
62 BOOK REVIEWS

10. K. Knopp, Problem book in the theory of functions II, Dover, New York, 1952, 138 pp. [A
good collection of interesting exercises and problems for second and third semester courses in
classical function theory. (Vol. I is rather elementary.)]

11. J. G. Krzyz, Problems in complex variable theory, American Elsevier, New York, 1971,
xix + 283 pp. [For supplementing a regular course. Mostly exercises, but some real problems.]

12. Ya. I. Rivkind, Problems in mathematical analysis, Noordhof f, Groningen, ca 1965, v + 98
pp. [Meant to supplement real variable courses; mostly routine on the hard side.]

13. D. O. Shklarsky, N. N. Chentzov, and I. M. Yaglom, The USSR Olympiad problem book.
Freeman, San Francisco, Calif., 1962, xvi + 452 pp. [An outstanding collection of problems on
elementary mathematics.]

14. W. Sierpinski, 250 problems in elementary number theory, American Elsevier, New York,
1970, vii + 125 pp. [About half routine, half challenging problems, a few quite challenging.]

15. G. Szasz et al., Contests in higher mathematics, Hungary 1949-1961, Akadémiai Kiadó,
Budapest, 1968, 260 pp. [A collection of highest quality.]

16. A. M. Yaglom and I. M. Yaglom, Challenging mathematical problems with elementary
solutions, Holden-Day, San Francisco, Calif.; Vol. I: Combinatorial analysis and probability
theory, 1964, ix + 231 pp.; Vol. II: Problems from various branches of mathematics, 1967, xi + 214
pp. [A collection of outstanding problems at the U. S. university level.]

BULLETIN OF THE BARLEY FLANDERS
AMERICAN MATHEMATICAL SOCIETY

Volume 84, Number 1, January 1978

© American Mathematical Society 1978

Rekursive Funktionen in der Komputer Theorie, by Rózsa Péter, Akadémiai
Kiadó, Budapest, Hungary, 1976, 190 pp., $12.00.

The Theory of Recursive Functions developed in its present form in the
decades following 1930. Pioneered by the work of Turing, Post and Church, it
has aimed at making precise and at studying the notions of algorithm and
computation.

A (partial) function from the set of natural numbers into natural numbers
is recursive if it can be represented by an expression formed from certain base
functions and the operations of substitution, primitive recursion, and minimi­
zation. The base functions comprise the successor function (S(x) = x + 1),
the null function (N(x) = 0), and projection functions (U?(xl9 . . . , xn) = xi9

where 1 < / < n). Primitive recursion is used to define a function
h(z9 xl9 . . . , xn) from recursive functions f(xl9 . . . , xn) and
g(z9y9 xl9. . . , xn) by the pair of equations

h(0,xl9...,xn) = f(xl9...9xn)9

h(S(z)9 xl9 . . . , xn) = g(z9 h{z9 x{9 . . . , xn), xl9...9 xn).

The operation of minimization defines a (possibly partial) function
ƒ(*„ . . . , * „) from a total recursive function g(y9 xl9..., xn) as the
"smallest y such that g(y9 x{9. . . , xn) = 0," and is written

f(*\> •••>**) = (HF)[g(y, xl9..., xn) = 0].
Note that all recursive expressions can be enumerated and, hence, all recur­
sive functions.

A. Church conjectured in 1936 that this class of functions was precisely the
class of all effectively computable functions [1]. More accurately, to every
effective rule for computing a sequence of natural numbers there exists a
recursive expression with number e such that the function defined by the rule

BOOK REVIEWS 63

has the same value as the recursive function

<pe(x)=U[{w)(T{e,x9y))]

in Kleene's notation [2].
To date all attempts to define effective procedures which are not ex­

pressible relative to a suitable coding in terms of recursive functions have
failed, and Church's thesis has gained wide-spread acceptance. In the sequel
the study of recursive functions was soon considered to provide the theoreti­
cal foundation for computer science and, in this aspect, concerned itself with
questions of effective computability, i.e. whether there exists an effective
procedure for a given class of problems.

Early research, interested in finding evidence for and against Church's
thesis, studied a wide spectrum of models of computational processes and
found that by using suitable encoding techniques it could be shown that all
models had the same computational power, thus corroborating Church's
thesis.

Peter's book is written for the nonexpert and argues more often by example
or intuition than by complete detailed proofs. The unifying concept of the
text is to give evidence for Church's thesis. To this end various applied areas
of computer science are surveyed. It is shown that each has an effective
translation into the class of recursive functions and vice versa, thus
establishing the computational equivalence of these areas.

To illustrate this "translation" process establishing the equivalence of two
models of computation let us take the class of recursive functions as one
system, and a simple computer model as the other. We assume that our
computer has an unlimited number of storage cells each capable of holding
one natural number, and that it can manipulate these cells incrementing the
content of a cell by one, or decrementing it by one unless it is zero, or
interrogating if the cell contains zero. At the beginning, the input argument(s)
are deposited in the first (n) cells. The computer then executes a finite
program of instructions manipulating the cell contents, repeating possibly
some instructions, and eventually may reach a HALT instruction. At that
point the "result" of the computation is stored in the first cell. Other cells
may have been used for intermediate storage.

Showing that our computer model is computationally at least as powerful
as the class of recursive functions amounts to exhibiting programs which can
compute the base functions and can simulate all operations involved in
defining a recursive function. Except for the operation of primitive recursion
which has to be transformed into an equivalent iteration schema first, the task
is quite straightforward. Once the programs have been found, they provide
the tools for an effective translation of any recursive function ƒ into a
program Pf on our computer which evaluates the function value for each
argument assignment input to Pf.

The key to showing that recursive functions can "simulate" the
computations of our computer lies in coding strings of symbols and numbers
into a single number. Usually a "Gödel numbering" is chosen: The sequence
of numbers nl9..., nk is encoded by the productif1 */?22 * * ' Pkk where # is
the /th prime number. It is clear that we can encode sequences of such Gödel

64 BOOK REVIEWS

numbers in the same way, so that arbitrary (tree-like) structures of numbers
can be uniquely represented by a single natural number. We then enumerate
the alphabet of our computer model and encode the entire program and used
storage contents along with a description of the next step to be executed by a
suitably structured Gödel number.

We have to show that the encoding and decoding of these numbers, e.g.
extracting a specific exponent, can be done by recursive functions. These
functions are the building blocks in defining a recursive function which
simulates a step in the computation in our model. In this manner we can
show that to every program P of our computer there exists a recursive
function fP which, given the inputs to P as argument, has the corresponding
output of P as value.

Despite the fact that the essence of equivalence proofs always amounts to a
programming effort, it is clear that it may require considerable ingenuity to
find an elegant and economic coding permitting the translation. Also, the
formal details of a translation often may obscure the intuitive idea of the
underlying strategy. The book tries to score well on both accounts. The
author takes great pains at motivating and explaining the proof strategy, and
gives a wealth of different encodings for a variety of problems: Translation of
arithmetic expressions, recursion and iteration schemata, two-level grammars,
interpreters for LISP and decision-table programs, etc. Each subject is well
explained, and for each it is investigated how to translate problems in the
particular area into terms of recursive functions. Over the past twenty years
the author has also published a number of articles giving each topic a
rigorous and formal treatment.

The book shows the connection between computer science and recursion
theory. It can be taken in two ways: On the one hand, the mathematician
who perhaps is inclined to see recursive functions as the essence of what he
understands effective computability to be, may read this book in order to
school his eye for the different guises under which these functions appear in
the world of computing. The computer scientist, on the other hand, perhaps
interested in what he considers the practical issue in his field, could read this
book to learn about the structural unity underlying a diversity of questions he
has considered.

Judging from the style of presentation, the author addresses the second
view point more directly. A large part of the book is devoted to motivate the
reader to become interested in the mathematical facet of the problems arising
in computer science, and it is apparent that the author can draw on
considerable pedagogical experience for this.

As indicated, Church's thesis cannot be proved or disproved unless the
notion "effective rule" is given a formal definition. Short of doing so, one can
speculate whether accepting the thesis would limit our view of the potential
capabilities of computers as we might succeed in designing. In light of the
material found since the formulation of the thesis, this appears unlikely. The
last chapter in the book briefly mentions this and also cites without further
discussion an incompleteness result by Kalmâr [3] as an intuitive
counterargument.

Theoretical research in computer science has passed from recursion theory

BOOK REVIEWS 65

to computational complexity. Instead of investigating if there exists an
algorithm to solve a given problem, more attention is given to study how
economical (space or time intensive) an algorithm for a given problem
potentially can be, thereby classifying decidable problems into (sub)
hierarchies of difficulty. To the computer scientist, then, the book compiles
material which is well understood for some time now. This is in line with the
tutorial level at which the book is written.

REFERENCES

1. A. Church, An unsolmble problem of elementary number theory, Amer. J. Math. 58 (1936),
345-363.

2. S. Kleene, Introduction to metamathematics, Van Nostrand, Princeton, N.J., 1952. MR 14,
525.

3. L. Kalmar, An argument against the plausibility of Church's thesis, Constructivity in
Mathematics: North-Holland, Amsterdam, 1959, pp. 72-80. MR 21 #5567.

CHRISTOPH M. HOFFMANN
BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 84, Number 1, January 1978
© American Mathematical Society 1978

Applied functional analysis, By A. V. Balakrishnan, Springer-Verlag, New
York, Heidelberg, Berlin, 1976, vii + 309 pp., $19.80.

For present purposes "functional analysis" will mean the study of Hubert
spaces and of (not necessarily continuous) linear operators between such
spaces. Let us recall that Hubert spaces are characterized among general
Banach spaces by any one of numerous geometric properties, such as the
parallelogram property of the norm (Jordan-von Neumann, 1935), or the
existence of a norm-one projector onto every (closed linear) subspace
(Kakutani, 1939; spaces of dimension < 2 are exceptional). These two
conditions can be jointly utilized to show that any Banach space of dimension
> 2 having sufficiently many finite dimensional linear metric projectors is a
Hubert space (Rudin-Smith, 1961). More recently, isomorphs of Hubert
spaces have been characterized in several spectacular ways; for example, as
those Banach spaces in which every subspace is complemented [15], or those
which obey a Central Limit Theorem property (due to several authors, see [1]
for one presentation).

The operator theory for Hubert spaces is dominated by the interplay
between an operator and its adjoint which, thanks to the Riesz representation
theorem, can be defined on the codomain of the given operator. Major
achievements in this theory include the spectral theorem for normal operators
(Hubert, Riesz, von Neumann, Stone, Gelfand-Naimark, Segal, et al,
1906-1951), the polar decomposition of closed operators (von Neumann,
1932), the dilation theory of Halmos and Sz.-Nagy (1950-1955), which in turn
has led to the characteristic function and canonical model approach to the
study of contractive operators (Livsic, Sz.-Nagy-Foia§, et al., 1946-1967), and
the triangular representation of compact operators (Livsic, Brodskiï, et al.,
1954-1969). Presentations of these theories and much more are given in [7],
[10], [18], [19]. Note that we are for the most part leaving completely aside the
vast subject of operator algebras.

