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Geometry of spheres in normed spaces•, by Juan Jorge Schâffer, Lecture Notes 
in Pure and Appl. Math., vol 20, Dekker, New York, 1976, vi + 228 pp., 
$24.50. 

Geometric properties of the unit sphere of a Banach space have proved to 
give much information about the general nature of the space. For example, it 
has long been known that a Banach space is reflexive if its unit sphere is 
uniformly convex; this has been strengthened, so that it is now known that X 
is isomorphic to a space for which no two-dimensional sections of the unit 
sphere are nearly squares if and only if X is super-reflexive (no nonreflexive 
space has all its finite-dimensional subspaces "nearly isometric" to subspaces 
of X). Another spectacular example is the fact that all infinite-dimensional 
Banach spaces have arbitrarily large finite-dimensional subspaces that are 
nearly Euclidean, which has been widely useful and revealing. This book 
contains much new information about certain aspects of the geometry of unit 
spheres. It might be described as a detailed and comprehensive study of the 
girth, perimeter, radius, and diameter of unit spheres of Banach spaces. This 
field is new and interesting, perhaps even weird. It is not yet clear how 
important it will be for the study of Banach spaces, but it has connections 
with several concepts of current research interest, e.g., super-reflexivity, the 
Radon-Nikodym property, infinite trees, and preduals of L^fO-spaces. 
Although accessible to beginning students, the book seems primarily of value 
to research mathematicians interested in some of the concepts mentioned in 
this review. A nonspecialist might be confused by the frequent mixing of 
important and not-so-important facts. 

With the aim of minimizing details and giving a feeling of the type of 
results involved, it seems best to describe some interesting facts about the 
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girth and perimeter of the unit sphere that can be stated simply, and leave 
many other facts and related concepts to the serious reader. Given a Banach 
space X, let S(X) denote the unit sphere of X (the set of all x with ||JC|| = 1). 
If X has dimension 2 and C is the circumference of S(X)9 then 6 < C < 8, 
C = 8 if and only if S is a parallelogram, C = 6 if and only if X has a 
representation in the plane with S(X) a regular hexagon, and C{X) = C(X*) 
if X* is the dual of X. For Banach spaces of dimension at least 2, a metric on 
S(X) equivalent to that given by the norm is given by letting 8(p9 q) be the 
infimum of the lengths of curves in S(X) that join/? and q. The girth and 
perimeter of S(X) are respectively infimum of the lengths of symmetric 
closed curves in S(X)9 and the supremum over p of the infimum of the 
lengths of symmetric closed curves in S(X) through/?; it follows that the 
girth is 2m(X) and the perimeter is 2M(X)9 where 

m(X)-ini{ö(p9-p):peS(X)}9 

M(X) = sup{8(p9 -p):p<ES(X)}. 

If X is an lx sum of l\T) and L*(/0 for /x decomposable and atomless, then 
m{X) = 2, and M(X) is 2 or 4 according as T = 0 or T ^ 0 . For finite-
dimensional spaces, M (X) = 4 is equivalent to S(X) being a cylinder or a 
rhombus. It is conjectured that, if M(X) = 4, then either S(X) is a cylinder 
or a rhombus, or X is not super-reflexive. The extreme situations are 
understood: 2 < m(X) < 4 for all X9 m(X) = 4 if and only if X has 
dimension 2 and S(X) is a parallelogram, and m(X) > 2 if and only if X is 
super-reflexive. 

Since super-reflexivity is isomorphically invariant and self-dual, it follows 
that m(X) = 2 is equivalent to m(Y) = 2 if X and Y are isomorphic, or if 
Y = X*. It is conjectured that m(X) = m(Z*) in general, but this is known 
only for spaces that are Euclidean, are of dimension 2, or are not super-re­
flexive. For studying the behavior of m(X) under isomorphism, it is useful to 
introduce mJJC) and m*(X)9 the infimum and supremum of {m(Y): Y 
isomorphic to X}. For infinite-dimensional X9 m+(X) = 2, and m*(X) < m 
with equality holding if X is isomorphic to an Euclidean space. For Xn of 
dimension n9 m*(Xn) -> TT as n -» oo, and it is conjectured that m*(Xn) = IT if 
n > 2. It is also conjectured that X is isomorphic to an Euclidean space if 
m*(X) = 7T, and that m(X) == m implies X is isomorphic (or possibly 
isometric) to an Euclidean space. 

A flat space is a Banach space X for which m(X) = 2 by virtue of there 
being in S(X) a symmetric simple closed curve of length 4; X is completely 
flat if there is such a girth curve that spans X9 i.e., if X is the closed linear 
span of the points of the curve. Strangely, interesting flat spaces exist and 
flatness is related to several concepts of current research interest. The space 
/°°(r) of bounded functions on T is flat if T is an infinite set. If T is an 
infinite Tihonov space and C(T) is the space of bounded continuous real-
valued functions on T9 then m[C(T)] = 2 because of C(T) not being 
reflexive. Such a space C(T) is flat if and only if C(T)* is not lx(T) for any 
set T, so there does not exist dp in S[C(T)] with ô(p9 — p) = 2 if and only if 
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C(T)* is l\T) for some infinite set T. For any Banach space X, X* is flat if X 
is flat. If X* is an L^^-space, then X being flat is equivalent to X* being 
flat, which is equivalent to X* not being ll(T) for any T. An Ll(n) space is 
completely flat if and only if it is L*[0, 1]. If X is isomorphic to a flat space, 
then X has an infinite supported tree and neither X nor X* has the Radon-
Nikodym property. The use of "completely flat" has strong motivation, 
because of the following surprising facts: Let s be a spanning girth curve and 
p be a point of s. Then there is a unique supporting hyperplane H of S(X) at 
/?; /? is an interior point of a subset G of H n S(X) whose closed affine span 
is / / ; for each q in G, sup{||# — r\\: r E (?} = 2; and G is the set of all 
(/> - q)/\\P ~ q\\ for q ^p and ^ 6 J . 
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The theory of unitary group representations, by George W. Mackey, Chicago 
Lectures in Math., Univ. of Chicago Press, Chicago, 111., 1976, x + 372 pp., 
$4.95. 

It is probably impossible to write a comprehensive book on the theory of 
unitary representations. The subject, which logically begins in a modest way 
with complex representations of finite groups, proceeds to general compact 
groups, and goes on to treat a variety of noncompact groups, is simply too 
vast. By this time, as a result of the enormous activity in representation theory 
which began in the late forties and continues unabated, in fact exponentially, 
to this day, its sometimes alarming and ubiquitous role in a diversity of fields 
is well established. What is not well established is any agreement about what 
part or parts of the theory are the most important or how the subject should 
be organized or presented. At the same time there are disagreements about 
what open questions should be pursued and the future development of the 
theory. This naturally causes difficulties for anyone trying to write about 
representations. The reviewer sometimes envisages the appearance of a new 
book entitled, What everyone ought to know about representations and hordes 
of representers eagerly rushing out to acquire it, and later returning, disillu­
sioned or angry with what they have found. Authors should also keep in mind 
that it is probably more difficult for an outsider to learn a substantial segment 
of representation theory than it is to write about it sensibly. This particular 
point is admirably put in the forward to Lang's recent book on SX(2, R) in 
which he states, "It is not easy to get into representation theory, especially for 
someone interested in number theory, for a number of reasons. First, the 
general theorems on higher dimensional groups require massive doses of Lie 
theory. Second, one needs a good background in standard and not so 
standard analysis on a fairly broad scale. Third, the experts have been writing 
for each other for so long that the literature is somewhat labyrinthine." This 
statement is also significant in view of its tacit bias: the general theorems of 
the subject are either about representations of Lie groups or require some 
form of Lie theory in their understanding, a point with which the reviewer has 
considerable sympathy, but surely an indefensible one. The theory of unitary 


