 
now been further extended by McBride [144] who has proved: 

THEOREM 11. Let X be a group, p a prime, A an elementary abelian 
p-subgroup of X of rank at least 3, and 0 a nonsolvable signalizer functor on X, 
If 0(Cx(a)) is a K-group for each a E A*9 then 0 is complete. 

3. ^-balanced groups. To make effective use of the signalizer functor 
theorem to study cores of centralizers in a group G9 we clearly need methods 
for constructing good signalizer functors on G. 

The so-called Thompson A X B lemma [84, Theorem 5.3.4], which is one 
of the basic elementary tools of local analysis, is integrally involved in the 
construction of essentially all signalizer functors. It asserts that if A X B acts 
on the/7-group P9 p a prime, with A a/?-group and B a//-group, then B acts 
faithfully on P if and only if it acts faithfully in CP(A). 

For example, using it, one can immediately establish the following result. 

PROPOSITION 1. Let G be a group of noncomponent type (equivalently, a group 
in which the centralizer of every involution is 2-contrained; see Definition 1.5.9) 
and A an elementary abelian 2-subgroup of G, If for each a E A*\ we set 

e(ca) = o(ca), 
then 0 is an A-signalizer functor on G. 

Suppose, in addition, that G is simple and connected of 2-rank at least 3. 
Then the signalizer functor theorem immediately implies that the assumptions 
of Proposition 2.3 are satisfied and consequently also the assumptions of 
Theorem 2.2. It therefore follows that 0 ( Q = 1 for every f E 5(G). This 
shows the power of the signalizer functor method. We further remark that it is 
now an easy matter, again with the aid of the A X 5-lemma, to show that 
F*(H) is a 2-group for every 2-local subgroup H of G9 thus establishing 
Theorem 1.5.19. 

As a consequence of the proposition and the definition of a signalizer 
functor, we have 

COROLLARY 2. If G is a group of noncomponent type, then for any pair of 
commuting involutions a,b E G, we have 
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o(ca) n Q - 0{cb) n cfl. (i) 
DEFINITION 3. A group G which satisfies (1) for every a, b G $(G) with 

[a, ft] = 1 is said to be balanced. 
Thus the statement that G is balanced is equivalent to the assertion that 

0 = O defines a signalizer functor on any elementary abelian 2-subgroup of 
G. Hence the results of the preceding section, when rephrased in terms of 
balanced groups, yield the following extension of Theorem 1.5.19, 

THEOREM 4. If G is a connected, balanced group with 0{G) ** 1 and 
m2(G) > 3, then 0(C$) = 1 for every involution t of G. 

If G is of noncomponent type, then L(Cx/0(Cx)) = 1 for every x G $(G). 
When such layers are nontrivial, we cannot expect G to be balanced in 
general. Indeed, this need not be the case even when G is of known type. 
Thus the question of balance is related to properties of these components. We 
shall make this connection more precise. 

DEFINITION 5. A simple group K is said to be locally balanced provided 
whenever K <H < Aut(K) and x G <S{H), we have 0(CH(x)) » 1. 

The following result shows the breadth of this concept for ^-groups. 

PROPOSITION 6. A simple group K is locally balanced provided (a), (b), or (c) 
holds: 

(a) K G Chev(2) with K & L2(4) or £3(4); 
(b) K s An with n even, n > 8; 
(c) K is sporadic with K & He, 

Note that L2(4) ^A5 and a transposition of 25 has Z2 X 2 3 as its centra­
lizes Also the unitary automorphism of L3(4) has l/3(2) as its fixed points, 
U3(2) being solvable with 0(U3(2)) s Z3 X Z3. Similarly, using the isomor­
phism A6 « 1^(9), we check that the case m = 6 must be excluded in (b). 
Likewise He possesses an outer automorphism of order 2 whose fixed points 
are a nonsplit extension of 27 by Z3, 

DEFINITION 7, £p(G) = {K\K is a component of L ( C x / 0 / Q ) , x G 

It is not difficult to prove (cf. [95]): 

PROPOSITION 8. If G is a group in which every element of ^(G) is locally 
balanced, then G is balanced. 

It turns out that the nonlocally balanced simple ^-groups satisfy conditions 
related to local balance. Moreover, these conditions hold for arbitrary primes 
and not only for the prime 2. To state them, we require a preliminary 
definition. 

DEFINITION 9. If X is a group and A an elementary abelian ̂ -subgroup of 
X,p a prime, we set 

AM- n OP(CM)-

Thus if M| = p, kx{A) = Op(Cx{a)), where <a> = A. 
DEFINITION 10. A simple group K is said to be locally k-balanced for the 

prime p, k a positive integer, provided whenever K < H < Aut(K) and A is 
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an elementary abelian /^-subgroup of H of rank k, we have &H(A) = 1. 
Thus local balance is exactly the same as local 1-balance for the prime 2. 

Note that if K is locally /^-balanced, then it is also locally m-balanced for all 
m > k. Hence the groups in Proposition 6 are locally m-balanced for all 
positive m (for the prime 2). 

Seitz has recently completed the analysis of local fc-balance for odd primes 
for the groups of Lie type [167]. The corresponding results for the alternating 
groups are easy to verify. On the other hand, in the case of the sporadic 
groups, O'Nan has prepared a systematic list of various local properties of the 
sporadic groups [156], from which Lyons has been able to check local 
A>balance for odd primes. Likewise local /c-balance for the prime 2 can be 
established from the already determined structure of the centralizers of 
involutions acting on simple jRT-groups. 

THEOREM 11. If K is a simple K-group, then either K is locally 2-balanced for 
the primep or one of the following holds: 

(ï)K^Lp(q)9p\q-l; 
(il) K^Up(q),p\q+ I; 
(iii) K s An, where either p is odd, n = spk + r with 2 < r < p — 1, or 

p *= 3 and n = spk + 4, orp = 2 and n = spk + 3; or 
(iv) p = 5 and K * MQ2). 

One also has: 

PROPOSITION 12. If K = Lp(q\ Up(q\ or M(22), then K is locally 3-balanced 
for the prime p. 

The groups An are exceptional. Indeed, if n = spk + r, with either p odd 
and 2 < r < p - I, or /? = 2 and r = 3, and we take H as 2„; then H 
contains an elementary abelian /^-subgroup A of rank k which acts 
"semiregularly" on spk letters and fixes the remaining r letters (i.e., each 
element of A* fixes none of the spk letters). Then for each a E A*, one 
checks that Op.(CH(a)) = Y, where Y s 2 r , the symmetric group on the r 
letters fixed by A. Hence Y = A ^ ^ ) if p is odd, while 03(Y) = A ^ ^ ) if 
p = 2; and so AN(A) =£ 1. Thus An is not locally /c-balanced for such a value 
of n. 

Just as local balance on components implies global balance, the same is 
true of local /^-balance. 

DEFINITION 13. A group G is said to be k-balanced for the prime p if 
whenever A is an elementary abelian /7-subgroup of G of rank k and b an 
element of G of order/? which centralizes A, we have 

AG04) H Cb < Op{Cb\ 

It follows that balance is the same as 1-balance for the prime 2. We have 
the following extension of Proposition 8. 

PROPOSITION 14. If G is a group in which every element of tp(G) is locally 
k-balanced, then G is k-balanced for the prime p. 

Just as balance leads immediately to the existence of signalizer functors, so 
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also one can construct signalizer functors when G is ^-balanced for the 
prime/?. 

PROPOSITION 15. Let G be a group which is k-balanced for some prime p and 
let A be an elementary abelian p-subgroup of G with mp(A) > k + 2. Suppose 
that Op(Ca) is a K-group {for example, solvable) for each a E A*. If for 
a E A*, we set 

0(Ca) = (AG(D) n Ca\D < A9mp{D) - *>, 

then 0 is an A-signalizer functor on G. 

Because of the assumption of fc-balance, each 0(Ca) < Op(Ca)9 so 0(Ca) is 
an ^-invariant //-subgroup of Ca. Also if k = 1, it is immediate that each 
0{Ca) = Op(Ca)9 whence G is balanced for p and so Op> is an A -signalizer 
functor. If k > 2 and each Op*(Ca) is solvable, one uses Proposition 2.10 to 
prove that 0 is an A -signalizer functor on G. McBride has shown that these 
arguments extend to the general case of the proposition. 

The theory of ^-balance (and L-balance in the next section) which John 
Walter and I developed [97], has had a great many applications to the study 
of //-cores of centralizers of elements of order/?. On the other hand, certain 
variations of 2-balance, introduced by Goldschmidt have produced signalizer 
functors which are even more effective for many classification problems; and, 
in particular, when p = 2 and t^G) includes alternating groups which are 
not locally 2-balanced [79], [80]. Goldschmidt's functors are always defined in 
terms of commutators of suitable subgroups of A on Op(Ca) for a E A*. 
However, in addition to or in place of local balance assumptions on the 
components of L(Ca/Op(Ca))9 they require assumptions on the embedding of 
A in Ca fora E A#. 

We shall give two examples, limited to the case p = 2. The first was used 
by Goldschmidt in the proof of his "product fusion" theorem (see §8) and 
later by Foote [67], Solomon [179], and others. It depends on the following 
definition. 

DEFINITION 16. Let A be an elementary subgroup of G of order 16 and 
write A = Ax X A29 where Al9 A2 are four groups. We say that G is core-sep­
arated with respect to the given decomposition provided for any a E A* and 
any component L of L(Ca/0(Ca))9 either AX or A2 centralizes L. 

PROPOSITION 17. Suppose G is core-separated with respect to the decomposi­
tion A = Ax X A2 of the elementary subgroup A of G of order 16. If for 
a E A* 9 we set 

HCa)~ f i [0(Ca)9Ai](0(CG(Aê))nO(Ca))9 
1 = 1,2 

then 0 is an A-signalizer functor on G. 

Note that no local balance conditions are required in this case, but only the 
core-separation property. The proof again depends on elementary genera­
tional statements (concerning the action of A on subgroups of G of odd 
order). Some time earlier Harada and I, in our study of groups with Sylow 
2-groups of the form dihedral X dihedral, had used an analogous functor, but 
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our proof depended upon specific properties of the components of 
L(Ca/0(Ca)). Goldschmidt's realization that such conditions were superflu­
ous was the basis for his completely general product fusion theorem. 

The second example was used by Aschbacher in the proof of his funda­
mental "classical involution" theorem [10] (see §VL6). It depends on the 
following definition. 

DEFINITION 18, A simple group K is said to be strongly locally 2-balanced 
with respect to the four subgroup A < Aut{K) provided for any subgroup H of 
Aut(K) containing KA9 we have àH(A) — 1 and [0(CH(a))9 A] = 1 for each 
aEA*. 

This commutator condition obviously holds if K is locally balanced, but for 
groups of Lie type of odd characteristic or alternating groups of odd degree, it 
depends very much upon the embedding of A in Aut(K). However, if 
K ss L2(q), q odd, q not a Fermât or Mersenne prime or 9, it fails for every 
choice of A. 

PROPOSITION 19. Let A be an elementary subgroup of G of order 8. For each 
pair of elements a, af E A4*, assume 

(a) a' centralizes all but at most one component L ofL(Ca/0(Ca)); 
(b) If L exists and <a> = CA(L), then L/Z(L) is strongly locally 2-balanced 

with respect to A/(a). 

Under these conditions, if B is a fixed four subgroup of A and for a E A**, we 
set 

8(Ca)=[0(Ca),B](0(CG(B))nCa), 

then 0 is an A-signalizer functor on <7. 

Note that A leaves L invariant and A/{a} is, in fact, a four subgroup of 
Aut(L/Z(L)) in (b). The proof of the proposition is very similar to that of 
Proposition 17. Ordinarily, the assumption of local 2-balance on components 
yields a signalizer functor only when A has rank at least 4 (cf. Proposition 
15). The significance of Aschbacher's result is that one obtains a functor even 
in the rank 3 case provided one has strong local 2-balance and the embedding 
assumption (a) of the proposition. 

4. L-balance. So far the discussion has focused on//-cores of centralizers of 
elements of order/? in a group G. The elements of &P(G) have entered only in 
relation to a reduction of the question of whether G is it-balanced for p to 
properties of the elements of £p(G). However, for the further analysis of the 
structure of the centralizers of elements of order p9 it is important to 
determine the relationship between those elements of tp(G) which occur in 
L(Ca/Op(Ca)) and those which occur in L(Cb/Op(Cb)) for commuting ele­
ments a, b of order p in G. We shall describe this relationship in the present 
section. We need some preliminary results and definitions [96], [97], 

PROPOSITION I. Let X be a group, p a prime, and set X ~ X/ Op{X). If K is 
a component of L{X), then X contains a unique subgroup K which is minimal 
subject to mapping on K. K is perfect and K has no proper normal subgroups of 
p'-index. 
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DEFINITION 2. If X, X, K, and K are as in the proposition, we call K a 
p-component of X. The product of all/^-components of X is called the p-lqyer 
of X and is denoted by Lp>(X). For completeness, we set Lp(X) = 1 if X has 
no^p-components (equivalently, if L{X) = 1), 

PROPOSITION 3. For any group X and any prime p, we have 
(i) The p-components of X are characterized as the set of minimal perfect 

subnormal subgroups ofX which are not p'-groups; 
(ii) Each p-component ofXis normal in Lp(X); and 
(iii) Every element of X induces by conjugation a permutation of the set of 

p-components of X. 

The following general property of finite groups is fundamental and is one 
form of what has come to be called L-balance [97], 

THEOREM 4. For any group G and any 2-subgroup T of G, we have 

MQ(r)) < hiG). 
The proof of this theorem, which is a fairly straightforward induction 

argument, depends ultimately on an important general result of Glauberman 
[70], concerning the automorphism group of a simple group, related to the 
well-known Schreier conjecture that the outer automorphism group of a 
simple group is necessarily solvable. 

THEOREM 5. If G is a simple group and S a Sylow 2-subgroup of G, then 
CAut{G)(S) h™ a normal 2-complement and, in particular, is solvable. 

As a corollary of Theorem 4, one obtains the more standard form of 
L-balance, 

COROLLARY 6.1fa,b are commuting involutions of the group G9 then 

LAL2.(ca) n Q) = L^L^cb) n ca). 
No analogue of Glauberman*s theorem has been proved for odd primes. 

However, such an analogue does hold for simple ^-groups. Hence the proof 
of Theorem 4 can be extended to yield the following two results, which are 
known as ^-balance. (Thus L-balance is the same as Z-̂ -balance*) 

THEOREM 7, If X is a K-group and P ap-subgroup of X for any prime p, then 
we have 

V(Q(P) ) < Lp{X). 

COROLLARY 8. Let G be a group in which allp-local subgroups are K-groups 
for some prime p. If a, b are commuting elements of order p in G, then 

M W ) n cb) = Lp.(Lp,(cb) n ca). 
One can give a slightly sharper form of this last result (and likewise of 

Corollary 6), 

PROPOSITION 9. Let G be a group in which allp-local subgroups are K-groups 
for some prime p and let a> b be commuting elements of order p in G* Let J be a 
p-component of Lp(Lp(Ca) n Cb) and let K be the normal closure of J in 
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Lp(Cb). Then we have 
(i) K is either a single (ay-invariant p-component of Cb or K is a product of 

p p-components cycled by a; and 
(ii) / is a p-component of Lp{C^K<a>y(a)). 

In a group G which is 1-balanced for p, we know that Op(Ca) n Cb < 
Op(Cb) for any pair of commuting elements a, b of order p in G. By 
arguments similar to those which establish the above results, one can give 
some description of the embedding of Op(Ca) n Cb in Cb even when G is not 
1-balanced for/?. We need a further definition. 

DEFINITION 10. If X is a group with Op(X) = 1 for some prime p, define 
Lp(X) = L(X)Op(Cx(P% where P E Sylp(L(X)Op(X)). Since all choices for 
P are conjugate by elements of L(X) (by Sylow's theorem), it is immediate 
that Lp(X) is determined independently of the choice of P. For an arbitrary 
group X, define L*(X) to be the complete inverse image in X of 
L*(X/Op,(X)). 

THEOREM 11. If X is a K-group and P is ap-subgroup of X for any prime py 

then we have 
Op{Cx{P)) < Lf(X). 

COROLLARY 12. Let G be a group in which allp-local subgroups are K-groups 
for some prime p. If a, b are commuting elements of G of order p, then 

op(ca) ncb< L*,{cb). 
5. /̂ -fusion. The term p-fusion, due to Brauer, refers to the conjugacy in a 

group G of subsets of a Sylow/^-subgroup of G; specifically, two such subsets 
are fused in G if they are conjugate by an element of G. This is a topic with an 
extensive history, having its origins in the transfer homomorphism and 
classical results of Burnside and Frobenius which give criteria for G to have a 
normal ̂ -complement [84, Theorems 7.4.3 and 7.4.5]. There have been many 
extensions of their results, which provide conditions for a group G to contain 
a normal subgroup of index p. When such results are applied to a simple 
group G, their effect is to force restrictions on the structure of a Sylow 
/7-subgroup of G. 

These transfer-type results deal with the "top" of a group. There is a 
second, fundamental theorem of Glauberman, known as the Z*-theorem [71], 
which deals with its base. The Z*-theorem is a beautiful generalization of a 
theorem of Brauer and Suzuki [32] which asserts that a core-free group with 
quaternion Sylow 2-subgroups necessarily has a center of order 2 (and hence 
is not simple). Together with Bender's strong embedding theorem, Glauber-
man's Z*-theorem undoubtedly constitute the two most important tools of 
local analysis. 

The Z*-theorem has itself undergone many important generalizations in 
recent years. These extensions will be described in subsequent sections. But 
we emphasize that just as the proof of the Z*-theorem makes explicit use of 
the Brauer-Suzuki theorem, so all these extensions invoke the ZMheorem to 
cover a minimal case. We should also mention that the Z*-theorem represents 
the single result of general local analysis that requires Brauer's theory of 
modular characters. 
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In the present section, we shall describe a few of the basic fusion results, 
which are used in local analysis and then give an application to groups of low 
2-rank. The most fundamental is undoubtedly Alperin's theorem, which 
asserts that in any finite group, /7-fusion is determined ^-locally in a very 
precise sense [1], (See also [84, §7.2].) There have been a number of refine­
ments of Alperin's theorem; we shall state Goldschmidt's [76]. 

DEFINITION 1. Let G be a group, P a Sylow ̂ -subgroup of G, and <>D a set 
of subgroups of P. If A, B are nonempty subsets of P and g E G, we say that 
A is ^ -conjugate to B via g if there exist subgroups Dl9 D2,..., Dn in Ô) and 
elements g„ g2,.. • ,gn in G such that 

( a ) a e J V c ( Z ) / ) , l < i < / i ; 
(b)A <Dl&ndA8l'8< < Z>/+1,1 < i < n-~ 1; and 
(c)g = gig2- * -gnandA* = B. 
Furthermore, we call D̂ a conjugation family (for P in G) provided 

whenever >4 and B are nonempty subsets of P which are conjugate in G, then 
v4 and 5 are necessarily D̂ -conjugate via some g EL G. 

THEOREM 2. Let G be a group, P a Sylow p-subgroup of G, and let D̂ be the 
set of subgroups D of P with the following properties: 

(a)NP(D)GSylp(NG(D)); 
(b) NG(D) isp~constrained; 
(c) D maps onto Op(NG(D)/Op(NG(D)))\ and 
(d) Either D = P or NG(D)/D has a strongly p-embedded subgroup. 

Then tf) is a conjugation family for P in G. 

Thus, in effect, the theorem asserts that any fusion (in G) of subsets of P 
can be "factored" into a product of conjugations each of which occurs in a 
p-local subgroup of G of a very particular shape. 

We turn next to the prime 2 and the Z*-theorem. However, we must first 
mention an elementary result of Thompson [199], known as his "transfer 
lemma", which has had considerable applicability in the analysis of 2-fusion, 
and gives a condition for a group to have a normal subgroup of index 2. 

PROPOSITION 3. Let G be a group, S a Sylow 2-subgroup of G, Ta maximal 
subgroup of S, and x an involution of S — T. Then either x is fused in G to an 
involution of T or else G has a normal subgroup N of index 2 with x £ N. 

To state the Brauer-Suzuki theorem, we need a definition. 
DEFINITION 4. For any group X, Z*(X) will denote the complete inverse 

image in X of Z(X/0(X)). 
Clearly Z(X/0(X)) is an abelian 2-group and Z*(X)<3 X, so by the 

Feit-Thompson theorem, Z*(X) < Sol(X). The Z*-theorem (and the Brauer-
Suzuki particular case) gives a sufficient condition for Z*(X) to contain 0{X) 
properly. Since a 2-group of rank 1 is either quaternion or cyclic and since it 
is an easy consequence of the Burnside transfer theorem that a group with a 
cyclic Sylow 2-subgroup always has a normal 2-complement, the Brauer-
Suzuki result can be stated in the following way: 

THEOREM 5. If G is a group with m2(G) = 1, then Z*(G) > O(G). In 
particulart if \G\ > 2, then G is not simple. 
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If G is a group with m2(G) = 1 and S E Syl2(G% then S contains only one 
involution z. Obviously then S - <z> has no involutions and so z cannot fuse 
in G to an element of S - <z>, Glauberman realized that it was this property 
rather than the precise structure of the Sylow 2-subgroup which underlay the 
character-theoretic analysis of Brauer and Suzuki. Thus the following defini­
tion is needed to state his Z*-theorem. 

DEFINITION 6. Let G be a group and S a Sylow 2-subgroup of G. An 
involution z of S is said to be isolated in S (with respect to G) if z is not 
conjugate in G to any element of S - <z>. 

Clearly then z is not conjugate in S to any element of S - <z>, so an 
isolated involution necessarily lies in Z(S), 

THEOREM 7. (Z*~THEOREM). Let G he a group and S a Sylow 2-subgroup of 
G. If z is an isolated involution of S, then z E Z*(G) 

If G is simple, we see that G has no isolated involutions and obviously also 
no normal subgroups of index 2. 

The analysis of 2-fusion in a group is concerned primarily with the 
consequences of these two conditions and because of this, it applies to the 
wider class of so-called "fusion simple" groups. 

DEFINITION 8. A group G is said to be fusion simple provided G has no 
normal subgroups of index 2 and Z*(G) = L 

The analysis of 2-fusion yields very strong conclusions when G has low 
2-rank. We should like to illustrate this fact as well as to show how some of 
the above ideas are used in practice by outlining the proof of a theorem of 
Alperin about simple groups of 2-rank 2 [3]. (The theorem is easily extended 
to fusion simple groups.) 

THEOREM 9. If G is a simple group of 2-rank 2 and S a Sylow 2-subgroup of 
G9 then S is either dihedral, quasi-dihedral, wreathed, or of type C/3(4) (i.e, 
isomorphic to a Sylow 2-subgroup of U3(4)). 

We can suppose S is not dihedral or quasi-dihedral, so that S contains a 
normal four subgroup F by [84, Theorem 5.4.10]. Since V^j S, F contains an 
involution z E Z(S). We fix such an element z. 

By the Z*-theorem, there is g E G and t E S — <z> such that t8 = z. Now 
let <3) be the conjugation family of Theorem 2. We conclude from the 
theorem that there exists D E D̂ and x E NG(D) such that 

u = zx^z. (1) 

Since CS(D) < D by definition of ^ , we have z E D9 whence z E Z = 
0,(Z(D)). Hence also u ~ z* E Z as x normalizes D and Z char D. Thus Z 
is noncyclic. Since m2(D) < m2(S) = 2, we conclude that 

Z - UX(D) = <z, K>. (2) 

Now let N « NG(V)9 C = CG(V\ and T = S n C. We have S E Syl2(N) 
as F\7 S. Thus T E Syl2(C) and \S : T\ < 2. Also N/C is isomorphic to a 
subgroup of 23. 

We now consider two cases according as u E T or u & T. If u E T, then 
<w, V} is elementary and again as m2(S) = 2, it follows that u E V, whence 
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V = Z. Thus NG(D) normalizes V by (2) and so NG(D) < N. Hence u is 
conjugate to z in N9 so certainly N ^ SC. This implies that N/C a Z3 or 23. 
Now a Frattini argument yields that NN(T) contains a 3-element y which 
transitively permutes the involutions of V. Since V = Q^T), >> thus transi­
tively permutes the involutions of T. G. Higman's theorem [116] now yields 
that T is either homocyclic abelian or of type £/3(4). 

If T = F, then either S » F or S is dihedral of order 8, contrary to 
assumption; so if T is homocyclic abelian, then necessarily |T| > 16. We 
conclude easily in this case that either S is wreathed or S « T. However, as G 
is simple, a theorem of Brauer [29] shows that the latter case cannot occur. 
Thus the theorem holds if T is homocyclic abelian. Likewise it holds if S » T 
is of type C/3(4). On the other hand, if S > T and T is of type I/3(4), an 
analysis of the automorphism group of T leads to a contradiction. Thus the 
theorem holds if u E T. 

Suppose finally that u&T. Then S = T<w> and T < S, so D = E(u\ 
where E = D n T. Also w g E. But « E Z < Z(D), and consequently D = 
E X O ) . Since m2(D) < 2, it follows that m2(E) » 1, whence E is either 
cyclic or quaternion. But z E D n r = £ , s o ( z > = Œj(£). K l£l > 4, it is 
immediate that <z> char D — E X <«>. Clearly then z and w cannot be 
conjugate in NG(D). Hence we must have |2?| = 2, whence D =* <z, u) is a 
four group. Since CS(D) < D, we conclude now from [84, Theorem 5.4.5] 
that S is either dihedral or quasi-dihedral, contrary to assumption. 

6. Stability and characteristic subgroups for odd primes. In Corollary 2.7, we 
have described a basic result of the odd order paper for primes p for which 
mp(G) > 3: namely, each/? € Sylp{G) has a unique maximal signalizer Wm 
G. From the preceding discussion, it is not surprising that Thompson was 
then able to prove, in the case W ¥" I, that 

TPa(G) < NG(W) < G. (1) 

On the other hand, when W= 1 (or as we would now say, when the 
signalizer functor is trivial), there is no obvious candidate for a proper 
subgroup of G having the property that it contains TP2(G). Thompson's first 
proof of the existence of such a subgroup was extremely difficult. Shortly 
thereafter, he discovered a brilliant, conceptual proof (it is this proof which 
appears in the final paper), based on so-called factorization lemmas, which 
have had a profound impact on the development of simple group theory and 
which introduced for the first time what is now called the Thompson subgroup 
of a /?-group. The proof then went through a second simplification, based on 
a theorem of Glauberman [69], which showed that for odd primes, the 
Thompson subgroup had certain remarkable properties, which allowed one to 
dispense with factorization lemmas altogether. 

However, no satisfactory analogue of Glauberman's theorem is known to 
hold for the prime 2; whereas factorization lemmas carry over in many cases. 
As a result, we have the ironic twist of fate that the ideas developed for 
studying odd local subgroups have come to play a fundamental role in the 
analysis of the 2-local structure of groups of characteristic 2-type. 

We leave the discussion of factorization lemmas until §10 and focus here 
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on Glauberman's achievements for odd primes. The starting point is the 
concept of p-stability which John Walter and I introduced to establish an 
extension of Thompson's odd order uniqueness results, applicable to the 
study of groups with dihedral Sylow 2-subgroups [93], [94]. 

DEFINITION 1. Let/? be an odd prime and X a group with Op(X) = 1. A 
faithful representation <3l of X on a vector space V over GF(p) is linearly 
p-stable if no /^-element of <Sl(X) has a quadratic minimal polynomial in its 
action on V. We say that X is linearly p-stable if each such faithful represen­
tation of X is linearly/^-stable. 

The natural representation of SL(2,pn) is not linearly/^-stable. We note 
that this definition is useful only for odd primes; for if p = 2, every element 
of <3l(X) of order p is an involution and so necessarily has a quadratic 
minimal polynomial. 

Walter and I, using a result of Dickson's on the generation of the group 
SL(2,pn) [84, Theorem 2.8.4] proved the following result. 

THEOREM 2. Let p be an odd prime and X a group with Op(X) = I. If X is 
not linearly p-stable, then X involves SL(2,p) (i.e., some quotient of a subgroup 
ofX is isomorphic to SL(2,p)). In particular, a Sylow 2-subgroup ofX is neither 
abelian nor dihedral. 

The second assertion is a consequence of the fact that SL(2,p) has 
quaternion Sylow 2-subgroups. 

We now extend this notion to the /?-local situation. Let Q be a nontrivial 
normal /?-subgroup of the group X and set̂  X = X/<f>(Q), so that_<2 = 
Ô/<KÔ) is elementary abelian. Setting X = X/C^Q), we can view l a s a 
group of linear transformations of Q, regarded as a vector space over GF(p). 
If x is a/?-element of J¥_such that [Q, x, x] = 1, then [Q, x, x] = 1, which in 
additive notation for Q asserts that x satisfies the equation (X ~ l)2 = 0. 
Hence if x ¥= 1, then x Jias a quadratic minimal polynomial on Q. Thus if 
also Op(X) = 1, then X is not linearly /^-stable. These remarks serve as 
motivation for the following definition. 

DEFINITION 3. Let/? be an odd prime and X a group with Op(X) = 1 and 
Op(X) 7̂  1. We say that X is p-stable provided for every normal /^-subgroup 
Q of X and every /^-element x of X such that [Q,x, x] = 1, if we set 
X = X/CX(Q), then x E Op(X). More generally, if Op{X) =£ 1, we say that 
X is p-stable if X/Op{X) is/?-stable. 

The point of the definition is that if X is not/7-stable and Opp(X) > Op(X), 
it is easily shown that some section of X is not linearly /^-stable. Hence we 
have 

THEOREM 4. If p is an odd prime and X is a non p-stable group with 
Opp(X) > Op(X), then X involves SL(2,p). 

Glauberman's first major result in this area, his so-called ZJ-theorem 
[69, Theorem 8.2.11], deals with/?-contrained/?-stable groups and involves the 
Thompson subgroup of a /?-group, which, in practice, has been defined in 
several slightly different ways. In the present context, we use the following: 

DEFINITION 5. If P is a/?-group,/? any prime, let &(P) be the set of abelian 
subgroups of P of maximal order and define 
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J(P) = (A\A<= #(ƒ>)>. 

Then J(P) is called the Thompson subgroup of P. It is clearly characteristic 
in P. 

For factorization lemmas, it is better to define the Thompson subgroup to 
be 

UP) = {A\A G fi,(P)>, (2) 

where &e(P) denotes the set of elementary abelian subgroups of P of maximal 
order (equivalently, of maximal rank). 

Clearly J(P) char P. Furthermore, if g is any subgroup of P containing 
J(P\ it is immediate from the definitions that J(P) = / ( g ) . Je(P) has the 
same properties. 

THEOREM 6. Let p be an odd prime and X a p-constrained group with 
Op(X) = l.IfX isp-stable, then Z(J(P)) is a characteristic subgroup of X. In 
particular, Z(J(P)) sj X. 

This is a remarkable conclusion since, even with the restriction of />-stabil-
ity, X can be fairly wild. Glauberman's proof of this theorem involves 
brilliant use of commutator relations. In his subsequent investigations 
Glauberman has pushed this technique to the status of a fine art. 

To exhibit the power of this result, we present an application, which will 
include the W = 1 case of the odd order paper (see §2). 

THEOREM 7. Let G be a group of characteristic p type in which allp-locals are 
p-stable,p an odd prime. IfPE Sylp(G), then we have 

r,,,(<?) < NG(Z(J(P))). 

Thus NG(Z(J(P))) is strongly /^-embedded in G. If G is simple of odd order 
with all proper subgroups solvable, it is immediate that all /^-locals are 
^-constrained and ^-stable. Moreover, in the W = 1 situation, it is not 
difficult to prove that every /?-local has a trivial //-core as well, so the 
hypotheses of the theorem are satisfied in this case. 

The proof is by contradiction. Set M = NG(Z(J(P))) and let H be a/?-local 
subgroup of G such that H £ M with g = P n H of largest possible order. 
Assuming the theorem is false, g ^ 1. We argue that g G Sylp(H). This is 
clear if Q = P as P G Sylp(G); so we may assume Q < P. Then Q < NP(Q) 
and so NG(Q) < M by the choice of H and Q. In particular, if Q < R G 
Sylp(H), it follows that NR(Q) < M n H. Since P G Sylp(M% this implies 
that (NR(Q)Y < P for some x G M. If NR(Q) >Q = P n H9 maximality of 
H and Q then yields that Hx < M, whence H < M, contradiction. Thus 
NR(Q) = Q and we conclude that Q = R G Sylp(H). 

Now Glauberman's theorem implies that Z{J{Q))<3 H, so if we set N = 
NG(Z(J(Q)))9 we have H <N.lî g = P, then iV = Af, so H < M, contrary 
to assumption. Hence Q <P and so NP(Q) > Q. But NP(Q) normalizes 
Z(J(Q)) which is characteristic in g, so JVP(g) < N. Thus P n N > Q and 
so TV < M by our maximal choice of H. Again H < Af, contradiction. 

With a little further arguing, Glauberman is able to draw additional 
conclusions, which require the following definition. 
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DEFINITION 8. Let G be a group, P a Sylow p-subgroup of G for some prime 
p9 and H a subgroup of G containing P. Then H controls p-fusion in G if two 
subsets of P conjugate in G are conjugate in H; and H controlsp-transfer in G 
if the largest abelianp-factor of G is isomorphic to that of H. 

By the "focal subgroup theorem" [84, Theorem 7.3.4], if H controls 
p-fusion in G9 it also controls p-transfer. However, the converse need not be 
the case since less information than complete p-fusion is required to de­
termine the image of G in P/P' under the transfer homomorphismu 

First we give a local version of Glauberman's results. 

THEOREM 9. Let X be ap-constrained9pstable group with Op(X) = 1 and let 
P E Sylp(X)9 p an odd prime. Then NX(Z(J(P))) controls p-fusion in X and 
hence also p-transfer. In particular, X has a normal p-complement if and only if 
NX(Z(J(P))) does. 

The final assertion follows from control of p-transfer together with a 
theorem of Tate [196] (or from control of p-fusion together with Frobenius* 
normal p-complement theorem). 

Using Theorem 9 and induction on \G\9 Glauberman obtains the following 
criterion for a group G to have a normal p-complement (cf. [84, Theorem 
8.3.1]). 

THEOREM 10. Let P be a Sylow p-subgroup of the group, p an odd prime. If 
NG(Z(J(P))) has a normal p-complernent9 then so also does (7. 

The celebrated Frobenius conjecture, Thompson's proof of which began 
the whole show, is an immediate consequence of the theorem. 

THEOREM 11. If a group G admits an automorphism <J> of prime order q fixing 
only the identity element of G9 then G is nilpotent. 

Let G be a minimal counterexample. If H is a nontrivial proper characteris­
tic subgroup of G9 then <f> acts on both H and G/H ; and is easily shown to be 
fixed-point-free on G/H. By the minimality of G9 H and G/H are both 
nilpotent, so G is solvable. However, it follows by elementary representation 
theory arguments that the theorem holds for solvable groups. Hence no such 
characteristic subgroup H exists. 

Obviously G is not a 2-group, as it is not nilpotent. Letp be an odd prime 
divisor of \G\. By the previous paragraph, Op{G) = Op(G) = 1 (as each is 
characteristic in G). It is easily proved that <f> leaves invariant some Sylow 
p-subgroup p of G9 whence <J> also leaves N » NG(Z(J(P))) invariant. Since 
Op(G) » 1, Z(J(P)) is not normal in G9 so N < G. Hence N is nilpotent by 
the minimality of G. In particular, N has a normal p-complement, so G does 
as well by Theorem 10. Thus G « Op(G)P * P is nilpotent, contradiction. 

If P E Sylp(G)9 it is immediate from Alperin's fusion theorem that any 
subgroup of G containing TFl(G) controls p-fusion in G. Hence as a corollary 
of Theorem 7, we have 

THEOREM 12. Let G be a group of characteristic p type in which all p-locals 
are p-stabte9 p an odd prime. If P E Sylp(G)9 then NG(Z(J(P))) controls 
p-fusion and p-transfer in G, 
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This entire discussion suggests several interesting general questions. 

(A) If G is a group of characteristic/? type and H is a/?-local 
subgroup of G, under what conditions is H contained in a/?-local 
subgroup of G which also contains some Sylow/?-subgroup of G? 

(B) If G is a group and P E Sylp (G ), p a prime, is there a 
wfunctorially defined" nonidentity characteristic subgroup K of 
P for which NG (K) controls /̂ -fusion or at leasts-transfer in G? 

(C) What can be said about the structure of a group X with Op (X) = 1? 

p an odd prime, which is not linearly/̂ -stable? 

(A) is concerned with the problem of "pushing up" /?-local subgroups, 
which is an essential part of any theorem which asserts that a group G of 
characteristic/? type has a proper 2-generated/>-core or stronglyp-embedded 
subgroup. The primary interest occurs for/? = 2 and the known results will be 
discussed in §12. 

The general answer to (B) is negative for />-fusion-the groups GL(3,pn) 
providing an easy counterexample, /̂ -stability seems to be an essential re* 
quirement. Remarkably Glauberman has shown that an affirmative answer 
for /̂ -transfer holds under very broad circumstances [73]. In fact, the only 
restriction is p > 5. The proof of this result involves extremely subtle com* 
mutator calculations coupled with tremendous ingenuity. To state it, we 
require a definition which extends some of the properties of the Thompson 
subgroup. 

DEFINITION 13. A p-conjugacy functor K on a group G, p a prime, is a 
mapping K: P i-> K(P) defined on the set of /̂ -subgroups P of G with the 
following properties: 

( a ) * ( P ) < P ; 
(b) If P 7* 1, then K(P) * 1; and 
(c) For any g G G, K(P8) - (K(P))g. 
It is immediate that the map JP H> J(P% P a /̂ -subgroup of G, defines a 

/?-conjugacy functor on G. 

THEOREM 14. Let G be a group, p > 5 a prime, and P E Sylp(G). Then there 
is a p-conjugacy functor K on G such that NG(K(P)) controls p-transfer in G, 
Moreover, K(P) char P< 

Glauberman defines for any />-group P two chains of characteristic sub­
groups of Py one increasing and the other decreasing, the terminal member of 
either of which can be taken as K(P\ We shall not attempt to describe them 
explicitly here nor shall we discuss the many other important results which 
Glauberman has established in this direction. We mention only that a 
corollary of the last theorem, when combined with the Burnside/7a^6-theorem 
(for the case of order 2a3*), proves the following long-standing conjecture. 

THEOREM 15. If G is a group in which every Sylow subgroup is its own 
normalize^ then G is not simple. 

Thompson was the first to study (Q in a general setting (Theorem 2 above 
can be viewed as a particular case of (Q) and he obtained a complete 
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solution when/? > 5 [203]. One may as well assume that X itself is a group of 
linear transformations of a vector space V over GF(p\ that X acts irreducibly 
on V, and that X is generated by the set of /?-elements D of X with quadratic 
minimal polynomial on V. Thompson calls (X, V) a quadratic pair under 
these conditions. 

Note that if x E D, then the quadratic condition implies that xp = 1, so x 
has order/?. 

THEOREM 16. If (X, V) is a quadratic pair f or the prime p > 5, then we have 
(i) X is semisimple with quasisimple components Xi9 1 < i < m9 V is the 

tensor product of subspaces Vi9 1 < i < m, and (Xi9 V?) is a quadratic pair for 
each i', 1 < i < m; and 

(ii) Each Xi E Chev(p) (excluding Es(p
r))9 1 < i < m. 

Near the beginning of his analysis, Thompson proves the following result, 
which shows that the hypothesis here is closely related to the Fischer-type 
situation. For simplicity, we state it only in the case that D is a single 
conjugacy class of elements of X. 

PROPOSITION 17. If x,y E. D, then either (x,y) is a p-group or (x,y) s 
SL(2,p")for some n. 

There are now several proofs of Thompson's quadratic pair theorem, each 
of which ends up constructing the underlying geometry (equivalently, the 
(B, N)-pair structure) from properties of D. Thompson makes explicit use of 
the module V; but Stark has shown [182], using Thompson's sharpened form 
of Proposition 17, that the theorem can be reduced to a purely group-theore­
tic characterization of the groups of Lie type of odd characteristic by 
centralizers of involutions (Aschbacher's "classical involution" theorem [10] 
(see §VI.6)). 

The case p = 3 is very interesting since a number of noncharacteristic 
3-groups have quadratic pair representations. Thompson's former student Ho 
has nearly completed the analysis in this case [119]-[123]. (Also his results 
include a proof of Thompson's theorem.) The essential difficulty is that the 
analogue of Proposition 17 includes the following groups: 

3-groups, SL(2, 3"), SL(2, 3) X Z3, and SL{2, 5). (3) 

Thus there are a greater number of possibilities for the underlying "geome­
try" when/? = 3. 

In Thompson's analysis, the "root" subgroups play a basic role. We define 
them here only when D is a single conjugacy class. If x E D, set 

Dx = {yED\V(y-l)=V(x-l)} and Ex = Dxu{l}. (4) 

Then it is easily shown that Ex is an elementary abelian/?-group. Ex is called 
a root subgroup of X. Since D is a single conjugacy class, \EX\ is independent 
of the choice of x E 2X 

Ho has proved 

THEOREM 18. If (X, V) is a quadratic pair for p = 3 and the root subgroups 
of X have order exceeding 3, then the conclusions of Thompson's quadratic pair 
theorem hold with p = 3, 
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Thus it is the case of root subgroups of order 3 which leads to groups 
outside of ChevQ). In this case, if E = <x> and F = <y > are root subgroups 
of X9 then (3) can be refined to the statement 

(E, F} s Z3, Z3 X Z3, a nonabelian group of order 27 and ... 
exponent 3, SL(29 3), 5L(2, 5), or 5L(2, 3) X Z3. w 

Ho has proved 

THEOREM 19. Le/ (X, V) be a quadratic pair for p = 3 wi'/A Jf quasisimple 
and assume that the root groups ofX have order 3. If (E, F} & SL(29 3) X Z3 

for every pair of root groups E9 F ofX9 then one of the following holds: 
(i) X E ChevQ) (excluding Es(3

r), r > 1); 
(ii)X *An9n> 5; 
(iii) X s t/„(2), Sp(69 2), 2)4(2), or G2(4); or 
( i v ) J s / 2 , St/z, ör .1. 

Thus only the SL(29 3) X Z3 case of root groups of order 3 remains open to 
complete the classification of all quadratic pairs. 

7. The Bender method, small class Sylow 2-groups, and strong closure. 
Bender has developed an alternate method for studying the cores of centra­
lizes of involutions in simple groups, based on ideas growing out of his 
simplified proof of Thompson's uniqueness theorems of the odd order paper, 
which Bender [20] first applied to give a very short proof of John Walter's 
classification of simple groups G with abelian Sylow 2-subgroups [214]. 
Walter's proof, predating signalizer functors, followed the same general 
approach the two of us had developed for investigating groups with dihedral 
Sylow 2-subgroups [93] (based upon Thompson's original odd order paper 
argument) and was technically extremely difficult. (Bender subsequently used 
his method to simplify large portions of the dihedral theorem as well [23].) 

The case m2(G) = 2 is covered by the dihedral theorem combined with a 
result of Brauer (both discussed in the next chapter); so one can suppose 
mi(G) > 3 in a minimal counterexample. The signalizer functor method 
(which can be used here, too, but with considerable effort in the case 
w2(G) = 3) is essentially constructive-!.^ one constructs a proper subgroup 
M o f G which, if not strongly embedded, at least controls a critical amount of 
2-fusion in G. By contrast, Bender focuses directly on a maximal subgroup M 
of G containing C for some x E 5(G). The question of whether M controls 
suitable 2-fusion related to the conjugacy class of x is then reduced to 
properties of F*(M) and its embedding in G. If 0(F(M)) is not a/?-group, 
Bender establishes powerful uniqueness theorems with respect to suitable 
subgroups of 0(F(M)) of nonprime power order and the entire argument is 
very smooth. The argument is equally smooth if either 02(F*(M)) ^=1 or 
F*(M) > F(M). However, the remaining case, in which F*(M) is a /?-group 
for some odd prime p9 requires special treatment. On the other hand, the 
cases m2(G) = 3 and m2(G) > 4 are treated uniformly throughout. As ex­
pected, the analysis of the subgroup structure of G uses several specific 
properties of X-groups with abelian Sylow 2-groups. 

The abelian Sylow 2-group theorem asserts the following. 
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THEOREM l. If G is a simple group with abelian Sylow 2-subgroups9 then 
G a L2(q)9 q = 3, 5 (mod 8), L2(2

W), n > 2, Jl9 or 2G2(3
n)*9 n odd, n>h 

Goldschmidt has obtained an important extension of Bender's proof of this 
result, which simultaneously generalizes Glauberman's ZMheorem as well as 
a deep theorem of Shult on the weak closure of an involution in its centralizer 
[169]. To state it, we need the following definition. 

DEFINITION 2. Let G be a group, P a Sylow /^-subgroup of G9p any prime, 
and Q a subgroup of P. We say that Q is strongly closed in P with respect to 
G provided whenever x E Q and xg E P for g e G, we have x8 E Q. 

Obviously P itself is strongly closed in P. If fl^JP) is elementary abelian, 
then clearly it consists precisely of the set of all elements of P of order p 
together with the identity of P and so is strongly closed in P with respect to 
G. In particular, this is the case if P is abelian or if p = 2 and P is quaternion, 

Goldschmidt was interested in the case in which a Sylow 2-subgroup S of a 
group G contained a nontrivial strongly closed abelian subgroup A. If S is 
abelian, we can take A — S and if S has an isolated involution x9 we can take 
A = <*>. Goldschmidt proved [79], 

THEOREM 3. Let G be a simple group and S a Sylow 2-subgroup of G. If S 
contains a nontrivial abelian subgroup A which is strongly closed in S with 
respect to G9 then either S is abelian or G has a strongly embedded subgroup. 
Thus G & L2(2

n)9 n>29 U3(2
n)9 n > 2, Sz(2n)9 n odd9 n > 1, L2(q)9 q = 39S 

(mod 8), Ju or 2G2(3
n)*9 n odd9 n>\. 

The primary difference between the Goldschmidt and the Bender situations 
is that in the abelian problem all proper subgroups of G axe ^-groups, 
whereas Goldschmidt is only able to assert this inductively for certain proper 
subgroups of G. Namely, if H < G and B = H f) A8 ¥= I for some g E G9 

then (BHy is a #-group. This makes for a more delicate analysis of the 
2-fusion of elements of A and the structure of the corresponding maximal 
subgroup M. Aschbacher's extension of Bender's strong embedding theorem 
(Theorem 1.9) is invoked at a critical juncture and enables Goldschmidt to 
conclude that G = <Cja E >4#>, 

The Bender method is so powerful when it is applicable that there have 
been attempts (notably by Thompson) to use it in place of signalizer functors 
for studying cores of centralizers of involutions in arbitrary simple groups. 
Unfortunately the case in which F*(M) is a /?-group for some odd prime p 
has so far constituted an insurmountable obstacle. The difficulty arises when 
M is not p-stahle, in which case the Glauberman Z/-theorem is not applica­
ble. This problem does not occur for Theorems 1 and 3, since in those cases it 
is immediate that G has no proper SL(29p) sections. 

There is one other general classification problem to which the Bender 
method can easily be applied: namely, in groups with class 2 Sylow 2-groups, 
which Gilman and I have carried out-however, using signalizer functors [EH]. 
Although, a priori, SL(29p) can occur as a proper section of a minimal 
counterexample G in this problem, we were able to eliminate this possibility 
very easily by showing in such a case that a Sylow 2-subgroup S of G had a 
nontrivial strongly closed abelian subgroup and then invoked Goldschmidt's 
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theorem to derive a contradiction. There is no doubt that the Bender method 
would have provided a shorter proof when G was of component type. 
However, we deliberately chose the signalizer functor approach in the hope of 
gaining further insight into the general centralizer of involution core problem. 

On the other hand, both approaches leave the identical problems to face 
when G is of characteristic 2 type. In the corresponding case of the abelian 
Sylow 2-group problem, it is immediate that a Sylow 2-normalizer is strongly 
embedded in G9 so G is determined directly from Bender's theorem. (This 
particular case is actually covered by an earlier result of Feit [53].) However, 
a considerably more involved argument is required in the class 2 case, which 
depends in a critical way on Thompson type factorization lemmas. Using 
them, one pins down the structure of the maximal 2-local subgroups of G and 
ultimately argues that G is a (B, iN/>pair of Lie rank 2, 

Here is the statement of the class 2 theorem. 

THEOREM 4. If G is a simple group with Sylow 2-subgroups of class 2, then 
G a L2(q), q = 7, 9 (mod 16), A1% Sz(2n)9 n odd, n > 1, l/3(2

rt)f n > 2, L3(2
n\ 

n>2,or Psp(49 2
n% n > 2. 

The groups L^q) and A1 arise in the dihedral case and the groups Sz(2n\ 
C/3(2

W) when G has a strongly embedded subgroup. 
A fuller discussion of the signalizer functor method will be given in 

Chapter VI. 

8. Product fusion and strong closure. In the course of determining all simple 
groups G with a given type of Sylow 2-group, one is often forced to consider a 
subsidiary problem involving the classification of groups with Sylow 2-sub-
group S of the form S = S% X S2 with S$ ^ 1, i ** 1, 2. Harada and I were 
the first to face this situation in our study of groups with Sylow 2-groups 
isomorphic to those of G2(q), q odd [88]. If / is a_2-central involution of such 
a group G, C ** Ct% C » C/0(C) and C * C/</>, our analysis of the 
2-fusion of G enabled us to show that C had a normal subgroup X of index 2 
with Sylow 2-subgroup S = StX S2, where^S1,, S2 are (isomorphic) dihedral 
groups. Thus to pin down the structure of C and hence of C,jve had first to 
determine the possibilities for X. (The existence of such an X was expected, 
for if G = G2(q\ then C has a normal subgroup X of index 2 with X a 
SX(2, q) * SL(2, q). Thus X/(t} a L2(q) X L2(q) and L^q) has dihedral 
Sylow 2-subgroups for odd q.) 

If S is abelian, the possibilités for X follow from the abelian Sylow 2-group 
classification theorem; so one can restrict to the nonabelian case. Harada and 
I established the following result [86]. 

THEOREM 1. If G is a group with no nontrivial normal subgroups of odd order 
or odd index and G has a nonabelian Sylow 2-subgroup S of the form 
S = Sl X S2 with Sx and S2 dihedral, then 

(i) G - Gx X G2 for suitable subgroups <7,, G2 of G; and 
(ii) For a suitable factorization of S9 Sê E Syl2(Gé)9 i = 1, 2. 

The point of (ii) is that the factorization of S is by no means unique. Since 
Gx and G2 have dihedral Sylow 2-subgroups, their possible structures are 
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determined from the dihedral theorem and hence so are those of G. Note also 
that the restriction on normal subgroups of odd order or index is clearly 
necessary to obtain a direct product factorization of G. 

An important first step in the proof of Theorem 1 is the following fusion 
assertion. 

PROPOSITION 2. For a suitable factorization of 5, St is strongly closed in S 
with respect to G, i = 1, 2. 

This is a natural result, since if G = G, X G2 with 5, G Syl2{G^ then 
indeed St is strongly closed in S with respect to G. It also suggests the 
following general definition. 

DEFINITION 3. Let S E Syl2(G) for any group G. If S = Sx X S2 with 
S; T^ 1 strongly closed in S with respect to G, i = 1, 2, we say that G has 
product fusion with respect to the given decomposition of S. 

In the context of the G2(q) problem as well as in other similar classification 
problems, not only does the analysis of 2-f usion yield the existence of Xmth 
Sylow 2-subgroup S of the form S = S, X S2, but also the fact that X has 
product fusion with respect to an appropriate factorization of S. Hence for 
the applications, it would have sufficed to assume G has product fusion in 
Theorem 1. 

Once the fusion pattern of G was determined, Harada and I were able to 
use signalizer functors and Bender's strong embedding theorem to prove the 
existence of the required normal subgroups Gl9 G2. Soon after this, F. Smith 
[174], [175] treated the dihedral X quasi-dihedral and quasi-dihedral X 
quasi-dihedral cases in similar fashion, followed by D. Mason [143] who 
considered dihedral X wreathed, etc. In each case, construction of the 
required signalizer functor used local balance properties of the elements of 
(^(G) (which had either dihedral, quasi-dihedral, wreathed, or quaternion 
Sylow 2-groups and so were ^-groups by prior classification theorems). Each 
of these product fusion theorems has had corresponding application to some 
classification problems. 

Some time later, Harris and I, investigating groups with Sylow 2-subgroups 
isomorphic to those of Psp(6, q\ q odd, [111] were forced to treat two 
subsidiary product fusion problems-dihedral X dihedral X dihedral and 
Psp(4, #)-type X dihedral. It was obviously time to consider the general case! 

We succeeded in establishing a completely general product fusion theorem, 
under the assumption that suitable sections of 2-local subgroups of G satisfied 
suitable local balance conditions, known to hold for all simple jKf-groups [90]. 
It is unnecessary to state our result explicitly, since very shortly thereafter 
Goldschmidt greatly improved upon it by showing that the balance assump­
tion was superfluous if one worked with core-separated signalizer functors 
(see Proposition 3.17) rather than ^-balanced functors [80]. He was thus able 
to prove the following lovely result. 

THEOREM 4. If G is a group with no nontrivial normal subgroups of odd order 
or of odd index and G has product fusion with respect to the decomposition 
S = SXX S2 of the Sylow 2-subgroup S of G, then G = GXX G2 with 
Si E Syl2(G^ i - 1, 2. 
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With a little additional effort, Goldschmidt established a definitive result 
about arbitrary strongly closed 2-groups. Here the term Ar(oo) denotes the 
ultimate term of the derived series of the group X. 

THEOREM 5. Let G be a corefree group, S a Sylow 2-subgroup of G, and T a 
subgroup of S which is strongly closed in S with respect to G. Then (CG(r))(oo) 

<vG. 

9. Weak closure and trivial intersection sets. We should like now to describe 
the fundamental group-theoretic consequences which Timmesfeld has ob­
tained from his root involution theorem. To state them, we need the notion of 
weak closure. 

DEFINITION 1. Let G be a group, H a subgroup of G, and K a subgroup or 
subset of H. Set 

V(cclG(K); H) = <tf*|X* <H9gE G>. 

(ccl denotes "conjugacy class" here). We call V(cclG(K); H) the weak closure 
of K in H with respect to G. If F(cclG(üT); H) = K9 we say simply that K is 
weakly closed in H (with respect to G). 

Very often one is interested in the case that H = P is a Sylow/^-subgroup 
of G for some prime/?. In that case, if K is strongly closed in P9 it is clearly 
weakly closed. The Thompson subgroup J(P) (likewise Je(P)) is an example 
of a weakly closed subgroup of P. There is a classical theorem of Grim which 
asserts that if Z(P) is weakly closed in P9 then the largest abelian /^-factor 
group of G is isomorphic to that of NG(Z(P)) [84, Theorem 7.5.2]. 

Shult studied groups generated by a class of involutions D such that for 
x E Z>, the weak closure of x in its centralizer Cx is an abelian 2-group [269]. 
Timmesfeld obtained as a consequence of his root involution theorem the 
following partial extension of Shult's results. 

THEOREM 2. Let G be a group with 0(G) = 1 and Z(G) - 1 which is 
generated by a conjugacy class D of involutions such that 

(a) For any x E D9 the weak closure of x in Cx is a 2-group of class at most 
2; and 

(b) The product of any two distinct commuting elements of D is an element of 
D. 

Then G a L2(q)9 U3(q), Sz(q\ L3(q), 3D4(q), q = 2", G2(q), q = 2n
9n>l, 

A6 or J2. 

The theorem is proved by arguing that D is a class of root involutions and 
then invoking the root involution theorem, checking afterwards which groups 
on the list satisfy the given hypotheses. To prove that D is indeed a class of 
root involutions, we must show that if x, y E D with \xy\ = 2k for some 
k > 1, then necessarily k = 2. Now <x, y} is a dihedral group of order 4k 
and so Z«x?ty)) = <z> has order 2. One checks from the structure of {x,y} 
that there is a conjugate u of y in (x,y} such that <JC, u) is a four group with 
z = xu. But then u E D and so by (b), also z E D. Thus (x,y} < Cz and so 
by (a), (x9 y} is a 2-group of class at most 2, which immediately forces k = 2, 
as required. 

Timmesfeld's next major result represents a basic extension of Theorem 2 
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[209]. At the same time, it generalizes Glauberman's Z*-theorem, which 
corresponds to the case \A\ = 2 . We state the theorem only for simple groups. 

THEOREM 3. Let G be a simple group and A a nontrivial elementary abelian 
2-subgroup of G. If A is weakly closed in Ca with respect to G for each a E A*, 
then one of the following holds: 

(i)G^Ln(q)>$z(<l)>U3(q)9q = 2«; 
(ii) G a An9 6 < n < 9; or 
(iii) G a M^ M23, M24, He. 

The first step in the proof is to pin down the possible structures of the 
group (A9A

8) for g E G when A n NG(A8) ¥* 1. With this information, 
Timmesfeld is able to determine the normal subgroup X of N ** NG(A) 
generated by the conjugates in AT of A8 O N. In particular, he shows that the 
hypotheses of his theorem are satisfied in X/A for the image of A8 n X and 
so induction can be applied. In this way, he ultimately establishes the 
following result. 

PROPOSITION 4. Suppose A n NG(A8) ^ 1 for some g E G and let X denote 
the normal closure of A8 n NG(A) in NG(A). Then either X/A a Lf(2

m), A& 
Ai9 A9for some r and m or else 0(X/A) ¥* 1. 

Also the order of A and the action of X/A are determined when X/A is 
simple. In the linear case, with X/A $£ L3(2) or L4(2), Timmesfeld argues that 
the conjugacy class determined by any element of A* is a class of root 
involutions of G9 in which case G ss Lr+{(2

m) by the root involution theorem. 
On the other hand, if X/A ss JL3(2), L4(2), A69 Al9 or A%9 Timmesfeld proves 

that X = NG(A). Since NG(A) can also be shown to contain a Sylow 2-sub­
group S of G9 the possible structures of S are completely determined; and 
now the possibilities for G follow from various prior classification theorems 
for groups with such Sylow 2-groups. These latter results all concern groups 
of low 2-rank, a subject we shall discuss in considerable detail in the next 
chapter. 

In the final case, Timmesfeld argues that \A\ — 4 and hence that S is 
dihedral of order 8. Now the dihedral classification theorem yields that 
G ^A6OTA7. 

The theorem has a corollary, which is of fundamental importance for the 
study of groups of characteristic 2 type. 

THEOREM 5. Let G be a simple group and A a nontrivial elementary 
2-subgroup of G with the following properties: 

(d)A is a T.L set in G {i.e. A8 n A = lor A for g E G); and 
(b) A centralizes no distinct conjugate of itself in G. (In particular, this is the 

case if A is weakly closed in some Sylow 2-subgroup of G containing A.) 
Then G is isomorphic to one of the groups listed in Theorem 3. 

If A is weakly closed and A centralizes A8 for g E G9 then A A8 is a 
2-group, whence AA8 < S E Syl2(G) and so A8 = A by the weak closure of 
A. Thus the second condition of (b) implies the first. 

We shall prove that the hypotheses of Theorem 3 follow from those of 
Theorem 5, Indeed, suppose by way of contradiction that A is not weakly 
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closed in Ca for some a E A**9 in which case there is B = A8 < Ca with 
B ¥= A for some g E G.Fot b E B*9 a E A n Ab,soA = Ab usA is a T.L 
set by hypothesis. We conclude that B normalizes A. Likewise as A is a T.L 
set and B ^ At we have JB n 4̂ = 1. Set C =* 4̂ n NG(B). Since 5 normal­
izes A9 it follows that [C, B] < A n B =* l9 so B centralizes C. This forces 
C < ^4, otherwise J5 centralizes A and then 5 = A by hypothesis, contradic­
tion. Since BC normalizes B, we conclude that BC < BA. 

It follows now that there exists x E BA — BC with x normalizing BC 
Thus Bx < (BCy « BC. But |J3C| < |A4| = |J5|2, as A is conjugate to B. 
This forces B n £* ^ 1, so i?* » 5 as B is a T.L set. Hence x e iV^(5) = 
BC9 contrary to the choice of x. 

10. Factorizations and 3'-groups. We shall limit the discussion to the prime 2 
and shall write &(S)9 J(S) for &0(S), Je(S), respectively, for any 2-group S. 

The factorization methods derive from the following basic result of Thomp­
son [199]. 

PROPOSITION I. Let X be a solvable group with 0(X) = 1 and let S E 
Syl2(X). Jf 2 3 is not involved in X (in particular, if X is a y~group)% then we 
have 

X - CX{Z(S))NX(J(S)). 

We shall give the proof, which is quite elementary and very instructive, for 
it illustrates many ideas of local analysis-in particular, some used in the proof 
of Glauberman's ZZ-theorem. Set Z = Z(S). Since X is 2-constrained (as X 
is solvable) with trivial core, Z < Z(02(X)) and hence W < Z(02(X))9 where 
W is the normal closure of Z in X. Since Z(02(X)) is abelian, so therefore is 
W. Set C « CX(W) and T= S n C. Since WOX, also C^AT, which 
implies that T E Syl2(C). Also C < CX(Z) as Z < JF. 

It will suffice to prove that J(S) < T. Indeed, assume this is the case. Then 
J(S) » J(T) char T and so NX(T) normalizes J(S). But X - CNX(T) by the 
Frattini argument as T E Syl2(C)9 so X « CNX(J(S)) = CX(Z)NX(J (S))9 

as asserted. 
We can therefore assume thaty(»S) < T, whence^ there is A E $ (S) such 

tha t j < T. Hence ,4 « C. Set X = X/C, so that A ^J. We claim next that 
02(X) « 1. Indeed, let D be the preimage in X of 02(X). Then C < Z> <3 X 
and so D » C (5 n # ) as D/C is a 2-group. But S f\ D centralizes Z = 
Z(S) and hence so does D. Since D <\7 X, it follows that D centralizes the 
normal closure^ W of Z in X. Since C = CX(W\ this forces D - C and so 
1 = Z> » 02(X)i, as claimed, _ 
_Let jFjf ^(^T), the^ Fitting subgroup of X. By the_previous paragraph^ 
F < 0 ( * ) . But Cj(F) < JF by Proposition 1.5.4, as XJs solvable. Thus A 
does not centralize jFjmd so A does not centralize Oq(F) » Oq(X) for some 
(odd) prime q. Since A is an elementary abelian 2-group, one can prove easily 
by induction on the order of the jgroup Oq(X) that A normalizes, but does not 
centralize^ subgroup Y of Oq(X) ofjorder q. Then Aut(Y) is cyclic and so 
B = Cj(Y) has index 2 in A with Y A /B a dihedral group of order 2#, 

Nowjby definition of C, F acts faithfully on W and does not centralize W, 
Since BY - B X Y acts on FF and JB is a 2-group, the Thompson A X B-
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lemma implies that Y does not centralize W0 = Cw{B).Jày standard proper­
ties of abelian groups (W0 is abelian), it follows that Y does not centralize 
Wx = i\{W0). Now set Vx = [Wx, Y], so that Vx ^ 1. Viewing Wx as a vector 
space over GF{2), k is immediate that_y hasjio nontrivial fixed points on Vv 

Note also that as A normalizes both Y and B, A leaves W0, Wx, and hence Vx 

invariant. _ 
Next, let B be the subgroup of A of index 2 which maps on 5 . Then B 

centralizes Vx and so BVX is an elementary abelian subgroup of S. But 
A G éE(S'), so by definition of &{S), we must have m2{BVx) < m2{A). This 
forces Bx = B n Vjto be of index_at most 2 in F1# 

Finally let â G yl - B and let 7 = <ƒ>, so that â inverts/. Thus <â, ƒ> = 
<â, a y> is dihedral of order 2q. On the other hand, as A is abelian â acts 
trivially on Bx, whence ây acts trivially_on B{. But then <â, âP7) and hence Y 
acts trivially on i?0 = Bx n 5f. Since Y has no nontrivial fixed points on Vï9 

this forces B0 = 1. However, |Fj : 2̂ 1 < 2, so \VX : 50 | < 4. We thus con­
clude that | Vx\ = 4 . The only possibility therefore is q = 3, whence <#,ƒ> s 
23, contrary to our assumption that 2 3 is not a section of X. 

The assumption on X is necessary, for let X be the semidirect product of 
SL(2, 2n) and its natural 2-dimensional module V over GF(2n). (Note that 
S£(2, 2) s 23.) If S G Syl2(X\ one checks that ^(S) has exactly two mem­
bers: namely, V and a second member A = Z ^ ) X T, where Z(5) is a 
1-dimensional subspace of V (and hence of order 2n) and T maps isomorphi-
cally on a Sylow 2-subgroup o f J / K s S£(2, 2"). Thus /(S) = <F, A} = S 
and it follows that CX(Z(S))NX(J(S)) < NX(Z(S)) (as NX(J(S)) = iV^S) < 
A^(Z(5'))). But clearly Z(5) is not normal in X (since V is an irreducible 
Z-module), so X does not "factor". 

Thompson established further factorizations of solvable groups. These 
depend upon the following definition. 

DEFINITION 2. If S is a 2-group, let &X(S) be the set of elementary abelian 
2-subgroups B of S such that either B e &(S) or | 5 | =\\A\, where 4̂ G 
^(5) , and set 

JX(S) = (B\B E &X(S)). 

Arguing in the same way as in Proposition 1, Thompson proves [199]. 

PROPOSITION 3. Let X be a solvable group with 0(X) = 1 and let S G 
Syl2(X). If X does not involve 23 or a dihedral group of order 10 {in particular', 
ifX has order prime to 3 and 5) then we have 

X = CX{Z{S))NX{JX{S)). 

The semidirect product of a dihedral group of order 10 and its natural 
4-dimensional module over GF{2) is a counterexample to the proposition (as 
is 2 3 on its natural 2-dimensional module). 

Thompson's brilliance was shown here by his realization that yet a third 
factorization existed for X and that these three factorizations together could 
be exploited. 

PROPOSITION 4. Let X be a solvable group with 0{X) = 1 and let S G 
Syl2{X). IfX does not involve 23, then we have 
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X = NX(J(S))NX(Z(JX(S))). 

COROLLARY 5. If X and S are as in Proposition 3 and we set Nx = 
NX(Z(S)), N2 = NX(J(S)), N3 = NX(Z(JX(S))), then for every i, j , 1 < i, 
j < 3, i 7e j9 we have 

X = NtNj. 

The corollary follows at once from the three propositions together with the 
fact that AB = BA whenever AB is a group and that NX(JX(S)) < 
NX(Z(JX(S))) = N3. 

This is Thompson's "triple factorization lemma". Now comes his marvelous 
"three against two" argument [199]. 

PROPOSITION 6. Let G be a group and Hx, H2, H3 subgroups of G such that 
for every permutation m of the set {1, 2, 3}, we have 

#TT(3) < ^ ( 1 ) ^ ( 2 ) -

Then H(Hj is a subgroup of G f or all i,j, 1 < i,j < 3, / *£j. 

Indeed, take i = l,y = 2, for definiteness. We need only show that H2HX 

< HXH2 to conclude that HXH2 is a group. But H2 < HXH3 and Hx < H3H2 

by assumption, so H2HX < (HXH3)(H3H2) = HXH3H2. But also # 3 < i / ^ » 
whence HXH3H2 < HX(HXH2)H2 = HXH2. Thus H2HX < /fj/f^ as required. 

As remarked earlier, Thompson developed these ideas in connection with 
the odd order problem. We illustrate their significance by proving the 
following result. 

THEOREM 1. If G is a simple group in which every 2-local subgroup has order 
prime to both 3 and 5, then G ss L2(2

n), n odd, n > 1, U3(2
n)9 n^O (mod 3), 

or Sz(2n% n odd, n > 3. 

Let G be a minimum counterexample. We shall argue first that every 
2-local subgroup of G is solvable with trivial core, at which point Thompson's 
ideas will be immediately applicable. By assumption, every 2-local subgroup 
H of G has order prime to 3 and 5. If H is nonsolvable, then H has a 
nonabelian simple section K and \K\ is prime to 3 and 5. Clearly then K 
satisfies the hypothesis of the theorem, so by the minimality of G, K s L2(2

n)9 

U3(2
n), or Sz(2m) for suitable m. But then 3 or 5 divides \K\9 contradiction. 

We conclude that every 2-local subgroup of G is solvable. 
We claim next that a Sylow 2-subgroup of G is connected and m2{G) > 3. 

Assume false, whence r2{G) < 4 by Corollary 1.5.18. Since G is simple, 
Frobenius' normal complement theorem implies that some 2-local subgroup 
H of G does not have a normal 2-complement. Choose H so that ajîylow 
2:subgroupJS of H has maximal order. Set H = H/0(H), R = Ç2(//)__and 
R = R/<l>(R). Since H js solvable, C#(JR) < R and hence CJJ(R) <Rby 
Proposition 1.4.3. Thus H/R is isomorphic to a subgroup of Aut(R). But R is 
elementary abelian by Proposition 1.4.3 and so has rank at most 4, since 
r2(G) < 4. Thus Aut(R) < L4(2) ^As. Hence H/R isjt nontrivial solvable 
subgroup of A8 of order prime to 3 and 5 with J?2(H_/R) = 1. The only 
possibility is that H/R is of order 7. In particular, R = S. 

Let R be the inverse image of R in H. Then R sjH as RsjH and 
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R = 0{H)S. Hence by the Frattinî argument, H = RNH{S) = 0(H)NH(S). 
Since H does not have a normal 2-complement, neither therefore does 
Hx = NG(S). By maximally of S, S E Syl2(Hx)9 whence S E Sy/2(G)._On 
the other hand, # / i ? = H/S induces a group of automorphisms of S of 
order 7 and using this condition, we can argue without much difficulty that S 
must be connected group and m2(S) > 3. Thus S is connected and m2(G) > 
3, as asserted 

Now we can apply Theorem 1.5.19 and conclude that every 2-local sub­
group of G has a trivial core. 

Now let S E Syl2(G) and set Nx « NG(Z(S))9 N2 - NG(J(S))9 and N3 -
NG(Z(JX(S))). Then each iV,. is a 2-local subgroup of G and so is solvable of 
order prime to 3 and 5 with trivial core, 1 < j < 3. Since also S E Syl2(Nf)9 

applying Corollary 5 to the groups Ni9 we obtain 

Nfri3)<Nvil)Nfr(2) (1) 

for every permutation IT of the set {1, 2, 3}. Hence by Proposition 6, M = 
NXN2 is a subgroup of G. 

Suppose M = G. Then any element g E G has the form g = gj g2 with 
g, E ty, i * l, 2. But then 

02{NX)*- 02(Nx)
gig^ 02(Nx)

g>< S* < N2 (2) 

(as 02(NX) < S < iV2). Thus the normal closure of 02(NX) in G is contained 
in N2. However, as 02(NX) =£ 1 and N2 < G, this contradicts the simplicity of 
G. We therefore conclude that M <G. 

Finally we argue that M is strongly embedded in G. It will suffice to show 
that M contains the normalizer of every nonidentity subgroup of S. Suppose 
false and let H be a 2-local subgroup of G such that H < M with Q = S f) 
H of largest possible order. Clearly Q =£ 1. As in the proof of Theorem 6.7, 
0 E $yl2(H). This time we use Proposition 1 rather than the ZZ-theorem and 
conclude that 

H = NH(Z(Q))NH(J(Q)). (3) 

If g = S9 then by (3), H < NXN2~ M9 contrary to the choice of H9 so 
Q < S. But then NS(Z(Q)) > Q and NS(J(Q)) > Q9 so by the maximality of 
& we have NG(Z(Q)) < M and NG(J(Q)) < M. Thus again H < M by (3), 
contradiction. 

Thus M is strongly embedded, as asserted, and so by Bender's theorem, 
G a £2(2"), « > 2, £/3(2"), /i > 2, or Sz(2n)9 n odd, w > 3. The hypothesis on 
the orders of 2-locals now forces n to satisfy the restrictions of the theorem. 
Thus G is not a counterexample and the theorem is proved. 

In attempting to generalize these factorization results to nonsolvable groups 
X with F*(X) a 2-group, two distinct problems arise. First, in the proof of 
Proposition 1 (and likewise in the proof of Proposition 3),jthe^ given argu­
ments will again reduce to the module action of a group A Y/B on a vector 
space Vx over GF(2) with B centralizing Q and_K, and with Vx « [Vl9 Y]. 
However, now Y need not be a cyclic group, but Y may also be a quasisimgle 
group, isomorphic to a homomorphic image of a component of ^L(X). 
However, in the latter case, B = Q ( 7 ) need not be of index 2 in A. The 
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validity of the factorization of X depends upon the nature of the action of Y 
on this module Vx and in turn reduces to considerations about the dimension 
of the fixed point space Bx = A n Vx < CVi(A). 

The discussion above with Y s SL(2, 2n) and F, the natural module 
provides a counterexample to any proposed factorization for groups involving 
SL(2, 2"). For the general analysis of groups of characteristic^ type, it is very 
important to know precisely which possibilities for the pair Y, Vx will lead to 
a factorization and which will not (Y being assumed to be a #-group). Such 
"failures of factorization" will be described in detail in the next section. Let 
me just say here that this phenomenon is very much associated with the 
groups of Lie type of characteristic 2 and the alternating groups, factorization 
essentially always holding if Y is not of one of these forms, no matter what 
module Vx one takes. 

On the other hand, the groups Sz(2H) are somewhat special since they have 
order prime to 3 and are the only known simple groups with this property. 
Thompson was able to extend Proposition 1 to this case by analyzing the 
GF(2)-modules for Sz(2n) [204]. 

PROPOSITION 8. Let X be a K-group of order prime to 3 in which F*(X) is a 
2-group. If S E Syl2(X)9 then we have 

X = CX(Z{S))NX(J(S)). 

In view of the dihedral group of order 10 counterexample, one cannot 
prove the corresponding Z, Jx factorization for an arbitrary such group X. 

The third / , ZJX factorization is rare for nonsolvable groups. Indeed, in the 
proof of any_such result, one again reduces (as in the proof of Proposition 1) 
to an A Y/B situation for some A^ E &(S) and again considers the largest 
subgroup B of A which maps on B. For the ensuing argument, it is essential 
that B be an element of &X(S). However, this will be thejcase if and only if 
\A : B\ < 2 and hence if^and only ifjv4 : Bj < 2. But Y may be a simple 
group in which case m2(Y) > 2 and A/C-^Y) may be noncyclic. Hence one 
cannot assert, in general, that B has codimension at most 1 in A; some 
additional restriction is necessary to reach such a conclusion. 

Some time after completing the classification of JV-groups, Thompson 
undertook the task of proving that the Suzuki groups Sz(2n) were, in fact, the 
only simple groups of order prime to 3 [204]. Using standard signalizer 
functor methods, Thompson showed that a minimal counterexample G to 
such a theorem was of characteristic 2 type. This effort could not be 
completely routine since the Rudvalis group Ru has Sz(8) X Z2X Z2 as the 
centralizer of one of its involutions. Even though Ru is not a 3'-group, this 
fact is not 'Visible" from this centralizer. 

Now every proper subgroup of G is a K-group and so its nonsolvable 
composition factors are necessarily Suzuki groups. For some time Thompson 
sought a triple factorization for the 2-local subgroups of G, which would 
enable him to emulate the proof of Theorem 7. Unfortunately he never found 
one and was therefore forced to resort to the full panoply of techniques and 
the major subdivisions e{G) > 3, e{G) = 2, and e(G) = 1 of the iV-group 
analysis to complete the classification of simple 3'-groups. 
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However, by introducing an ingeniously conceived subgroup J(S) to re­
place Ji(S), Glauberman has recently succeeded in proving a triple factoriza­
tion for if-groups X of order prime to 3 in which F*(X) is a 2-group (and for 
more general groups X which do not involve 24) [75]. 

DEFINITION 9. Let T be a 2-group. An elementary abelian normal subgroup 
V of T is said to be restricted in T provided that, for any elementary abelian 
2-subgroup R of T/CT(V\ we have 

| F / C K ( * ) | > | * | 3 / 2 and | [ K , * ] | > | * | . 

Furthermore, T is said to be an E-group if T has no restricted subgroups. 
The following lemma of Glauberman shows that the notion of JE-group is 

not vacuous. 

LEMMA 10. For any 2-group S, J(S) is an E-group. 

Now we can define J(S). 
DEFINITION 11. For any 2-group S, set 

J (S) = (T\J(S) < T < S and Tis an E-group). 

Thus ƒ (S) < J(S). (Note that by the definitions, likewise J(S) < JX(S).) 
We remark that the groups Sz(2n) and U3(2

n) are the only simple ^-groups 
with nonabelian Sylow 2-groups which do not involve 24. Thus Glauberman's 
factorizations deal with 2-constrained groups whose only nonsolvable com­
position factors are of one of these types or else have abelian Sylow 2-sub-
groups. 

THEOREM 12. Let X be a K-group with F*(X) a 2-group such that X does not 
involve 24. If S E Syl2(X), then we have 

(i)X=Q(ÏÏ1(Z(5)))A^(/(S)); 
(ii) * = CX(^(Z(S)))NX(J(S)); and 

(iii) x - CMzwsMNAJiS)). 
Glauberman's proof is a tour de force of delicate commutator calculations. 
On the basis of the theorem, Glauberman readily obtains the following 

extension of Thompson's 3'-theorem [75]. 

THEOREM 13. If G is a simple group with nonabelian Sylow 2-subgroups which 
does not involve 24, then G = Sz(2n) or U3(2"), n odd. 

Taking G to be a minimal counterexample, Glauberman could have argued 
exactly as in Theorem 7 that G has a strongly embedded subgroup, provided 
he first showed that G had to be of characteristic 2 type. However, he was 
able to avoid even that amount of detailed analysis by appealing to 
Goldschmidt's strongly closed abelian subgroup theorem rather than to 
Bender's strongly embedded theorem. Thus he obtained Theorem 13 from the 
following fusion result together with Goldschmidt's classification theorem 
(Theorem 7.3). 

PROPOSITION 14. Set A = <$l{(Z(S))x\x e NG(J(S))). Then A is a nontri-
vial elementary abelian subgroup of S and A is strongly closed in S with respect 
to G. 
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The point here is that even though G need not be of characteristic 2 type, 
Goldschmidt's extension of Alperin's fusion theorem (Theorem 5.2) shows 
that 2-fusion is determined entirely by 2-constrained 2-local subgroups H of 
G such that 02(H) maps onto 02(H/0(H)). Since any such 2-local H is a 
A'-group and does not involve 24, it follows that H has a triple factorization. 
Exploiting this fact, Glauberman establishes the strong closure of A. 

11. Failure of factorization. As we have seen in the preceding section, the 
question of whether a group X with F*(X) a 2-group satisfies either the 
(Z, / ) - or (Z, /^-factorization with respect to a Sylow ^-subgroup S >̂f X 
reduces to a module statement__for a certain section A Y/B of X, where y is a 
quasisimple group with 02(Y) = 1. Examining the picture a little more 
closely, one can rephrase these factorization questions in general terms. 

If V is a faithful GF(2)-module for the group 7 with 02(7) = 1, does Y 
contain a nontrivial elementary abelian 2-subgroup A such that 

m2(A)>m2(V/Cv(A)); (1) 

or such that 

m2(A)>m2(V/Cv(A))-n (2) 

In practice, we are concerne^ primarily with the case in which F*(7) is a 
quasisimple AT-group (taking^ Y/B above as 7, one has F*(Y) quasisimple). 

DEFINITION 1. Let 7 be a group with F*(Y) quasisimple and 02(Y) = 1. If 
F is a faithful GF(2)-module for 7, we say that (7, V) is an F-pair if 7 
contains a subgroup A satisfying (1) and that (7, V) is an F-pair if 7 
contains a subgroup A satisfying (2). Any such subgroup A is called a 
nonfactor of (7, V). 

Obviously if (7, V) is an F-pair, it is an Frpair. If (7, V) is an Fj-pair, but 
not an F-pair, then for any nonf actor A of (7, V\ we must have 

m2(A) = m2(V/Cv(A))-l. (3) 

Note that if (7, V) is an F-pair with \A\ = 2, then m2(^/CK(^)) = 1 and 
so A centralizes a hyperplane of V. In other words, the involution of A is a 
transaction on F. 

One of the first results in this direction is due to McLaughlin, who 
classified all groups which are generated by their transvections [147]. 

THEOREM 2. Let V be an irreducible module of dimension n over GFÇL) for 
the group Y.IfY is generated by its transvections', then Y = SL(n, 2), Sp(n, 2), 

j or 2n+2 with n > 4 except in the first case. (Also n > 4 when 
7 = S O + ( / Î , 2 ) . ) 

To prove the theorem, McLaughlin builds up the geometries of the classical 
and symmetric groups from properties of the action of the transvections on V. 
Note that as V is defined over GF(2), the subgroup of 7 generated by a 
transvection is a root subgroup, so the argument can be viewed as in the same 
spirit as proofs of quadratic pair and Fischer-Timmesfeld type theorems. 

Aschbacher has proved the following general result [11]. 
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THEOREM 3- Let (Y9 V) be an Fx-pair in which L = F*(Y) is a quasisimple 
K-group. Then one of the following holds i 

(i) L E Chev(2); 
(ii) L/Z(L) s An for some n; 
(iii) |Z(L)| = 3, L/Z(L) = U4(3) or M22 and(Y9 V) is not an F-pair; or 
(iv) L a M229 Af23, or M24, and (Y, V) is not an F-pair. 
The theorem definitely shows that failure of factorization is a characteristic 

2 and alternating group phenomenon. Detailed properties of the groups of Lie 
type of odd characteristic and of the sporadic groups are required to prove 
that the groups in (iii) and (iv) are the only such candidates for Y. 

Aschbacher also analyzes the alternating case in considerable detail, de­
termining the possible modules and embedding of nonfactors in Y under 
various conditions. In particular, he establishes the following result, 

PROPOSITION 4. If (Y9 V) is an F-pair with Y = An or 2W, n>% and V is 
an irreducible Y-module, then V is the natural module for 7. 

Here the natural modules for An and for 2„ are defined as follows. Let X be 
a split extension of E s E2* by 2W, in which the action of an element of 2„ on 
E is determined by its corresponding permutation action on a fixed basis xx, 
x2>.,, 9xn of E. Clearly 2W fixes the element x = xtx2 • • • xn of E and also 
leaves invariant the subspace E0 = (xê — Xj\l < i9j < ri). If n is even, then 
<x> <E0<E (with \E:E0\=2) and V = Ej(x) is the natural module for 
2„ (and V is of dimension n — 2). On the other hand, if n is odd, then 
E = E0X (x) and V = E0 is the natural module for 2W (and V is of 
dimension n — 1). Thus in either case the natural module for 2W is the unique 
nontrivial composition factor of E as a 2n-module. The restriction of V to An 

is the natural representation of An. 
Cooperstein and G. Mason [45], [46] have determined the possible F-pairs 

(V9 Y) when Y E Chev(2). Their analysis depends on the general theory, 
worked out by Steinberg and Curtis [186], [223], of the irreducible GF(/?)-rep-
resentations of the groups of Lie type of characteristic /?. These representa­
tions are all described as suitable tensor products of so-called "fundamental" 
irreducible representations. The fundamental representations are in turn in 
one-one correspondence with certain well-defined sets of "weight" vectors in 
Euclidean Rn space, these weights themselves determined by the root system 
of the associated Lie algebra. We need not be more explicit, since the final 
result of Cooperstein and Mason's investigations can be phrased in more 
classical terminology, not involving the Lie theory machinery. Furthermore, 
as in the alternating case, there are some low dimensional exceptions, which 
we shall not attempt to describe here. 

THEOREM 5. Let (Y, V) be an F-pair with Y of Lie type defined over GF\q\ 
q = 2m, and V irreducible as a Y-module* Then we have 

(i) If Y = SL(n, q), then V is either the standard module of dimension n over 
GF(q), the second exterior product of the standard module, or V is the dual of 
one of these two modules, 

(ii) If Y = SU(n9 q), n> 5, then V is the standard module over GF(q2). 
(iii) IfY= SO±(n9q)9n > 11, then V is the standard module over GF(q). 
(iv) IfY— G2(q), then V is the (^-dimensional symplectic module over GF(q), 
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The other exceptional groups do not occur as possibilities for y in an 
F-pair. Neither does the group SU(39 q). Note also that if F is a F-module 
over GF(q\ q = 2", then F is also a F-module over GF(2) (as required by the 
definition of an F-pair). 

If V is the natural module for SL(n9 q\ the second exterior product of F is 
defined to be the subspace of the tensor product F ® F spanned by all 
vectors of the form v ® w — w ® v for t>, w E F. This subspace is invariant 
under SL(n9 q) and so is an SL(n9 #)-module. Furthermore, the standard 
module for SU(n9 q) is simply the restriction to SU(n9 q) of the standard 
module for SL(n9 q

2) over GF(q2). The standard module F for SO ±(n9 q) is 
the restriction of the standard module F for SL(n, q) to the subgroup leaving 
invariant an appropriate nondegenerate quadratic form on F. Finally the 
group G2(q) is always a subgroup of B3(q)9 which in characteristic 2 is 
isomorphic to C3(q) and so G2(q) is a subgroup of Sp(69 q). Thus when 
q = 2m

9 G2(q) acts irreducibly on a 6-dimensional symplectic space over 
GF(q) and this is the module referred to in (iv) above. 

With sufficient effort, one could undoubtedly determine the possible irre­
ducible modules for Frpairs ( Y, F) with F*(Y) a quasisimple £-group by the 
same general methods as were used in establishing the above results. 

If X is a group with F*(X) a 2-group and the (Z, /^factorization fails with 
respect to S G Syl2(X)9 the natural question to ask is the following: What is 
the structure of the normal closure N of J(S) in XI 

Obviously failure of factorization implies that J(S) < 02(X)9 so N < 
02(X), Glauberman has given a complete answer in the solvable case [225], 

THEOREM 6. Let X be a solvable group with F*(X) a 2-group, let S E 
Syl2(X)9 and assume that J(S) < 02(X). Set N = </(£)*>, F =* 
Ql(Z(02(Xy))f andX « X/02(X). Then we have 

(i) N = Nx X N^X • • • XNr9 where each Nt s 23 ,1 < i < r. 
(ii) If Vt = [F, JVJ, 1 < i < r, */*e« eacA Vt^Z2X Z2 and [F, JV] » Kj X 

F2 X • - X Fr. 

In view of this result, there is a natural conjecture when the solvability 
assumption is ̂ dropped: 

The group N is the direct product of subgroups iVf of Lie type of character­
istic 2 or alternating^or symmetric groups, 1 < j < r; and (modulo_the fixed 
points of N onj F, N]) [ F, N] is the direct product of irreducible Nf modules 
Vs such that (Ni9 Vg) is an F-pair, 1 < i < r. 

Easy examples show that one cannot expect [ F, N] itself to be such a direct 
product. 

For the applications, one would need this conjecture only under the 
additional assumption that 

(Cx(^(Z(S)))tNx(J(S)))<X. (4) 

This is a stronger condition than simply failure of (Z, /factorization. 
However, even this weaker conjecture appears to be difficult. Aschbacher has 
obtained a partial solution, which is closely related to the pushing up results 
we shall discuss in the next section [12], For simplicity we state only a special 
case of his theorem. 
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THEOREM 7. Let X be a group with F*(X) a 2-group, let S E Syl2(X\ set 
V = Qx{Z(02(X))\ andX = X/02(X). Assume the following two conditions: 

(a) X0 - <Q(01(Z(5))), NX(J(S))> < X; and 
(b) If A, B E &(S) with B < A, then either B = A or B = 1. 

Then we have __ __ 
(i) X = NX0, where N<3 X and N is the direct product of X-conjugate 

subgroups Ni9_l < i < r; 
(ii) Either Nt = SL(n, 2m)forjome m and nor Nj^ 2„, n odd; and 
(iii) If_U = [K, N]/C[vjt£N) and Ut^[Uy N& 1 < i < r, then Ut is a 

natural Nrmodule and U = UXX U2X • • • X Ur. 

Note that Aschbacher does not assume that Xjs a #-group. In the course 
of the argument he is able to identify the groups Nf either from McLaughlin's 
theorem above or from Timmesfeld's results on root involutions. 

12. Pushing up theorems. Let G be a group of characteristic p type and H a 
/7-local subgroup of G which does not contain a Sylow /7-subgroup of G. 
Pushing up theorems are concerned with the following general question: 
Under what conditions can one assert that H is contained in a /7-local 
subgroup H* of G whose Sylow/^-subgroups have larger order than those of 
HI 

Here we shall consider only the case p = 2 and we begin with a slightly 
more restricted situation. Suppose G is simple with Sylow 2-subgroup S and 
assume that S is contained in a unique maximal 2-local subgroup M of G. We 
ask the following natural question: 

Must M be strongly embedded in G under these conditions? (1) 
Proceeding by contradiction as we did in §7, one quickly reduces the 

problem to the following more precise situation: 

(a) G contains a maximal 2-local subgroup X such that X < M 

and T = S f) X E Syl2 (X); and (2) 
(b) If H is a 2-local subgroup of G such that \S n H\ > \T\, then H < M. 

In view of the assumed uniqueness of M, (a) implies that T <S. Further­
more, by (b), if R is any nontrivial normal subgroup of T such that 
NS(R) > 7, (in particular, if R char T), then NG(R) < M and so NX(R) < 
M. Thus we have 

(Nx(R)\l * R v r , JVX(H) > T> < X. (3) 

On the other hand, as X is a maximal 2-local subgroup and G is simple, we 
also obviously have 

(NG(R)\l ¥=R<T,RsjX) = X. (4) 

Hence we are reduced to analyzing the structure of a 2-local subgroup X of 
G satisfying conditions (3) and (4). 

This type of problem first occured in Sims' study of primitive permutation 
groups in which a one-point stabilizer has an orbit of length three [171]. This 
is a very tight situation, as the following result clearly indicates. 
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PROPOSITION I. If G is a primitive permutation group in which the one-point 
stabilizer X has an orbit of length 3, then we have 

(i) G = (X, X8}for some g E G; 
(ii) I*: X nX8\ = 3; and 
(iii) X/02(X) s 23. In particular, \X\ = 2a • 3. 

Sims' main result asserts the following: 

THEOREM 2. If G is a primitive permutation group on a set in which the 
one-point stabilizer X has an orbit of length 3, then \X\ = 2a • 3, where a < 4. 

It is in this paper that Sims' ideas about groups and their associated graphs 
are spelled out. In particular, the proof of Theorem 2 is carried out by 
analyzing the graph T determined from an orbit A of X of length 3, T being 
an example of a cubic graph. Such graphs were investigated by Tutte [232], 
[233] and the particular case of the theorem in which A is "self-paired" is a 
direct consequence of his results. (Self-pairing means that if g E G, a E A, 
and a8'1 E A, then also a8 E A.) Sims' proof in the general case involves an 
extension of Tutte's argument. 

Using Sims' results, Wong completed the classification permutation groups 
in which the one-point stabilizer X has an orbit of length 3 [221]. Indeed, 
using Sims' bound on \X\, he first showed quite directly that 

X s 23, 2 3 X Z2, 24, or 2 4 X Z2. (5) 

In the first case, G has a self-centralizing subgroup of order 3 and a 
theorem of Feit and Thompson [224] applies to yield the possibilities for G. In 
the second and third cases, G has dihedral or quasi-dihedral Sylow 2-sub-
groups and G is determined from the classification theorems for such groups. 
In the final case, Wong first pins down the possible structures of a Sylow 
2-subgroup of G (of order 24 or 25). In particular, G has a normal subgroup of 
index 2 and again G is determined from prior classification theorems. 

The final result is as follows. 

THEOREM 3. If G is a primitive permutation group in which the one-point 
stabilizer has an orbit of length 3, then G =^45, 25, PGL(2, 7), L2(ll)9 L2(q), 
q = ± 1 (mod 16), L3(3), or Aut(L3(3)). 

Glauberman made a serious attempt to place the Tutte-Sims argument in a 
general framework. The following is a particular case of his first effort [74]. 

THEOREM 4. Let X be a 2-local subgroup of the group G such that F*(X) = 
02(X) and X/02(X) is a dihedral group. If no 2-local subgroup of G contains 
X properly, then either X contains a Sylow 2-subgroup of G or X s H 4 or 
2 4 X Z2. 

If T E Syl2{X), then the hypotheses imply that (4) holds. Hence the proof 
of Theorem 4 (and Sims' theorem as well) involves an analysis of (4) in the 
special case that X/02(X) is a dihedral group. 

Conditions (3) and (4) depend not only on the embedding of T in X, but 
also on that of X in G, which makes for very complicated configurations. It is 
therefore desirable to attempt to study the structure of X as an independent 
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problem, free from its embedding in the larger group G. The most direct way 
to accomplish this and still retain the essential features of the given situation 
is to restrict oneself to characteristic subgroups of T in place of normal 
subgroups. This suggests the following definition. 

DEFINITION 5. For any group X and Sylow 2-subgroup T of X, the 
characteristic generated core C(X; T) of X is defined to be 

C(X; T) - (NX(R)\ I i* R char T). 
Clearly C(X; T) is determined up to conjugacy by the Sylow 2-subgroup T 

ofX 
Thus the "characteristic analogue" of (3) is simply the statement that 

C(X; T) < X. Clearly this implies that no nontrivial characteristic subgroup 
of T is normal in X9 the latter assertion being the corresponding characteristic 
analogue of (4). 

We can express the general problem in the following precise way. 

If X is a group with C(X; T) < X f or T E Syl2(X)9 describe 
the normal subgroup N of X which is minimal subject to the 
condition X « NC(X; T). (6) 

The subgroup N gives a measure of the extent to which C(X ; T) fails to 
generate X. Since Z(T) and J(T) are characteristic subgroups of T9 we 
certainly have 

(CX(UZ{T))),NX(J(T))) < C(X; T); (7) 

so if C(X; T) < X9 it follows that the (Z, /^factorization necessarily fails for 
X. Hence, in particular, the results of the previous section apply to X, 

For the applications, one is interested in both local and global answers to 
(6). The local problem is concerned with the case in which F*(X) is a 2-group 
and the global problem with the case that X itself is a simple group of 
characteristic 2 type (with all proper subgroups A'-groups). Clearly N = X in 
the global case, and we are asking then for a classification of finite simple 
groups X of characteristic 2 type with C(X; T) <X, T E Syl2(X). Strictly 
speaking, "pushing up" refers only to the local case and so we shall limit the 
present discussion to that situation. The global problem will be discussed in 
Chapters VII and VIII. 

Glauberman has treated the case that X/02(X) is a dihedral group in [74] 
and Aschbacher [13], Baumann [17] and Niles [149] have independently 
analyzed the general case in which X/02(X) s L2(2'1) for some n (the case 
n — 1 corresponding to the dihedral case). Aschbacher considered the special 
case in which X is a 2-local subgroup of a group of characteristic 2 type. 
(Niles also treated the analogous problem for odd primes. It should also be 
noted that Glauberman and Sims also obtained results for arbitrary primes.) 

The Baumann-Nües theorem asserts the following. 

THEOREM 6. Let X be a group with F*(X) = 02(X) and X/02(X) a L2(2
n) 

for some n.I/X has a proper characteristic generated core, then we have 
(i) If V = fil(Z(02(X))), then [V9 X]/C[VfX](X) is the natural (i.e., the 

standard)jnodule for XJ O^(X); _ _ 
(ii) If X = Xf V, then X = 02(X)Cx{02(X)); and 
(iii) A Sylow 2-subgroup of X has class 2. 
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Note that (i) and (ii) imply that X has exactly one chief factor within 02(X) 
on which X acts nontrivially (namely, [V9 X]/C[VtX](X)). (A/B is a chief 
factor of X if A and B are normal subgroups of X with B < A such that A/B 
is a minimal normal subgroup of X/B. We say that A/B is within the 
subgroup F of X if vl < 7.) All the other chief factors of X within 02(X) 
have order 2. 

Recently Glauberman has obtained an important refinement of Theorem 6 
[226]. It is based on certain methods first introduced by Baumann and also 
utilizes some of Niles' pushing up techniques. 

THEOREM 7, Let X be a group with F*(X) = 02(X) and X/02(X) s 1^(2") 
for some n and let T E Syl2(X)« If X = C(X; T\ then there exist preassigned 
characteristic subgroups J*(T) of CT(Slx(Z (J (T)))) (in particular, J*(T) 
char T), and ZX(T) of T with ZX(T) < QX(Z(T)) such that 

X=(CX(ZX(T)),NX(J*(T))}. 

In other words, the characteristic generated core of X is determined in this 
case by the normalizers of just two characteristic subgroups of T. (Clearly 
then ZX(T) or J*(T) is normal in X in this case.) 

The subgroup J*(T) is very complicated. Its definition is similar in spirit to 
that of J(T) in Definition 10.11, but even more intricate. 

All results of the above type are difficult to establish and involve very 
delicate commutator calculations within the lower central series of T, the aim 
of which is to produce a characteristic subgroup of T which is normal in X. It 
turns out to be possible to accomplish this except when 02(X) has a very 
restricted structure. 

For the sake of clarity, let us describe JV in Theorem 6 when n > 2 (here JV 
is normal in X and minimal subject to X = NC(X; T)). Since T < C(X; T) 
< X and X/02(X) is simple, JV must cover X/02(X\ whence X = 02(X)N. 
The minimality jof JV implies nowjiiat JV is perfect. Using (ii), itjfollows easily 
from this jthat JV centralizes Oj(X) and hence centralizes 0£N) ( < 02(X)\ 
Thus 02(N) < Z(N) and as N is perfect^we conclude that N is quasisimple. 
By the results of Schur [164], either N sa L2(2

n) is simple or n » 2 and 
N s SX(2, 5). Thus NV/V ^ L^F) or SL(2y 5). Applying the same argu­
ment again, we deduce that N/[N, V] ^ L2(2

n) or SX(2, 5). Since JV covers 
X/02(X)9 [KX] - [K, JV] (=[iV, V]) and by (i), [JV, V]/C[N,V](N) is a 
natural module. Since JV is perfect, it also follows that JV acts indecomposably 
on [JV, V\ This gives a very precise picture of JV. A similar description of JV 
exists in the case n = 1. 

Goldschmidt has recently extended the Baumann-Niles theorem to the case 
that X/02(X) ^ An or 2K, n odd [81]. The conclusions are identical this time 
with [X, V]/C[XtV](X) a natural module for X/02(X) » An. 

To treat the general local situation, Aschbacher has introduced the follow­
ing terminology [12]. 

DEFINITION 8. A group X is said to be short provided X ~ 02(X) (i.e., X 
has no normal subgroups of index 2), F*(X) = 02(X\ U(X) = [Xf 02(X)] < 
Ux(Z(02(X))% and X/02(X) is either quasisimple or of prime order. (The 
second alternative is included to allow for A3 s Z3.) 
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A short group X is said to be a block if X/02(X) s L2(2
n), n > 1 or An9 n 

odd, and U(X)/CU(X)(X) is a natural X/02(*>module. 
Finally X is said to be a 6/tfcfc of the group Y if X is a block and X is 

subnormal in Y. 
Thus a block is always a block of itself. To avoid possible confusion, we 

emphasize that the term block here has no connection with Brauer's char­
acter theoretic notions of blocks. 

Aschbacher proves the following fundamental result [12]. 

THEOREM 9. Let X be a group with F*(X) = 02(X) such that X has a proper 
characteristic generated core and let T E Syl2(X). Then X contains a normal 
subgroup N with the following properties: 

(i)X = NC(X;T); 
(ii) N = NXN2 • • • Nn where each Nt is a block ofX, 1 < i < r; and 
(iii) Nê centralizes Njfor all i,j, i =£j, 1 < ij < r. 

To establish the theorem, Aschbacher invokes a slightly more general form 
of the stated Theorem 11.7 to conclude that N is a product of subgroups N( 

with Nt/02{N^) s L2(2
Hi) or 4 , n{ odd, 1 < / < r. In effect, this reduces the 

proof (with a little more arguing) to the Baumann-Niles and Goldschmidt 
theorems. (Actually Aschbacher's paper treats the alternating case, as it was 
written prior to Goldschmidt's result.) 

Since Theorem 11.7 depends on Timmesfeld's root involution theorem, so 
also does the preceding result. Thus we have one further indication of the 
breadth of applicability of the entire Fischer method to local group theory. (If 
one assumes that I is a X-group, which is all that is needed for the 
applications, one could undoubtedly avoid the root involution theorem here; 
but then the elegance of the result would certainly be diminished.) 

With the aid of Glauberman's Theorem 7, one can obtain the following 
refinement of Theorem 9. 

THEOREM 10. Let X be a group with F*{X) = 02(X) such that X has a 
proper characteristic generated core and let T G Syl2(X). Then X contains a 
normal subgroup N with the following properties: 

(i) X - N(CX{ÜX{Z{T))\ NX(J*(T))); 
(ii) N = NXN2 * * * M» where each Nê is a block ofX> 1 < i < r; and 
(iii) Ns centralizes Npfor all i,j\ i ^j, 1 < i9j < r. 

Aschbacher has obtained an important variation of these results in a case 
in which T is not a Sylow 2-subgroup of X (but in which A" is a ^T-group) [14]. 
To motivate Aschbacher's result, return to the situation with M and X at the 
beginning of the section. In investigating the relationship between these two 
subgroups of the group G, the group Y = X n M will certainly be important. 
In some circumstances, one can show that NG(R) <X for every 1 =£R 
char 02(Y). It follows for any such R that NM(R) < X n M = Y. This turns 
out to be a powerful restriction on the group M as the following theorem of 
Aschbacher clearly illustrates [14]. Here we have replaced M by X and put 
T = 02{Y) to conform to the notation of the preceding theorems. Further­
more, to state it, we broaden the definition of C(X; T) to cover arbitrary 
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2-subgroups of a group X. Thus for any 2-subgroup T of the group X, we set 

C(X; T) = (NX(R)\\ =£ R char T). 

THEOREM 11. Let X be a K-group with F*(X) = 02(X). Let T be a 
2-subgroup of X, set Y = NX(T), and assume that the following two conditions 
hold: 

( a ) r=0 2 (F ) ; 
(b) Y - C(X; T). 

Then one of the following holds: 
( i )7 = XandT= 02(X); 
(ii) X contains a T-invariant block L with LT/02(LT) s L2(2

n) for some 
n > 1; or __ _ _ 
_(iii) If X = X/02(X% then L{X) has a T-invariant component L such that 
L/Z(L) is either o£ Liejype of characteristic 2 or an alternating group. 
Furthermore, (L f) Y)T/T contains a subnormal subgroup which is either of 
Lie type of characteristic 2 and order divisible by 3 or is an alternating group. 

Aschbacher's results are actually more precise. First of all, he argues that T 
leaves invariant each component of L(X). Furthermore^by hypothesis^(a) 
and (bX_ 02(X) < T. If T does not centralize 0(X), then as T E 
Syl2(0(X)T% we_conclude with the aid of Theorem 11.6 (applied to the 
preimage of 0(X)T in X) that X contains a T-invariant block L with 
LT/02(LT)^L£2) and O(L) < 0(X). Injmrticular, (ii) holds^Thus we 
can assume that T centralizes 0(X% whence T does not centralize L for some 
component L of L(X) (otherwise it follows that T = 02(X), whence Y = X 
and (i) holds). __ 

Let X0 be the preimage of LT in X. Then T ^ O2(X0) (otherwise f would 
centralize L). Since T = 02{Y), it follows that X0 < Y. Hence C(X0; T) = Y 
fi X0 < X0. In particular, the (Z, ƒ)-factorization fails for X0 (relative to T). 
Since X is a ^-group, Aschbacher's Theorem 11.3 implies now that either 
L E Chev(2) or L ^An for some n. 

If T n L E Syl2(L), then T E Syl2(X0). Since C(X0; T) < X0, the Bau-
mann-Niles-Goldschmidt theorems yield that either XQ or O2(X0) is a block. 
Aschbacher argues in the present situation that only blocks of type L2ÇLn) can 
occur. 

In the contrary case, Aschbacher analyzes the Chev(2) and alternating 
group subcases separately. In the alternating case, he invokes the very 
detailed description of the modules arising from failure of (Z, ƒ )-factorization 
which he had earlier established (cf. Proposition 11.4). In particular, (iii) 
follows in this case. 

On the other hand, if L E Chev{2), he sets X^ X0/O2(X0) = LT and 
distinguishes^ two further subcases according^as T induces jnner_automor-
phisms on L^ or not. In the first case, X0j= L and setting Y0 = Yj\ ^ h e 
argue^that Y0 is a parabolic subgroup of L with f = O2(Y0). Since T f) L & 
Syl2(L)9 f $ Syl2(L)9 so L has Lie rank at least 2. Also, L & 2F4(2

n) because 
of the failure of factorization, so 3 divides |y0|, inasmuch as the groups 
2F4(2") are the only groups of Lie type of characteristic 2 and Lie rank at 

least 2 having a parabolic of order prime to 3. Again (iii) follows. 
Finally if T does not induce inner automorphisms on L, Aschbacher argues 
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that If I = 2 and that L s 0/(2) with T inducing a transvection on [V, L\ 
where V = fl^Z^X))), 

13. General properties of X-groups* As we have repeatedly stressed, local 
analysis requires for its success specific properties of the ^-groups involved in 
the simple group under investigation. Perhaps, when the finite simple groups 
have been completely determined, at which time all finite groups will be 
JRT-groups, the already established general properties of simple ^-groups will 
provide a basis for a "theory of finite groups", analogous to the beautiful 
theory of solvable groups which has evolved since the original work of P. Hall 
in the 1920s and 1930s [104H107]. 

The standard procedure for establishing a general property of AT-groups X 
is to reduce the problem to a question about suitable simple (and quasisimple) 
sections of X (as, for example, in treating global balance or failure of 
factorization in 2-constrained groups). Thus our attention is soon focused on 
specific questions about the known simple groups. The major properties of 
simple ̂ -groups which are needed for local analysis all seem to fall within (at 
least) one of the following categories; 

A. Automorphisms. 
B. Schur multipliers. 
C. Centralizers of elements of prime order. 
D. Balance. 
E. Generation. 
F. Subgroup structure. 
G. Fusion. 
H. Signalizers. 
I. Representations over fields of prime order. 
In this section I shall describe some of the principal results which have 

been obtained within each category. Some of these are easily proved, others 
are quite difficult. I shall not attempt to discuss any of their proofs, but shall 
limit myself to a few general comments. 

In dealing with the groups of Lie type, the general Chevalley-Steinberg 
theory is of fundamental importance. In particular, it often allows one to 
make calculations which apply simultaneously to all groups of Lie type. The 
same remark applies to the alternating groups and their standard presenta­
tion. On the other hand, one must often analyze individual families (and even 
individual groups) separately, especially regarding properties which involve 
exceptions to the general case. Finally one must usually treat the sporadic 
groups one at a time, calculating or arguing on the basis of their precise 
definitions. 

A. AUTOMORPHISMS. If X is a group of Lie type defined over GF(pm)9 
every element of Aut(X) is known to be a product of an inner, a "diagonal**, 
a "field", and a "graph" automorphism [186]. 

For example, diagonal matrices in GL(n9p
m) of determinant unequal to 1 

determine by conjugation diagonal automorphisms of SL(n9p
m). Field 

automorphisms arise in a natural way from elements a of the Galois group of 
the underlying field GF(pm). Thus for A = ty) E SL(n9p

m)9 a^ G GF(pm% 
1 < i9j < n9 the map 
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A - (ay^A* - (ag) (1) 

is an automorphism of SL(n,pm). 
Likewise graph automorphisms are induced from symmetries of the Dynkin 

diagram of the associated Lie algebra of X. Thus the diagram associated with 
SL{n,pm) 

O—O—O • • • O—O (2) 

with n — 1 nodes has a reflection of order 2, which induces an automorphism 
of SL(n,pm) (in this case, taking the usual generators of SL(ntp

m)9 the graph 
automorphism is the transpose-inverse map). 

Diagonal automorphisms determine an abelian group of automorphisms (in 
fact, cyclic except for D2n(q\ n even, and q odd), while field automorphisms 
always determine cyclic groups. On the other hand, graph automorphisms 
determine a group of order 1 or 2, except for Z)4, in which case they 
determine a group isomorphic to 23. Moreover, there is a general formula for 
the order of the diagonal group for each family of groups of Lie type. Also 
the group of diagonal automorphisms is normal in Aut(X)/X and field 
automorphisms commute with graph automorphisms. Summarizing, we have 

THEOREM I, If X is a group of Lie type, then A = Aut(X)/X is a solvable 
group with normal subgroups D and DF9 where D is abelian and F is cyclic; 
and, moreover\ A/DF s 1, Z2, or S3, 

In the case of the alternating groups, one has 

THEOREM 2. (i) If X = An, n ¥* 6, n > 3, then Aut(X) s 2„; and 
(ii) If X~A6 (~L2(9)), then Aut(X) s Aut(L2(9)) (1^(9) has index 4 in 

Aut(L2(9))). 

The automorphism group of almost all of the sporadic group has been 
computed (in most cases by the individual who first determined its internal 
structure). In the course of their work on standard components, Aschbacher 
and Seitz [16] have established the following result (except for Janko's group 
/4, for which the desired assertion can be easily checked). 

THEOREM 3.IfX is a known sporadic group, then 

\Aut(X)/X\ < X 

Combining these results, one has 

THEOREM 4. For any known simple group X% Aut(X)/X is solvable. 

Schreier conjectured that every simple group has a solvable outer automor­
phism group. In view of Theorem 4, the conjecture will follow as a corollary 
of the classification of all simple groups (at least if our present list is 
complete). 

B. SCHUR MULTIPLIERS. The Schur multipliers of every known simple group 
apart from F2 has been computed. The general answer for the classical groups 
has been known for a long time, but there are exceptions for certain groups 
over fields with few elements. Steinberg has given a systematic treatment for 
the groups of Lie type, apart from these exceptional cases and the Ree and 
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Suzuki groups [185]. The Ree groups of characteristic 3 and the Suzuki groups 
were handled by Alperin and me [5], and the Ree groups of characteristic 2 
(apart from the Tits group 2F4(2)') by H. Ward [216]. Griess computed the 
Schur multipliers for the exceptional cases of Lie type and for many of the 
sporadic groups [98], [99]. Burgoyne, Fong, Janko, McKay, Norton, Thomp­
son, Wales, and others have each treated one or more of the remaining 
sporadic groups [36], [146]. The multipliers of the alternating groups were 
determined by Schur [165]. 

THEOREM 5. If X is a simple group of Lie type, then one of the following 
holds: 

(i) X has a cyclic Schur multiplier; 
(ii) X = PÜ+(4n, q), q odd, and X has Z2 X Z2 as Schur multiplier, or 
(iii) X is included among the groups in the table below. 

The exact order of the Schur multiplier has been determined for each group 
in (i). The following table lists those groups of Lie type whose Schur 
multipliers differ from those of the general member of the corresponding 
families of groups. 

Chevalley group 

A^^A^Ay 

AX(9)^A6 

^ ( 2 ) ^ ^ , ( 7 ) 

A2(4) 

A3(2)^A8 

B2(2) a 2 6 

B3(2)^C3(2) 
B3(3) 
P4(2) 

W) 
G2(3) 

G2(4) 

(5) 

multiplier 

z2 

2^2 X Z-\ 

z2 
Z4 X Z^ X Z^ 

z2 
z2 
z2 
'-j'y X Z% 

J^2 X Zy 

z2 
z3 
z2 

Twisted group 

% ( 2 ) ^ C 2 ( 3 ) 
2A3(3) 
2A5(2) 
2B2(S) s &(8) 
2E6(2) 

multiplier 

z2 
Z4 X Z$ X Z^ 

Z2 X z*2 X Z^ 

Z2 X Z2 

Z2 X Z2 X Z% 

The next table lists the Schur multipliers for the alternating groups. 

An,n¥=6or7,n > 5, Z2 

A6 Z2 X Z3 

A-j Z2 X Z>\ 

Finally we list those sporadic groups having nontrivial (or undetermined) 
Schur multipliers. (The existence of the monster Fx would suffice to prove 
that F2 has Z2 as its multiplier. However, at present there is no independent 
proof of this result.) 
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Mn 

M22 

J2 

J3 

ON 
HS 
Mc 
Suz 
Ru 

z2 
Juy X ^ 3 

z2 
z3 
z3 
z2 
z3 
^ 2 ^ ^ 3 

z2 

C. CENTRALIZERS OF ELEMENTS OF PRIME p. To keep the discussion within 
bounds, we shall limit our statements to centralizers of involutions. Analo­
gous results hold in many cases for centralizers of elements of odd prime 
order/J ; in particular, for groups X of Lie type over GF(q) when either/? 
divides the order of a Cartan subgroup of X or p = 3 and q = 2 (two cases 
especially important for the applications). Note that we have already made 
some comments about centralizers of involutions in §1.5; and again we refer 
the reader to [37], [38], [128], [162]. 

We let J be a group such that Y = JF*(X) is a simple ^T-group, we let 
t E S(X), and we set C = Cx(t). 

THEOREM 6.1ft& Y, then one of the following holds: 
(i) C is solvable; 
(ii) F*(C) = L(C) is quasisimple; 
(iii) Y E Chev(p)for somep and t is a diagonal automorphism; 
(iv) Y = L4(q) or U4(q), q odd, t is the transpose-inverse automorphism (or t 

is an element in its coset) and L(C) s L2(q) X L2(q); or 
(v) Y ^ An and t is not a transposition. 
Furthermore, it also follows that L(C) is a K-group and either C/L(C) is 

solvable or Y ss An. 

THEOREM l.IftŒ Y9 then one of the following holds: 
(i) L(C) is trivial or quasisimple; 
(ii) Y E Chev(p),p odd, and L(C) has two components; or 
(iii) Y ^ Pü±(q), q odd, and L(C) has three or four components. 
Furthermore, if L(C) is nontrivial, then either C/L(C) is solvable or 

Y^A„. 

Again the possibilities for L(C) are known for each choice of Y and t. In 
particular, we have 

THEOREM S.IftE. Y and L(C) is trivial, then one of the following holds: 
(i) C is solvable; 
(ii) F*(C) = 02(C); or 
(iii) YszA„,n = 3 (mod 4), and F*(C) = 02(C) X 03(C) with 03(C) s 

Zy 

Combining these last three results (together with the known structure of C 
in cases (iii) and (v) of Theorem 6), we obtain as a consequence the 

.1 Z2 

M(22) Z2 X Z3 

M(24)' Z3 

F2 Z2(?) 
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fundamental so-called "5-property" of the layers of the centralizers of 
involutions in the known simple groups. 

THEOREM 9. For any choice ofX and t, we have 

L2,(C) = L(C). 

A large portion of Chapter VI will deal with the 5-property and the related 
wJ5-conjecturew for arbitrary finite groups. As we shall see, this whole subject 
is closely connected to the question of groups containing involutions whose 
centralizers have nontrivial cores. Since this is the same as saying that the 
group Y is not locally balanced, Proposition 3.6 yields the following result for 
^-groups X with Y = F*(X) simple. 

THEOREM 10. If 0(Cx(t)) ^ 1, then one of the following holds; 
(i) Y E Chev(p) for some oddprimep; 
(ii) Y ££ An9 n odd, n> 7; or 
(iii) Y s L3(4) or He and t & Y. 

If / is the "unitary" automorphism of Y = L3(4), then Cy(t) s U3(2)9 which 
is solvable and, in fact, a split extension of Z3 X Z3 by Q%9 so 0(C) = 
0(CY(t)) s z 3 X Z3. Likewise Y *= He admits an outer automorphism t of 
order 2 such that CY(t) is a 3-fold cover of 27, so 0(C) « 0(CY(t)) s Z3. 

Thompson has reduced a major case of the 5-conjecture to the verification 
of four specific properties of the centralizers of involutions in groups of Lie 
type [201]. Burgoyne has since completed the verification of each of the 
desired properties [34]. To indicate their nature, we list the principal two here. 

We consider a group X in which Y = F*(X) E Chev(p)9 p odd, with 
Y m L2(p

n); and if p = 3, also Y & 2G2(3
n)*. (The excluded groups are the 

only members of Chev(p) which do not contain subgroups isomorphic to 
$L(29p).) Note that by definition of Chev(p)9 Y is quasisimple, but not 
necessarily simple. Again we let t E ${X) and set C - Cx(t). 

THEOREM 11. Assume Y is simple and 0(C) ^ 1. Then there exists an 
involution u E C and a subnormal subgroup L of Cx(u) with the following 
properties; 

(i) L s SL(29 q)for some odd q and (w> = Z(L); and 
(ii) (0(C), t) normalizes L and C<0iCyty(L) = 1. 

THEOREM 12. Assume L(C) has a component L with the following properties; 
(a) L s SL(29 q)9for some odd q; 
(b) L is normal in C; and 
(c)Z(L)<Z(X)«Z(Y)). 

Then Y/Z(Y) is isomorphic to one of the following groups; L4(q)9 U4(q)9 or 
P Q ^ / Ï , q)9 where q — pm for some m. 

Further properties of centralizers of involutions are needed for many of the 
results listed in subsections (D)-{I) of this section. 

D. BALANCE. By now, the reader should have a pretty good idea of the 
general spirit of the theory of üT-groups that is required for local analysis. 
Hence I shall be briefer in discussing the remaining types of properties. 
Proposition 3.6, Theorem 3.11, and Proposition 3.12 describe local A>balance 
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for simple ^-groups. This is the principal balance property needed for local 
analysis. However, as indicated in the discussion of Goldschmidt type 
signalizer functors in §3, variations of local ^-balance are also used in the 
applications. 

E. GENERATION. We have remarked several times on the importance of 
generational statements for local analysis-in particular, for the construction 
of signalizer functors (Proposition 2.9). Generational questions also arise in 
the stage following this construction. For example, suppose G is a simple 
group which is 2-balanced for the prime p, A an elementary abelian psu\> 
group of G with ^(A) > 4, and the associated 2-balanced ^-signalizer 
functor 9 is complete. If we set M = NG{0(G; A)\ it is immediate that 

TAAG) = <NG{E)\E < A% ^(E) > 3> < M. (3) 

Assuming 0(G; A) ^ 1, the ultimate goal of the analysis is to prove that M 
is strongly embedded in G. In particular, we must argue that Ca < M for each 
a E A # . We cannot expect to reach such a strong conclusion solely from (3); 
however, (3) does yield some partial information. Indeed, as m^(A) > 4, it 
follows easily from Proposition 1.4.7 that 

Op(Ca)<TAt3(G)<M. (4) 

Hence if we set C^— Ca/Op(Ca), we can work with Ca and A inasmuch as 
NCa(E) covers Nç(E) for every subgroup E of A, The natural first question 
to ask is whether 

L(Ca) « Tjj(Ca) = (NCa(E)\E < J , m.iE) > 3). (5) 

If (5) holds, then M will cover L(CJ and it will follow that Lp(Ca) < Af, 
which would be an important conclusion for any subsequent analysis. 

One can easily reduce this problem to the^corresponding generational 
question for A -invariant quasisimple sections X_of L(Ca) such that X is a 
homomorphic image of somê  component^ L(Ca). Clearly for generational 
purposes, onlyjhe group A = A/^C^(X) can present an obstruction to 
generation. If |^1| < /?, then mp(Cj(X)\> 3 and the desired generation holds 
trivially. Hence one can assumejhat A is noncyclic. Also a suitable genera­
tional statement for X = X/Z(X) relative to A implies one for X relative to 
A. Since, in particular, X will be a jST-group, we are thus reduced to studying 
the faithful action of noncyclic elementary abelian ^p-groups on simple K-
groups, 

Seitz has obtained definitive results for odd p for groups of Lie type of 
characteristic not/? [167]. The corresponding results for the sporadic groups 
have been computed by Lyons, using O'Nan's information concerning their 
local subgroups [156]. Generation always fails for the groups in Chev(p) and 
in the case of alternating groups, it depends strongly upon the choice of 
elementary abelian />-group. We limit ourselves to the following statement. 

THEOREM 13. Let X be a simple K-group and A a noncyclic elementary 
abelian p-subgroup ofAut(X%p odd, and assume 

(NX(E)\E <Aand\A;E\<p)<X. 



174 DANIEL GORENSTEIN 

Then one of the following holds: 
(ï)X G Chev(p) or X ^ An; 
(ii)p = 11, A < X, and X is of type J4; 
(iii)p = 5, A < AT, and X s 2F4(2)', Mc, or M(22); 
(iv)/> = 3, ,4 < X, X « /ty(a, 2), l/„(2), P0*(2), G2(2)', F4(2), L3*(4), F4(4), 

2£6(2), £6(4), £7(2), £8(2), M n , /2 , /3 , /4 , OAT; or HS; 
(v)p = 5,X~ Sz(25) or 2F4(2

5) and AX s Aut(Sz(25)) or Aut(2F4(2
5)); 

(vi)p = 3 J s L2(2
3), and AX a Aut(L2(2

3)); 
(vii)p = 3, X ^ Z>4(2) ör Z>4(4), and AX = <a>X, w/*ere a E A* induces the 

graph automorphism ofX; or 
(viii)/> - 3, X « Pç(n, 23), f/„(23), P^ (2 3 ) , G2(2

3), F4(2
3), L3*(43), F4(4

3), 
2£6(4

3), £6(4
3), £7(2

3), or £8(2
3) and AX = (a)X, where a E A* induces a 

field automorphism on X. 

Using this result, one can easily compute all simple X-groups which possess 
a strongly /^-embedded subgroup for some odd prime/?. 

THEOREM 14. Let X be a group such that Y = F*(X) is a simple K-group. If 
X has a strongly p-embedded subgroup for some odd prime p, then one of the 
following holds: 

(i) X has cyclic Sylow p-subgroups; 
(ii) X a L2(p

n\ U3(p
n)or 2G2(3")*(withp = 3 orp\33n + 1 in the last case);2 

(iii)p = 5andX^ 2F4(2)', Aut{Sz{25)\ Mc9 or M(22); or 
(iv)p = 3 and X a L3(4), Aut(L2(2% or Mn. 

F. SUBGROUP STRUCTURE. Principally, but not exclusively, local analysis 
requires information about the local subgroup and Sylow subgroup structure 
of simple ^-groups. The Borel-Tits theorem (Theorem 1.5.18) shows that 
every maximal /?-local in a group of Chev(p) is a maximal parabolic and 
conversely. Thus the structure of the parabolic subgroups of such a group X 
is very important. On the other hand, if q is prime distinct from p, it is 
difficult to formulate a general description of the ç-local subgroups of X, but 
properties of these subgroups can be deduced from the general structure of X 
as a (B, iV)-pair, sometimes with much effort. A similar remark applies to the 
alternating and sporadic groups. In the latter case, this effort has already 
been made and essentially all local subgroups of the sporadic groups have 
been determined. 

Concerning the Sylow ̂ -subgroups P of a simple AT-group X9 we are usually 
interested only in the rank of P or perhaps the structure of J(P); but 
sometimes, particularly when p = 2, we need more detailed structural infor­
mation. Carter and Fong [40] have given a complete description of the 
Sylow 2-subgroups of the classical groups over fields of odd characteristic q, 
from which any needed properties can be read off. The corresponding results 
for p 7*= 2 or q were obtained by Weir [217]. These descriptions by Carter-
Fong and Weir are very similar to the known structures of the Sylow 
/^-subgroups of An. The Sylow structures of most of the remaining simple 
^-groups have been determined by the combined work of a great many 

12 The Ree groups 2G2(3
n) are known to have cyclic Sylow /^-subgroups for odd/?|33w + 1; 

however, this result has not been proved for the groups 2G2Q
n)* of Ree type. 
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authors, usually in the course of various classification theorems. In particular, 
a description of the Sylow/?-subgroups of the groups in Chev(p) involve the 
explicit commutator formulas of the Steinberg relations. 

G. FUSION. One needs a considerable amount of information about the 
conjugacy classes of elements of prime order in simple ^-groups. One often 
wants a precisely described set of representatives for, say, the conjugacy 
classes of involutions. For example, if X = An9 the involutions (12)(34), 
(12)(34)(56)(78),... constitute such a set. On the other hand, if X E 
Chev(p), p odd, one can obtain representatives for the classes of involutions 
contained in a Cartan subgroup from the action of the Weyl group. However, 
there may be additional conjugacy classes of involutions (these have been 
determined in each case). In [15], Aschbacher and Seitz have computed all 
conjugacy classes of involutions of X in the case that Y = F*(X) E Chev(2) 
(and have also determined the centralizers in Y of each such involution). 
Finally, with the exception of F2, all conjugacy classes of the sporadic groups 
have been determined (often as a preliminary step to computing their charac­
ter tables). 

We consider two general questions about fusion. First, if X is a simple 
^-group, does the analogue of Glauberman's Z*-theorem hold in X for odd 
primes/?? In other words, if P E Sylp(X) and Z < P has order/?, must Z fuse 
in X to some subgroup of P - Z? (For odd /?, the natural extension is to 
subgroups of order p rather than elements of order /?.) As in the involution 
case, we say that Z is isolated in P with respect to X if Z does not fuse to a 
subgroup of X - Z 

If P is cyclic, then Z = Çl{(P) is the unique subgroup of P of order/?, so 
certainly Z is isolated in P with respect to X. Hence the question is of interest 
only when P is noncyclic. The following statement has been checked for 
many, but not all, families of simple K-groups. 

(?) THEOREM 15. Let X be a simple K-group with noncyclic Sylow p-subgroup 
P,p odd. If P contains a subgroup of order p which is isolated in P with respect 
to X, then either X s 2G2(3")* withp\33n + 1 or else mp(X) = 2 and one of the 
following holds: 

(i)X^U3(p); 
(ii)/? = 5 and X s Mc; or 
(iii) p = 3andX~ G2(q)9

 3D4(q)9 q ^ 3", or J2. 

In the study of groups of component type, the notion of a "tightly 
embedded" subgroup, due to Aschbacher, plays a fundamental role. 

DEFINITION 16. A subgroup H of even order of a group X is said to be 
tightly embedded in X provided H n Hx has odd order for every x E X -
NX(H). 

This concept is a direct generalization of strong embedding, which requires 
H n Hx to have odd order for every x E X - H. (Thus if H is tightly 
embedded in X and H = NX(H)> then H is strongly embedded in X.) 

Obviously any subgroup of X of order 2 is tightly embedded in X. In a very 
important paper, Aschbacher has essentially characterized the groups of Lie 
type of odd characteristic by the property of possessing a tightly embedded 
subgroup with quaternion Sylow 2-subgroups [10]. A full discussion of Asch-
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bachefs theorem will be given in §VI.6. Furthermore, Aschbacher and Seitz 
have studied simple groups G which possess a tightly embedded subgroup of 
2-rank at least 2 under suitable additional assumptions which arise naturally 
in the study of simple groups of component type and have determined the 
exact possibilities for G under these conditions [9], [15], [16]. Their work will 
be described in §VI.ll. 

Ultimately their analysis reduces to the determination of those finite groups 
X with F*(X) quasisimple which contain a tightly embedded subgroup H of 
2-rank at least 2 satisfying a number of side conditions. In particular, H must 
have (noncyclic) elementary abelian Sylow 2-subgroups and a normal 2-com-
plement. The additional conditions are more technical and we postpone a 
discussion of them until Chapter VI. For brevity, let us just say that H is 
restricted if it satisfies all these various conditions. An example of such a 
restricted tightly embedded subgroup H is the subgroup <(12)(34), (13)(24)> 
^Z2X Z2 in Am. 

The following theorem lists a few of Aschbacher-Seitz's results on restricted 
tightly embedded subgroups. 

THEOREM 17. Let X he a group such that Y — F*{X) is a simple K-group 
which contains a restricted tightly embedded subgroup H. Then we have 

(i) Either Y E Chev(2% Y ^An for some n9 or Y » M12, MU9 J2> He, Suz, 
Ru9 or .1. 

(ii) If Y ^An9 n > 10, then in the natural representation of An9 H is 
conjugate to <(12)(34), (13)(24)>; and 

(iii) If Y E ChevÇL% then a Sylow 2-subgroup of H induces inner automor­
phisms on Y. 

The effect of (iii) is to reduce the analysis (when Y E Chev(2)) to the case 
that X = Y. Aschbacher-Seitz obtain rather complete information in this case 
concerning the possible structures of (restricted) tightly embedded subgroups. 

H. SIGNALIZERS. Let X be a simple #-group and P a/?-subgroup of X. One 
needs various properties of P-signalizers in X-i.e., the collection of P-in­
variant //-subgroups of X-primarily when P is either elementary abelian or a 
Sylow /^-subgroup of X. Forp = 2, two questions are of special interest: 

(a) Does P normalize a nontrivial ^-subgroup of X for various odd primes 
<?? 

(b) Are any two maximal JP-invariant ^-subgroups of X conjugate by an 
element of NX(P) (or even by an element of Cx{P))l 

For odd/?, the primary questions of interest are: 
(c) What is the 2-local/?-rank m2p{Xyi 
(d)Ismp(X)>m24>(X)l 
(e) If P lies in a 2-local subgroup of X and nyiP) = e(X) (the maximum of 

m2 q(X)> taken over all odd primes q\ can one describe the embedding of P in 

xi 
Here are a few of the illustrative results. 
THEOREM 18. Let X be simple of Lie type defined over GF(q). Then we have 
(i) If P E Sylp(X) and q—pn, then P has trivial signalizers. 
(ii) Ifp is odd, q = 2n

9 and n^piX) = e(X)9 thenp divides q2 - 1. 
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THEOREM 19. (i) If X = An and P G Syl2(X), then a maximal P-invariant 
subgroup of X of odd order is either trivial or of order 3; and, in the later case, 
n = 3 (mod 4), 

(ii) If X is a sporadic simple group and ml4){X) > 3, p odd, then mp(X) > 
m2iP(X). 

We should also like to mention an important signalizer result of Thompson 
for ^-constrained groups, p odd [202]. 

THEOREM 20. Let X be a p-constrained group, p odd, and P ap-subgroup ofX 
with the property that P contains every element of order p in CP(X). Then every 
P-signalizer of X lies in Op(X). 

I. REPRESENTATIONS OVER FIELDS OF PRIME ORDER. We have discussed this 
topic in some detail in §§5, 10, and 11, which should give a clear indication of 
the kind of module properties one needs for local analysis. 

In this section, we have tried to describe the "general" theory of simple 
jÇT-groups. However, in some classification problems, particularly low rank 
problems, one also needs a "special" theory of simple üT-groups. For example, 
in the classification of groups with dihedral, quasi-dihedral, or wreathed 
Sylow 2-subgroups, one needs a "dictionary" of specialized properties of the 
groups L2(q), L3(q), U3(q% q odd, and A1 (in most cases related to one of 
(AMI) above). 

One also needs a theory of arbitrary .ST-groups (both general and special). 
Moreover, it is not always a routine matter to pass from properties of the 
simple sections of a JT-group X to properties of X itself. For example, 
Thompson's ]V-group paper begins with over fifty preliminary lemmas, deal­
ing primarily with solvable groups, some quite general and others very 
specialized. Some are easy to prove, but others take considerable effort. 

Typically the proof of any classification theorem begins with such a list of 
detailed preliminary lemmas which can be applied to the proper sections of a 
minimal counterexample G to the theorem, some concerning simple sections, 
others dealing with arbitrary AT-groups which may be involved in G. Certainly 
one of the important tasks for the future will be to develop a coherent, 
systematic treatment of the entire theory of ^-groups. 



APPENDIX 

A program for classifying the finite simple groups 
Four lectures delivered at the University of Chicago, June, 1972. 

Introduction. It was with considerable hesitation that I accepted Alperin's 
suggestion to present an overview of the problem of classifying simple groups. 
In the face of the seeming vastness of the problem, who can have confidence 
in the validity of his own personal vision. It is not that I am afraid of making 
some foolish suggestions-Fm perfectly willing to do that in casual, private 
conversations-but one feels a deeper responsibility for mathematical accuracy 
in a formal setting. 

After all, our fifteen or so years of effort have essentially concentrated on 
two extremities of the problem: first, close to the very base-by conditions that 
tightly restrict the composition factors of the local subgroups; and second, 
close to the known simple groups-by conditions that specify some subgroup 
structure very precisely. How clear a picture can one expect to get from such 
limited perspectives? 

Imagine that I were called on to predict the final shape of the odd order 
problem at just the moment that Feit, Hall, and Thompson had completed 
the special case in which centralizers of elements were nilpotent. Perhaps I 
would have managed some accurate remarks about local analysis and 
character theory, but all the marvelous techniques of the general paper were 
far beyond my vision-and the final generator-relations case of Chapter VI 
was at that time completely hidden. 

Having made these cautionary remarks, perhaps I should begin by briefly 
describing the sources of my present picture. Certainly the study of groups of 
low 2-rank-a task on which I have been endlessly submerged-is hardly 
designed to reveal the contours of outer space. Nevertheless, all my initial 
understanding of "components" developed out of this work. 

However, far more important for my overall view has been Thompson's 
classification of JV-groups. And now his recent work on 3'-groups reinforces 
my belief that the major subdivisions of the JV-group paper are not accidental. 

The abelian Sylow 2-group problem has also been a major factor. Because 
of the existence of composition factors isomorphic to L2(q), q odd, within the 
local subgroups, this problem included important features not present in the 
JV-group or 3'-group cases. After John Walter's original classification 
theorem, he and I made a considerable effort to understand and generalize 
the intrinsic features of this problem. Out of this work, the whole signalizer 
functor method developed-the signalizer functor theorem itself, the theory of 
A>balanced groups, and a deeper understanding of components and 
nonconstrained local subgroups. 

Although personally I have had only superficial contact with the sporadic 
groups, taken together they have had their effect on my picture. In fact, an 
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analysis of their common internal features suggests to me a major problem 
area of future research. 

Finally, all the characterization theorems of the known simple groups by 
centralizers of involutions has led me to believe in the following metaprin-
ciple: If in a given classification problem, one is able to force the centralizer 
of an involution of G to have some essentially precise form, then methods 
exist for determining the corresponding possibilities for G. The effect of this 
principle is to transform the total classification problem into the more 
functional problem of developing methods to pin down the structures of the 
centralizers of involutions in simple groups. 

There you have the background for my present picture. Despite the 
reservations I expressed before of its inherent limitations, I do feel strongly 
that it represents as reasonably accurate a roadmap as it is possible to put 
forth at the present time. And I hope that presenting it here will help to 
channel some of your future research in what I believe to be fruitful 
directions. 

This has been an important consideration for me in agreeing to speak on 
this subject, for I cannot help wondering whether all the classification 
theorems filling up the journals will really be needed for the ultimate 
classification of simple groups. Obviously, one cannot be certain, since any 
picture one has is subject to change without notice. But at least a global 
roadmap can provide you with some measure of the significance of a 
particular problem. 

Let me illustrate. In the general classification of simple groups of 2-ranks 2, 
3 and 4, it was necessary to first establish characterization theorems for the 
known simple groups by their Sylow 2-subgroups. This suggested a general 
problem area-and papers are now beginning to flow in this direction-each 
representing hard work and good mathematics. However, from the point of 
view of the program I shall outline, these results will, in general, not be 
significant for the classification of simple groups. The point is that for higher 
2-rank, it is likely that one will require only characterization theorems by the 
centralizers of involutions. 

On the other hand, the program will suggest another large area of research, 
which utilizes much the same techniques as the preceding: Namely, the 
characterization of the groups of Lie type of characteristic 2 by the structure 
of the centralizers of elements of order 3. Of course, everything I have to say 
may in the end turn out to be nonsense, but if it does represent the clearest 
picture we now have, one must ask himself why he should choose to work in 
the first problem area rather than the second. 

Preliminary definitions and results. It will be best to start with some general 
terminology which will be needed in describing the specific parts of the 
program. 

DEFINITION. A quasisimple group is a perfect central extension of a simple 
group. A semisimple group is any central product of quasisimple groups. Its 
quasisimple factors are uniquely determined and are called the components of 
the semisimple group. For convenience, the trivial group of order 1 is also 
considered to be a semisimple group. 
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Any group H possesses a unique maximal normal semisimple subgroup, 
which we denote by L(H), 

PROPOSITION. For any prime p9 H is p-constrained if and only if 
L{H/Op{H)) = 1. 

Any group H possesses a unique subgroup which is minimal subject to 
being normal in H and covering L{H/Op{H)), We denote it by Lp{H) and 
call it the p-layer of H. 

PROPOSITION. The following three statements are equivalent: 
®Lp{H)QL{H);n 

(ii) Lp{H) is semisimple; 
(iii) Lp(H) centralizes Op{H). 

DEFINITION. For any prime p9 &k4> (H) will denote the set of elementary 
abelian/?~subgroups of H of rank k. For brevity, we write &k(H) for &k2(H), 
If T E S M (# ) ,wese t 

àH(T)= r\tKT«Op.{CH{t)). 

A quasisimple group L is said to be k-balanced fotp if for any subgroup H of 
Aut(L) containing Inn(L) and any Tin &kp(H)9 we have 

Mr) = 1-
For brevity, we say H is k-balanced if/? = 2 and we say H is balanced for/? if 
H is 1-balanced for/?. 

Among the known simple groups, it appears to be the case that apart from 
the families L^iq), q odd, and A„9 they are all 2-balanced. The groups L2(q), q 
odd, are 3-balanced, However, for any k9 the groups An with n s 3 (mod 2k) 
are not A>balanced, 

DEFINITION. The p-rank of H is the maximum rank of an elementary 
abelian /^-subgroup of H. We denote it by mp{H) and set m(H) — m2(H), 
Likewise the sectional/?~rank of H is the maximum of mp(X)9 X ranging over 
all sections of H. We denote it by rp(H) and set r(H) — r2(H). 

For example, if SCN3(2) is empty in //, it is known by a result of 
MacWilliams that r(H) < 4. 

DEFINITION. For any prime /?, if P is a Sylow/?-subgroup of Zf, we set 

TPtk(H) = o M O i e £ p>»v(e) > *>• 
We call TPk(H) the k-generated p-core of /f. (As usual, we suppress/? in the 
case p = 2.) Clearly the ^-generated /?-core of H is determined only up to 
conjugacy by the choice of JP, 

We say that H is k-generated for p if 

H = rv^/f ) 
for some (and hence all) Sylow/?-subgroup P of H. 

We say that H possesses a strongly p-embedded subgroup if H has a 

,3We have kept the notation of the original manuscript of these lectures. In particular, C 
denotes subgroup containment, rather than <, as in the body of the article. There are a few 
other minor notational differences. 
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nontrivial proper 1 -generatedp-core (i.e. 1 c TPl(H) c H). When/? = 2, we 
again drop the/? and note that our definition is equivalent to the customary 
one for strong embedding. 

One has the following general result. 

PROPOSITION. If H possesses a strongly p-embedded subgroup, then one of the 
following holds: 

(i) HJias a cyclic or generalized quaternion Sylow p-subgroup; _ 
(ii) H =_H/Op(H) contains a simple normal subgroup L with Cjj{L) = 1 

such that L has a strongly p-embedded subgroup. 

In effect, this proposition reduces the study of groups with a strongly 
p-embedded subgroup to the simple case. As you well know, Bender has 
classified all groups having a strongly embedded subgroup, the only simple 
ones being L2(2

n), Sz(2n), £/3(2
n), n > 2. Recently, Aschbacher has extended 

Bender's argument to the case of groups of even order having a proper 
2-generated core. Remarkably, Aschbacher's list includes only two additional 
quasisimple groups of 2-rank at̂  least 3-namely, Janko's group Jl of order 
175,560 and the covering group Â9 of A9 by Z2. 

These two theorems of Bender and Aschbacher form the cornerstone for 
deriving contradictions when studying the centralizers of involutions in a 
simple group G. One wishes to prove that these centralizers have some 
property X. Assuming X is false, one argues that the 1-generated core or 
2-generated core of G is proper. Then one quotes Bender or Aschbacher to 
conclude that G c~ £2(2

/I), &(2W), l/3(2
w), or Jx. Now one checks by 

inspection that X holds in G. 
For odd primes/?, no corresponding classification theorem of groups with a 

strongly /^-embedded subgroup exists. This would appear to present a 
fundamental obstacle in any attempt to analyze centralizers of elements of 
odd prime order/? in simple groups by the methods used to study centralizers 
of involutions, for we have no basic procedure for deriving contradictions. 

However, there is a way out of this difficulty. It is based on the following 
result, which is not at all difficult to prove, and which I call the 

THEOREM OF TRANSITION. Let G be a group which possesses a strongly 
p-embedded subgroup M9 p odd. If every maximal 2-local subgroup of G is 
I-generated for the prime p9 then M is strongly embedded in G in the ordinary 
sense. 

Later I shall explain how this result fits into the larger picture. We note 
here that by the preceding proposition the theorem will be applicable unless 
sorne^ maximal 2-local subgroup H of G either has a cyclic Sylow/^-subgroup 
or H =_H/Op(H) is isomorphic to an automorphism group of a simpte 
group L having a strongly /^-embedded subgroup. In practice, of course, L 
will be of known type. 

Among the known simple groups which possess a strongly /^-embedded 
subgroup are obviously the analogues of the Bender groups-namely, L2(p

n)> 
Ui(pn), n > 1, and when/? = 3, the groups of Ree type of characteristic 3. 
These seem, in fact, to include the only such groups of /?-rank at least 3. 
There are, however, some further groups of/?-rank 2; for example, the group 



182 DANIEL GORENSTEIN 

Alp. Of course, any group H with cyclic Sylow /^-subgroup P ^ l and 
Op(H) = 1 has a strongly /^-embedded subgroup; namely NH(QX(P)). 

One should view the theorem of transition as follows: Either it is applicable 
or some maximal 2-local subgroup has a very restricted structure relative to 
the prime/?. This will be particularly effective if p = 3. 

THE PROGRAM 
Preliminary remarks. At the very outset, we face a serious technical prob­

lem. Obviously, we wish to proceed by induction to classify all simple groups, 
but unfortunately we have no reason to expect that our present list of simple 
groups is complete. This is underscored by Rudvalis' new group that has 
turned up in just the last two months. Fortunately, all the simple groups that 
have been discovered in recent years have internal structures very similar to 
those of previously known simple groups. This means that if in a particular 
argument of local analysis, some general property of the composition factors 
of the local subgroups (which will be known simple groups) is used, it is very 
likely that this property will continue to hold even if the list of known simple 
groups becomes expanded. This also indicates the advantage of proceeding in 
a somewhat axiomatic fashion, making explicit the specific general properties 
of the known simple groups that enter into the given arguments. One then 
simply has to check that any new simple group satisfies the given conditions 
to know that the argument remains valid in the presence of this group. I 
remark that the general properties of the known simple groups which 
primarily enter into the arguments are of the following types: 

1. Balance; 
2. Various kinds of generation; 
3. General properties of centralizers of elements of prime-order-in particu­

lar, involutions; 
4. Schur multipliers; 
5. Automorphism groups. 
I should add, however, that it is not always easy to state these conditions in 

such a way that they are valid for every known simple group-there always 
seem to be elusive exceptions. I want to emphasize that an integral part of 
this program is the prior verification of those general properties of the known 
simple groups which will be needed to make the local group theoretic analysis 
universally valid. Since there will be essentially no time for me to discuss 
techniques needed to treat any of the individual parts of the program, I shall 
have very little to say explicitly about these properties in outlining the 
program. 

One final observation. A particular phase of the general classification 
problem may be inductive in its own right-for example, the classification of 
simple groups whose 2-local subgroups are all solvable. If, in such a situation, 
we feel that our present list of simple groups is complete, then there is clearly 
no point in proceeding axiomatically. Instead one should simply regard the 
problem as an independent classification theorem. Moreover, it is, in fact, 
necessary to do so, since in such problems more specific properties of the 
restricted composition factors of the local subgroups are usually required to 
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carry through the analysis. This remark will apply to several individual parts 
of the program. 

Since the complete classification of simple groups seems to be a long way 
off, it is clearly important to treat as many parts of the program as indepen­
dent classification theorems as is possible. 

With all these remarks in mind we shall, henceforth, consider a simple 
group G all of whose local subgroups have composition factors of known 
type. Our goal then is to prove that G itself is of known type. This is what the 
ultimate classification theorem will have to demonstrate. 

The way to think of G at the outset is not at all as a simple group, but 
rather as a group whose proper subgroup structure resembles that of a 
completely arbitrary group having composition factors of known type. Our 
task then is to use the assumption of simplicity to gradually force the internal 
structure of G to resemble that of a known simple group. Basically, this 
assumption is used in the most naive way-it forces the subgroups of G which 
we consider in our local analysis always to be proper. 

Now finally for the outline itself, which will have sixteen parts. 
I. GROUPS OF LOW 2-RANK. AS I shall explain at the next step, the signalizer 

functor method does not begin to work well unless the 2-rank of G is at least 
5. It seems necessary, therefore, to treat the case in which G has 2-rank at 
most 4 independently. This is a major undertaking which, in effect, has been 
in progress for about 15 years-and is still not completed. 

At the present time, Harada and I have just completed the analysis in the 
case in which G has sectional 2-rank at most 4. Because our hypothesis was 
imposed on the sectional 2-rank, we were able to prove our result by 
induction. However, if we assume only that the 2-rank of G is at most 4, this 
is not an inductive condition, so it does not appear that one can easily 
achieve this classification result as an independent theorem. Probably one can 
prove that the sectional 2-rank of G is at most, say, 12 and then classify all 
groups in which r(G) < 12, but this would be a painful task. 

Harada has suggested a procedure which might work to attain an inde­
pendent classification theorem. The analysis is to be divided into two parts: 

Problem 1. Classify all groups in which all 2-local subgroups are either 
solvable or not 2-constrained. 

This is an inductive condition and so it can be treated as an independent 
classification problem. The solution is to be carried out in 3 steps: 

(A) All 2-local subgroups of G are solvable. 
This will require a generalization of large parts of the iV-group paper. 

(B) Some 2-local subgroup of G is not 2-constrained and m(G) < 4. 
This will require a generalization of the non 2-constrained portions of the 
sectional 2-rank problem-Parts III, IV, V, and VI of our paper. Of course, 
this much would have to be done anyhow if one wanted to classify simple 
groups of 2-rank at most 4. 

(C) Some 2-local subgroup of G is not 2-constrained and m(G) > 5. This 
will require the full application of the signalizer functor method which I shall 
describe below. 

If Problem 1 is solved, we are reduced to the case in which our group G of 
2-rank at most 4 possesses a nonsolvable 2-constrained 2-local subgroup. 
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Thus, we are led to 
Problem 2. Determine the possible structures of a nonsolvable 2-

constrained group H such that m{H) < 4. 
This is a noninductive problem, but it does seem amenable to attack. In 

Part II of the sectional 2-rank paper, we treated the corresponding problem 
when r(H) < 4. If Problem 2 could be solved, one would be in a position to 
apply the more precise fusion methods to force the structure of a Sylow 
2-subgroup of G9 in which case one would be able to quote some prior 
classification theorem. 

II. THE SEMISIMPLICITY OF 2-LAYERS. Henceforth, we assume that G has 
2-rank at least 5. In particular, SCN3(2) is nonempty. 

Problem. Prove that the 2-layer Lr{CG{x)) of CG(x) is semisimple for every 
involution x of G. 

This will involve the use of the signalizer functor method which I would 
like to describe very briefly. The quasisimple components of 
L(CG(x))/0(CG(x))9 being of known type, are either 2-balanced or 
isomorphic to L^iq), SL(29 q), q odd, An or Ân. The alternating groups present 
a technical problem, which can be handled, but which I prefer to avoid here. 
So let us here exclude the groups An with n = 3 (mod 8) from the set of 
possible components. Then all quasi-simple components will be 3-balanced as 
the groups L2(q), q odd, are 3-balanced. 

As a consequence, one has 

PROPOSITION. IfTE &3(G) and a is an involution of CG(T)9 then 

àG(T)nCG(a)QO(CG(a)). 

Using this result, one can prove 

PROPOSITION. If A is an elementary abelian 2-subgroup of G of rank at least 
5 and for a in A # , we set 

0(Cc(a)) = <CG(«) n AG(T)\T G $3(^)>, 

then 

HCo(x))nCG{y)Q$(CG(y)) 

for all x9y in A*. 

Thus, 9 is a A-signalizer functor on G. 
We remark that the assumption that m{G) > 5 is essential for the prece­

ding result except in those cases in which the groups L2(q)9 q odd, do not 
occur among the components, 

The signalizer functor theorem now yields 

THEOREM. The group WA = (0(CG{a))\a E A*) = (àG(T)\T G S3(^)> is 
of odd order. 

COROLLARY. Either WA - 1 or NG(WA) is a proper subgroup of G. 

There are now essentially three steps to proving the semisimplicity of 
L2(CG(x)) for every involution x. 

(A) Prove WA*=\. 
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In the contrary case, prove that NG(WA) is strongly embedded in G or at least 
that TS2(G) C NG(WA) for some Sylow 2-subgroup S of G. In carrying this 
out, specific generational properties of the components of the groups 
L2{CG{x)) enter. 

Thus, (A) implies that AC(T) = 1 for all Tin &3(A). 
(B) Prove AG(T) = 1 for all T in S3(G). 

If each T in S3(G) lies in an element of S5(G), (B) will follow from (A); so it 
is the remaining cases in which we are concerned. 

(C) Prove L2{CG{x)) is semisimple for every involution x of G. 
One must prove that I^CQC*)) centralizes 0(CG(x)). In this analysis, the 

following general proposition, known as L-balance> is fundamental: 

PROPOSITION. If x and y are commuting involutions of G, then 

mLx(CG(x)) n CG(y)) C Lz(CG(y)). 

There is no time to go into further detail. Let me just say that this 
procedure has been successfully carried out in many specific classification 
problems. 

III. STANDARD FORM IN ODD CHARACTERISTIC. Henceforth, we assume that 
L2(CG(x)) is semisimple for every involution x of G. We denote by £(G) the 
set of quasisimple components of L2(CG(x)) as x ranges over the involutions 
ofG. 

We first consider the case in which some element of £(G) is of Lie type of 
odd characteristic. Since certain groups of odd characteristic are isomorphic 
to groups of even characteristic or alternating groups, this presents a slight 
problem. From a technical point of view, it is probably best not to consider 
these "swing" groups as being of odd type. Allowing for this possibility, the 
goal under these circumstances can be stated as follows: 

Problem. Prove that for some involution x of G, H = CG(x) possesses a 
quasisimple normal subgroup L of Lie type of odd characteristic such that 
CH(L) has 2-rank l~i.e., CH(L) has cyclic or generalized quaternion Sylow 
2-subgroups. 

In such a case, we say that H is in standard form with standard component 
L. 

Clearly a result of this sort pins down CG(x) very tightly. We note that 
John Walter's work on this problem indicates that one can most likely force 
the approximate structure of the centralizers of all the involutions of a 
maximal elementary 2-subgroup of G containing x. 

The reason we can expect such a strong conclusion in this case is due to the 
special way in which groups of Lie type of odd characteristic are generated, 
In fact, if T is any four group acting on such a quasisimple group K, one has 

* = <Q(0'Mr#>. 
Indeed, except in certain cases when K has low Lie rank, one actually has 

f = ( L ( Q ( 0 ) N T # ) . 

Using these properties of generation together with L-balance and assuming 
the desired conclusion is false, the aim of the analysis is to prove 

(A) VA = (MÇG{a))\a E ^4#> is a semisimple group. Here A(CG(a)) 
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denotes the product of those components of L(CG(a)) that are of Lie type of 
odd characteristic. 

(B) NG(VA) is strongly embedded in G. 
The spirit as well as specific portions of this analysis is very similar to that 

involved in proving the semisimplicity of 2-layers. Therefore, it is reasonable 
to include it in what we may call the general "signalizer functor" method. 

IV. CLASSIFICATION OF GROUPS OF ODD TYPE. Once we have the centralizer 
H of an involution in standard form with standard component L of Lie type 
of odd characteristic, we are very close to the known characterization 
theorems of these groups by centralizers of their involutions. Of course, 
CH(L) may not have the correct form for the known group, but its structure is 
very limited as CH(L) has cyclic or generalized quaternion Sylow 2-
subgroups. Likewise, H/LCH(L) may be wrong. However, this group is 
isomorphic to a group of outer automorphisms of L and so is also very 
restricted. 

Problem. Generalize the known characterization theorems for groups of Lie 
type of odd characteristic to the standard form case. 

V. QUASI-STANDARD FORM. At this stage we assume that no element of 
£(G) is of Lie type of odd characteristic. When £((?) is nonempty, we would 
obviously like to generalize the analysis of the odd characteristic case. 
Unfortunately, the groups of Lie type of even characteristic, the alternating, 
and sporadic groups do not have such nice generational properties, so it is not 
clear how far the signalizer functor method can be pushed. 

Out of our work on groups with Sylow 2-subgroups of class 2, Gilman and 
I have managed to extend one of our arguments to give a general first 
approximation. 

For some involution x of G, if H = CG(x% then the 2-layer L of H is 
quasisimple and m(CH(L)) < m{L) + 2. 

One may conjecture 
Problem. Prove x and L exist so that CH(L) has 2-rank at most 2. 
This problem has not been considered very seriously and it is not clear how 

reasonable this conjecture is. In any event, let us say that H is in quasi-stan­
dard form when L exists with CH(L) of low 2-rank. 

VI. CENTRAL INVOLUTIONS. Remarkably if G is of Lie type of even 
characteristic or a sporadic group and the 2-rank of G is at least 5, then 

L2.(CG(x)) = L(CG(x)) = l 

for all involutions x in the center of a Sylow 2-subgroup. This suggests the 
following closely related problem: 

Problem. Prove that the centralizer of every central involution is 2-
constrained. 

Presumably in the contrary case, one will try to argue that CG(x) is in 
quasi-standard form for some central involution x of G and if L is the 
corresponding component of CG(x) that NG(L) is strongly embedded in G. At 
the least, the second assertion will involve an analysis of the group NG(A)> 
where A is an elementary abelian 2-subgroup of CG(x) of maximum rank. 

VII. CLASSIFICATION OF ALTERNATING GROUPS. Presumably if some element 
of £(G) is an alternating group of not too low a degree, this should be 
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enough to force G itself to be an alternating group. Clearly, the goal would be 
to prove that x exists with H = CG(x) in quasi-standard form and with 
component L an alternating group. If one can achieve this, one would be 
close to Kondo's characterization of the alternating groups. 

Problem. Characterize the alternating groups along these lines. 
The case in which all elements of £(G) are assumed to be alternating 

groups will obviously be of great interest. 
VIII. SOME SPORADIC GROUPS. We now reach a very interesting situation: 
(a) CG{x) is 2-constrained for every central involution x; 
(b) Every element of £(G) is of Lie type of characteristic 2 or a sporadic 

group; 
(c) CG(y) is in quasi-standard form for some involutiony. 

For example, these conditions hold in Rudvalis' group with CG(y) s Z2 X 
Z2 X Sz(S) and in the smallest Fischer group with CG(y)/(y} s U6(2). 

Problem. Determine all groups which satisfy (a), (b), and (c). 
Very special cases of this problem are treated in Part I of the 3'-problem, 

the abelian Sylow 2-group problem, Collins' characterization of the Suzuki 
groups, and in the class 2 Sylow 2-group problem. 

The problem is actually larger than it appears, for there exist a great many 
"almost simple" groups satisfying these conditions. Let G* be an extension of 
a group K of Lie type of characteristic 2 by an automorphism y of period 2. 
Then CG*(y) = I X (y}9 where L = CK(y); and for most choices of K and 
y, L will be a simple group of Lie type of characteristic 2. To rule out these 
cases in our situation, it will clearly be necessary to pinpoint a Sylow 
2-subgroup of G and then by transfer force G to have a normal subgroup of 
index 2. 

In both this problem and the preceding alternating group situation, one will 
again be concerned with CG(x) in quasi-standard form and the interrelations 
between the groups NG(L) and NG(A), where L is the component of CG(x) 
and A is an elementary abelian 2-subgroup of CG(x) of maximal rank. 

A BRIEF DIGRESSION. This list of problems may seem overwhelming. And 
even if they are all solved, where does it put us? We shall have reached the 
stage in which the centralizer of every involution of G is 2-constrained. By 
some general results, every 2-local subgroup of G is then 2-constrained and 
each has a trivial core. Thus, our simple group G of 2-rank at least 5 will be 
what I call of 

CHARACTERISTIC 2 TYPE, 
inasmuch as the simple groups of Lie type of characteristic 2 have 2-local 
subgroups which satisfy these conditions. 

However, from what we have seen in the iV-group paper and heard about 
the 3'-problem, the major portion of our work still lies ahead of us; so it all 
may seem very discouraging. Therefore, to give you sustenance for the long 
journey ahead, let me list some specific cases in which this phase of the 
program has been successfully completed or nearly completed. 

1. Groups with abelian Sylow 2-subgroups; 
2. Groups with Sylow 2-subgroups of class 2; 
3. 3'-groups; 
4. Groups of order 2a • 3b • 13c. 
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One of my Ph.D. students is working on the problem of classifying groups 
of order 2a • 3* -pc. We happen to have begun with the case/? = 13, since in 
that case there is only one known simple group with such an order, namely 
L3(3), and it happens to be 1-balanced. 

In each of these four problems, one has been able to prove or is very close 
to proving at the present time that a minimal counterexample to a classi­
fication theorem is a group of characteristic 2 type. Of course, in the abelian 
problem, theorems of Feit or Suzuki complete the classification at once; but 
in the other problems, the proofs are far from over at this point 

5. The work of John Walter in the case in which some element of t(G) is 
of odd type can be viewed as a successful execution of parts of the above 
program. 

Finally I wish to mention a general result that Harris and I have recently 
obtained which utilizes these methods and which I hope will be useful in 
further classification problems. 

We say that a group G has product fusion provided: 
(a) A Sylow 2-subgroup S of G is the direct product of subgroups Sx and 

(b) No element of St is conjugate in G to an element of S — Si9 i = 1, 2. 
Clearly G has product fusion if G — Gx X G2 with St a Sylow 2-subgroup 

of Gi91 = 1, 2; which explains our terminology. 
Our result is essentially the converse assertion. 

THEOREM. Let G be a group with product fusion (relative to the decomposition 
S - S{ X S2) and assume that every simple group involved in a 2-local 
subgroup of G is either 3-balanced or an alternating group. If G has no 
nontrivial normal subgroup of odd order or odd index, then 

(? = Gj X <J25 

where Sê is a Sylow 2-subgroup of Gi9 * = 1, 2.14 

Presumably our assumption on balance holds in every specific inductive 
classification problem. Actually, we require this assumption only for the 
composition factors of a certain inductive set of subgroups of the 2-local 
subgroups. 

I hope these results will give you encouragement to consider seriously some 
of the above problems and to bear with me as I present the balance of the 
program. 

IX. THIN GROUPS. It remains now to present a procedure for analyzing 
groups of characteristic 2 type. Here the sole guidelines come from the 
iV-group and 3'-problems and whatever I have to say is based on my 
understanding of these classification theorems. Although Thompson's actual 
proofs are carried out in the form of reductions to tighter and tighter 
situations, it will be preferable in describing the overall program to reverse 
this procedure and build step-by-step from the special to the general. 

14We do not explicitly treat the cases in which Sx and S2 are each dihedral, quasi-dihedral, 
wreathed, homocyclic abelian of rank 2, or of type £/3(4), some of which have not yet been 
handled. Mason is presently working on the remaining cases, but until this work is done, our 
proof will actually be incomplete. 
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The principal subdivisions in Thompson's analysis are determined by the 
/>-ranks of the 2-local subgroups of G for odd primes p. Let us then define the 
2-local p-rank of G, for any odd prime/?, to be the maximum of ntp(H) as H 
ranges over the 2-local subgroups of G. 

Janko has introduced the term thin for any group whose 2-local/?-rank is at 
most 1 for all odd/?-equivalently, whose 2-local subgroups have cyclic Sylow 
jj-subgroups for all odd p. A major chapter of the JV-groups and 3'-papers 
deals with the case in which G is thin. Moreover, Janko has generalized 
Thompson's JV-group argument to obtain a classification of thin groups with 
solvable 2-local subgroups. 

Problem. Classify all thin groups. 
At least this very important problem can be treated as an independent 

inductive problem. Thompson's and Janko's work suggest that the main tools 
involved will be the weak closure of abelian 2-groups, double factorization 
lemmas, and the centralizers of elements of odd order. However, Janko's 
preliminary investigations of this general problem indicate that some difficult 
minimal cases exist when L2(2

n) is a composition factor of a 2-local subgroup. 
X. GROUPS WITH A STRONGLY ^-EMBEDDED SUBGROUP, p ODD. We can, 

therefore, assume that G is not thin, in which case the 2-local/7-rank of G is at 
least 2 for some odd p. The basic additional tool which Thompson utilizes to 
treat this case is a uniqueness theorem for such primes p. In our present 
terminology, this is equivalent to saying that G has a proper 2-generated 
/7-core-which will hold, in particular, if G has a strongly /^-embedded 
subgroup. 

We remark that Thompson actually divides the analysis into two cases-ac­
cording as the 2-local/?-rank is 2 or at least 3. The first case requires a special 
analysis of the 2-local and jp-local subgroups of G. However, in the JV-group 
paper, the second case, which is the general case, is essentially a consequence 
of general arguments in the odd order paper. 

Here then is an important general problem, which we prefer to divide into 
two parts. 

Problem 1. If the 2-local 3-rank of G is at least 3, prove that G does not 
possess a strongly 3-embedded subgroup. 

Problem 2. If the 2-local 3-rank of G is at most 2, prove that G does not 
possess a strongly /^-embedded subgroup if the 2-local />-rank of G is at least 3. 

It may be necessary to generalize these problems to the case of a proper 
2-generated 3-core and/?-core. 

Clearly the theorem of transition is directly applicable and implies that 
some maximal 2-local subgroup if of G is not 1-generated for 3 or/?, as the 
case may be. We have noted earlier the restricted nature of such a group H, 
particularly for the prime 3. It is for this reason that we have made the above 
subdivision, for in the second case the composition factors of H are again 
highly restricted no matter what value p has inasmuch as H does not contain 
a subgroup of type (3, 3, 3). 

The problem here is still to prove that our strongly/^-embedded subgroup is 
strongly embedded in the ordinary sense, but Thompson's work indicates that 
to prove this will again require an analysis of the weak closure of abelian 
2-subgroups of G. 



190 DANIEL GORENSTEIN 

XL THE SIGNALIZER FUNCTOR METHOD FOR ODD PRIMES. Henceforth, we 
assume that G does not possess a strongly /?-embedded subgroup and, if 
necessary, does not have a proper 2-generated /?-core, where /? = 3 or p > 3 
as in the preceding section. What are the implications of this assumption? To 
answer this, let us ask the corresponding question for the prime 2: What was 
the implication of the fact that G did not have a proper 2-generated core? 

Using the signalizer functor method, we hoped to obtain the following 
conclusions when m(G) > 5: 

(A) L2(CG(x)) is semisimple for every involution x of G; 
(B) One of the following holds: 

(1) G is of characteristic 2 type (2-locals are 2-constrained and have 
trivial cores); 

(2) CG(x) is in standard form with standard component of Lie type of 
odd characteristic for some involution x; 

(3) No element of t(G) is of Lie type of odd characteristic and CG(x) is 
in quasi-standard form for some involution x. 

Except in the low rank cases, the proofs of these results are all very formal 
in nature and only use the fact that our prime is 2 in a single way-namely, 
that 02(CG(x)) = 0(CG(x)) is of odd order and hence solvable. Because of 
this, our original signalizer functor 0 was solvable in the sense of Gold-
schmidt and so the signalizer functor theorem was applicable. 

Unfortunately, if x is an element of order/?,/? odd, Op(CG(x)) need not be 
solvable, so in general, the corresponding signalizer functor 0 will not be 
solvable. There are actually two possible ways out of this difficulty. 

Problem 1. Prove a nonsolvable signalizer functor theorem. 
In fact, we have carried through a large portion of the proof of such a 

result. We note that there is a decided advantage here in having/? = 3, since 
in this case the only nonsolvable composition factors of Op(CG(x)) will be 
Suzuki groups. 

Problem 2. Show in the present context that solvable signalizer functors are 
sufficient. 

The point is that because G is of characteristic 2 type, it may be enough to 
work with S(Op(CG(x))), the unique largest normal solvable subgroup of 
Op(CG(x)). 

Once this problem is successfully handled, the entire signalizer functor 
machinery can be bodily carried over to the case of our odd prime/? provided 
the/?-rank of G is large enough. Presumably, the low/?-rank cases will require, 
as in Thompson's cases, a mixture of 2-local and/?-local analysis to obtain the 
desired results. 

Problem 3. Prove that Lp,(CG(x)) is semisimple for every element x of G or 
order/?. 

Now define fcp(G) to be the set of quasisimple components of Lp>(CG(x)) as 
x ranges over the elements of G of order/?. 

Problem 4. Prove that one of the following holds: 
(1) G is of characteristic p type (/?-locals are /?-constrained and have no 

non trivial normal /?'-subgroups). 
(2) CG(x) is in standard form with standard component a group of Lie type 

of characteristic 2 or a sporadic group for some x of order/?; 
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(3) No element of 6(G) is of Lie type of characteristic 2 or a sporadic 
group and CG(x) is in quasi-standard form for some x of order/?. 

Because G is of characteristic 2 type to begin with, there are indications 
that the possibilities that may occur under (3) will be very limited. 

XII. GROUPS OF CHARACTERISTIC p TYPE. It remains to consider the three 
alternatives of Problem 4 of the last section. Suppose first that G is of 
characteristic p type (as well, of course, as of characteristic 2 type). We 
postpone to the next two sections the case in which mp{G) = 2 and so we 
assume, in addition, that G has/?-rank at least 3. 

Thompson's analysis of this case in the iV-group situation constituted a 
major undertaking and led to his beautiful characterizations of the groups 
G2(3) and Sp(4, 3). Surprisingly enough, so far as I can tell, these two groups 
are the only ones among the presently known simple groups that satisfy our 
more general conditions. This suggests 

Problem. Prove that G2(3) and Sp(4, 3) are the only groups which are 
simultaneously of characteristic 2 and/? type (with mp(G) > 3). 

If every maximal /?-local subgroup of G were /^-stable, Glauberman's 
Z/-Theorem would lead at once to the conclusion that G had a strongly 
/^-embedded subgroup, which we are here assuming is not the case. Hence, 
some maximal /?-local subgroup H of G is not /^-stable. The structure of non 
/7-stable /^-constrained groups is closely related to the theory of quadratic 
pairs. If Thompson's classification of quadratic pairs for p > 5 can be 
extended to the case p = 3, one may be able to analyze the structure of H 
without invoking our induction assumption on the proper subgroups of G. 

In any event, it is clear that one should thoroughly digest Thompson's 
characterizations of G2(3) and Sp(4, 3) before undertaking this fascinating 
problem. 

XIII. QUASITHIN GROUPS. In treating the remaining problems, it will 
undoubtedly be best to separate out the cases in which G has low 2-local 
3-rank. It is too early to tell whether "low" should be regarded as 2, 3, or 4. 
Hopefully, it will turn out to be the smallest of the values. Clearly the 
classification of 3'-groups is just the first step towards a solution of this 
problem. 

We shall divide the problem into two parts. Let us say that a group is 
quasithin if its 2-local subgroups have /?-rank at most 2 for all odd p (or at 
most 3 or 4, if need be). 

Unfortunately, the quasithin groups are not an inductive family, since just 
as in the case of the prime 2 the /?-rank may increase under homomorphic 
images. Probably there is an analogue of MacWilliams Theorem which asserts 
that the sectional /?-rank of a group is at most 3 (or perhaps 4) if its/?-rank is 
at most 2. But then if one used the sectional /?-rank condition for 2-local 
subgroups in defining quasithin groups one would obtain an inductive family 
of groups which included the groups in which we are interested. 

In any event, we have 
Problem. Classify all quasithin simple groups of characteristic 2 type. 
Clearly Thompson's work in the N-group and 3'-cases plus any results one 

obtains about thin groups will be relevant to this problem. 
XIV. GROUPS OF LOW 2-LOCAL 3-RANK. TO complete the classification of 
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groups of 2-local 3-rank at most 2, one would have to consider: 
Problem. If G is a group of 2-local 3-rank at most 2, prove that G is 

quasithin. 
Suppose the 2-local/?-rank of G is at least 3 for some/?. If we assume that 

the case in which G is of characteristic p type has already been dealt with, it 
will presumably follow that the centralizer of some element of order/? will be 
in standard or quasi-standard form. Because of the severe limitation on the 
elements of &P(G) (due to our assumption on the prime 3), there is a good 
chance that one will be able to construct a strongly /^-embedded subgroup 
and thus derive a contradiction in these cases. 

XV, CENTRALIZERS OF 3-ELEMENTS IN STANDARD FORM. In view of the 
preceding discussion, we can suppose henceforth that the 2-local 3-rank of G 
is at least 3. Thus, our prime/? above can be taken to be 3. Moreover, we can 
suppose that G is not of characteristic 3 type. We are, therefore, left with the 
cases in which the centralizer of some element of order 3 is in quasi-standard 
or standard form. 

I know of no example of a group of characteristic 2 type in which the 
centralizer of an element of order 3 is in quasi-standard form with component 
of Lie type of odd characteristic or an alternating group, so perhaps this case 
cannot arise. As remarked before, the fact that G is of characteristic 2 type 
will severely limit the possible components in such a case and hopefully one 
will, as in the preceding section, be able to construct a strongly 3-embedded 
subgroup to obtain a contradiction. Thus, we have 

Problem. Prove that the centralizer of some element of order 3 is in 
standard form with standard component of Lie type of characteristic 2 or a 
sporadic group. 

XVI. CLASSIFICATION OF SIMPLE GROUPS OF CHARACTERISTIC 2 TYPE. We 

come at last to the final step in the program. 
Problem. Classify simple groups of characteristic 2 type in which, for some 

element x of order 3, CG(x) is in standard form with standard component of 
Lie type of characteristic 2 or a sporadic group. 

We assume, in addition, of course, that the 2-local 3-rank of G is at least 3 
and that G does not possess a strongly 3-embedded subgroup (or a proper 
2-generated 3-core). 

The idea here, at least for the groups of Lie type, is to build up the 
(B9 7V>pair structure from the centralizer of an element of order 3 in much 
the same way that one classified groups of Lie type of odd characteristic by 
the centralizers of involutions. One will protest at once that a fundamental 
tool in that endeavor was Glauberman's Z*-theorem without which it would 
have been impossible to have analyzed the fusion of involutions of (7-and no 
analogue of the ZMheorem is in sight for the prime 3. 

Hence we have the following problem: 
Subproblem. Prove that x is not isolated in CG(x) with respect to G. 
If one thinks a bit about this problem, one will soon see that the way to 

establish this result is to argue in the contrary case that G must have a 
strongly 3-embedded subgroup. 

Clearly without a solution of the subproblem we shall not be able to attack 
the fusion of elements of order 3 in G, 
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In order to test the feasability of this procedure for classifying groups of 
characteristic 2 type, I suggested that one of my Ph.D. students, Robert 
Miller, attempt a characterization of L4(2"), n even, by the structure of the 
centralizer H of an element JC of order 3 in the center of a Sylow 3-subgroup 
(in which case H s GL(3, 2")). The condition, n even, is needed to insure 
that the 2-local 3-rank of G is at least 3. To avoid complications of a different 
nature, I allowed him to assume that any simple section of G of 3-rank at 
most 2 was of known type. 

Under the assumption that x is not isolated in H with respect to G, Miller 
has proved that a simple group G satisfying these conditions is necessarily 
isomorphic to L4(2

n). In addition, he has made considerable progress on the 
prior problem of showing that, in fact, x is not isolated in H. However, this 
phase of his work is at present incomplete. 

Miller's thesis indicates to me that the suggested procedure is a reasonable 
one for classifying groups of characteristic 2 type. I remark that his charac­
terization theorem does not proceed directly to the construction of a (J5, N)-
pair, but rather to Suzuki's characterization of L4(2

n) by the centralizers of 
involutions. If this turns out to be typical, it will mean that the existing 
characterizations of the known groups of characteristic 2 type by centralizers 
of involutions will play an essential role. 

I think these comments explain fully how I conceive the role of centralizers 
of elements of order 3 in the classification of simple groups-as the final 
movement of an elaborate symphony. Thompson has said that our work to 
date represents only a prelude. Hopefully, the program I have described here 
will bear some relation to the full symphony that remains to be written. 
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