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Let T(S) be the Teichmüller space of Riemann surfaces of finite type and 
let M(S) be the corresponding modular group. In [11] we described T(S) in 
terms of real analytic parameters. In this paper we determine a subspace 
R(S) of T(S) which is a "rough fundamental domain" for M (S) acting on 
T(S). The construction of R(S) is a generalization of the constructions in 
[14] and [15]. The previous constructions depended heavily upon an analysis 
of the action of the elements of M (S) on parameters of T(S) corresponding 
to disjoint closed geodesies on S, and on a theorem of Bers [2] which gives 
bounds for the lengths of these curves. In the general case, the disjoint closed 
geodesies of Bers' theorem no longer always correspond directly to the 
parameters. Hence we must carefully study how their lengths are related to 
the parameters. 

In §1 we outline the basic preliminary notions relating hyperbolic geome­
try, Fuchsian groups and Teichmüller spaces. 

In §§2 and 3 we give the constructions of Teichmüller space and of a 
fundamental domain for the action of the modular group in the simplest 
cases; that is, where S has type (0; 3) and (1; 1). 

In §4 we give a detailed discussion of the Teichmüller space and of the 
fundamental domain in the case (0; 4). These constructions are the heart of 
the general constructions which follow. 

In §5 we discuss the special case of surfaces of genus 2 and state Bers* 
theorem. In §6 we give the construction of Teichmüller space in general. 

In §7 we analyze the topologically distinct sets of mutually disjoint geodes­
ies which occur in Bers' theorem and determine their relationship to the 
moduli curves. 

Finally, in §8 we put all the pieces of the construction together and 
determine the rough fundamental domain. 

In §9 we use this construction to affirmatively settle a conjecture of Bers 
[3]. 

1. Preliminaries. Let S be a compact Riemann surface of genus g from 
which n points and m conformai disks have been removed. Assume, more­
over, integers vi have been assigned to the n points, 2 < vx < • • - < *>„ < oo. 
S is said to be of type (g; n\ m) or have signature (g; n; m; vv . . . , vn). 

Let S be such a Riemann surface and let ® be a canonical basis for the 
fundamental group of S, n^S): 
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? Yn + m/* 

The elements of % satisfy the relations yf1 ~ y|2 ~* • * • ~ yj> ~~ 1, 
a\P\<*rlPfl ' ' ' agPgag~lPg~ly\ ' ' ' Ym ~~ ^ Another basis ©' is equivalent 
to ® if there is a curve a such that each element a/ (respectively, /J/, yj) of ® ' 
can be written oatG~x (respectively, ofyo"1, oyjO~l). S with an equivalence 
class of bases [%] is called a marked surface, and the space of marked 
surfaces of given signature constitutes the Teichmüller space T(S) of surfaces 
of that signature. 

If d = 6g - 6 + 2/2 + 3m > 0, the universal covering surface of S is 
conformally equivalent to the upper half plane U. ̂ i(S) is isomorphic to a 
Fuchsian group T determined up to normalization, and the equivalence class 
of © determines a canonical presentation 

S = |v4 v Bl9 • . . , Agf Bg, C1 ? . . . ? Cn+m, 

' r • C2C\Bg~lA$%Az ' ' ' BrxAylBxAx m 1} 

of t . We say *T represents Sn via the projection map TT: U~* U/T. In this 
way wc have a uniquely determined identification between the space T(S) 
and the space of Fuchsian groups with canonical presentation or marked 
groups. 

We can define the Poincaré metric ds » \dz\/y on U and note that T acts 
as a group of isometries with respect to this metric. The geodesies in U are 
circles orthogonal to the real axis R. To each element A of T with two real 
fixed points (hyperbolic element) we can associate a unique geodesic, the 
geodesic through the fixed points. We call this geodesic hA, the axis of A. It is 
left invariant by A and all its points are moved in one direction: toward the 
attracting fixed point. In what follows, we will make the simplifying assump­
tion that all elements of T are hyperbolic. This is equivalent to assuming 
n = 0. The cases n > 0 can be treated by similar techniques. We will write 
the signature or type of our surface (g; m). We define the intrinsic metric on S 
as the metric on S induced from U via the projection TT. 

Each element of T now has an axis. These axes project onto closed 
geodesies on 5. Moreover, conjugate axes project onto the same geodesic. 
Conjugacy classes of elements of T correspond to free homotopy classes of 
curves on S and the geodesic which is the projection of the axes of the 
elements in the conjugacy class is the unique geodesic in the free homotopy 
class. This geodesic has a well-defined length d. 5, and the absolute value, k, 
of the trace of the conjugacy class of elements of Y are real analytically 
related; k » 2 cos g(8/2). We will use these lengths or, equivalently, traces as 
"natural parameters" in the Teichmüller spaces we construct. 

The projections of the axes of the generators C{, <.., Cm are curves 
homotopic to the (removed) boundaries of the removed disks. The removed 
disks make the surface appear to have infinite, ever-widening funnels and the 
geodesies go around the narrowest part of these funnels. Suppose we have 
two surfaces each of which has a funnel such that the corresponding geodes­
ies have the same length. We can truncate each of the surfaces along its 
geodesic and obtain a new surface by gluing the two resulting surfaces 
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together along the geodesies. Of course there is freedom to twist one of the 
surfaces during the gluing process. The questions of describing and determin­
ing this "twist" will be carefully studied in the constructions below. Group 
theoretically, what happens is the following. If T, is the group representing 
the first surface and C, an element whose axis projects to the geodesic along 
which we cut, if T2 is the group representing the second surface and Cf l an 
element whose axis projects onto the corresponding truncating geodesic, then 
the new surface is represented by T = T, * T2 am{C, = C^T1}. How the twist 
enters in this amalgamation process is critical and will be discussed at length 
later. 

We will use the gluing procedure to build our Teichmüller spaces for 
surfaces of any given finite type from the spaces corresponding to the 
particularly simple surfaces of signatures (0; 3) and (1; 1), 

After we construct the Teichmüller space, we will ask which marked 
surfaces in this space have the same conformai structure. This is equivalent to 
asking which automorphisms of the group T arise from orientation preserving 
homeomorphisms of the underlying surface. Homeomorphisms homotopic to 
the identity yield equivalent markings and correspond to inner automor­
phisms. Since the automorphisms in question arise from homeomorphisms, 
the "funnels" are either left invariant or interchanged. Consequently, we want 
to look at those outer automorphisms which either leave the generators 
C , , . . . , Cm fixed or send them into conjugates of one another. The group 
M (S) of such outer automorphisms modulo the inner automorphisms is 
called the Teichmüller modular group or the mapping class group. It is gener­
ated by automorphisms arising from homeomorphisms called Dehn twists. 
These twists can be described roughly as follows: cut the surface along a 
simple closed curve, twist one end by 360° and reglue. For surfaces of simple 
type, a full presentation of generators (coming from Dehn twists) and 
relations is known. For other surfaces of finite type, generators are known. 
These results are more fully discussed in [4], [5], [6] and [16]. 

M(S) acts discontinuously on T(S); the space R(S) = T(S)/M(S) is 
well defined. Below we will try to determine its structure. 

2. Surfaces of type (0; 3). 
2A. The simplest groups with d > 0 are free groups on two generators. We 

have two distinct cases to consider. In the first, the geodesies corresponding 
to the generators don't intersect and the surface is of type (0; 3); in the 
second they do and the surface is of type (1; 1). d = 3 in both these cases. 

In the first case, (0; 3), the group T has a presentation (C,, C2, C3) and 
there are three disjoint geodesies on the surfaces corresponding to these 
generators. It is natural to take the traces (or lengths) of these generators 
(geodesies) as parameters. Uniformization theory tells us that to each such 
marked surface there is a Fuchsian group and so the traces are determined. 
(See [1], [10].) On the other hand, given the three numbers kt « trace C„ 
i * 1, 2, 3, we will construct the group. 

The group is determined up to normalization, so we may assume the axis of 
C, is (0, oo) directed toward 0. Furthermore, we may assume the axis of C2 

has + 1 as its attracting endpoint. The condition that the axes don't intersect 
(since their projections don't) translates to 
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(2.1) *? + *! + * ! - kxk2k3 - 2 > 2. 

The left-hand side of this inequality is trace [Cv C2], where [C,, C2] = 
C2

XCX
XC2CV This condition coupled with the normalization assumptions 

imply the fixed points of C2CX are both greater than 1. This last condition 
implies further that kxk2k3 < 0. Therefore, we may assume kt < — 2, and the 
generators explicitly are 

l(kx + Kx)/2 0 \ I (k2 + J)/2 -(tf2 + / ) / 2 \ 
1 \ 0 (*|-*,)/2/' 2 \-(K2-J)/2 (k2-J)/2 f 

_ I (2k3 - k2Kx - kxJ)/4 (-K\K2 + Jkx + A:,AT2 - ^ ) / 4 \ 
3 * ^(-/AT! - /*, -I- kxK2 4- KxK2)/4 (2k3 + ^ ^ + *,7)/4 /' 

where AJ = ^ 2 - 4 and ƒ = - ( f c ^ - 2/c3)/% (see [11]). 

FIGURE 1 

Once we have these transformations we can find the intersection point p of 
the axes of CxCfl and C2

XCV its images/?, = C2(p) and/?2 = C{~l(p)9 and 
join them as in Figure 1 by geodesic lines. We check easily that the conditions 
of Poincaré [24] are fulfilled and, consequently, that the group generated by 
C, and C2 is Fuchsian. We have, in summary, 

THEOREM 2.1. The Teichmüller space of Riemann surfaces of type (0; 3) is 
represented by the cell in R3 determined by —kx, —k2, — k3 > 2. 

2B. The groups T = <Cj, C2> admit no nontrivial outer automorphisms 
which send the conjugacy classes of the elements Cx, C2, C2CX into each 
other. That is, M (S) = {identity}; hence we have 

THEOREM 2.2. If S is a surface of type (0; 3) the space R (S) is represented by 
a cell in R3 determined by the inequalities — kv — k2, — k3 > 2. 

3. Surfaces of type (1; 1). 
3A. Let us consider now the other case of free groups on two generators. 

These groups represent surfaces of type (1; 1). Since their presentations have 
the form (A, B, C = B~lA~lBA}, it would at first seem that the moduli we 
should consider are the traces of A, B and C. However, from the previous 
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section, inequality (2.1), and the fact that C must also be hyperbolic, it 
follows that if we let x = traced, y = trace B, z = trace AB and k = 
trace C, we must have 

(3.1) x2 + y2 + z2 — xyz 2< -2. 
Given x, y and k we have two choices for z. Each choice corresponds to an 
opposite orientation of the surface. Consequently, we must choose x9 y, z and 
k satisfying relation (3.1) to determine our space. Given such a triple, (x, y9 z), 
we construct a group T by constructing a fundamental polygon as we did 
before. We take the intersection point of the axes of A and B as a starting 
point. The result is shown in Figure 2. The hexagon is nondegenerate because 
of the angle preserving nature of the elements of T and the hyperbolicity of 
the Poincaré geometry. See [10], [11] for a detailed discussion. We summarize: 

FIGURE 2 

THEOREM 3.1. The Teichmüller space of surfaces of type (1; 1) can be 
represented as the three manifold, 91L, in R4 determined by the relations 
x2 + y2 + z2 - xyz - 2 = k, x,y, z, - k > 2. 

3B. The Teichmüller modular group in this case is isomorphic to the usual 
modular group. To see this we look at $2, the group of automorphisms of a 
free group on two generators. By a theorem of Neumann [16], every element 
of 02 leaves the conjugacy class of the generator C unchanged. Hence every 
element of <52 corresponds to a homeomorphism of the surface. However, 4>2 

induces orientation reversing homeomorphisms as well as orientation preser­
ving ones and so M(S) is a subgroup of index two in 02. We look at a 
standard presentation of generators of $2 and take pairs to determine the 
action of M (S) on the moduli. The resulting generators acting on the moduli 
leave k invariant and act on x, y, z as follows: 

S: x -» z,y -* x, z -»y, T: x ->x,y -» xy - z,z-
' 3 _ 1, ( T o S ) 2 = l . 

In [14] we proved 

THEOREM 3.2. The subdomain of 9IL defined by the inequalities x < y, 
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x < z, xz > 2y, xy > 2z is a fundamental domain for the group M(S) acting 
on the space T(S). 

The proof is similar to that of Theorem 4.3 below, which we carry out in 
this paper. 

4. Surfaces of type (0; 4). 
4A. The Teichmüller spaces of surfaces of type (g; m) are built out of the 

ones we have just constructed for surfaces of types (0; 3) and (1; 1). The 
gluing together process and construction of the appropriate moduli is most 
easily seen in the (0; 4) case which we now consider. 

The Fuchsian group T corresponding to a surface of type (0; 4) is a free 
group on three generators with the presentation <Cl5 C2, C3, C4; C4C3C2CX = 
1>, The axis of the transformation C2CX = (C4C3)~

X projects onto a simple 
closed geodesic. It divides the surface into two surfaces of type (0; 3), each 
truncated along the geodesic of one funnel. We can express this group 
theoretically by writing T = Tx * T2 (am H} where Tx = <C1? C2>, T2 =* 
<C3, C4> and H « (C2CX - (C4C3)'

X). 
We want to determine moduli for our space T(S) via the construction of a 

fundamental polygon as we did in the previous cases. We can construct a 
fundamental polygon for each of the groups Tx and T2 using the method 
described in the previous section. 

Given the moduli kl9 k2, kl2 and k3, k4, k34 =*= kx2, we can construct two 
normalized groups Tx and T2. For a surface of type (0; 4), d = 6. The 
constructions of Tx and T2 use five parameters; the sixth will arise in the 
amalgamation process. 

Let us assume that Tx has been normalized so that the imaginary axis 
directed toward 0 is the axis of C2CX and that + 1 is the repelling fixed point 
of C2. Cx will have both its fixed points greater than + 1, with the smaller the 
attracting fixed point. 

The group, T, we wish to construct is to contain Tx and T2 as subgroups. 
Therefore, normalizing Cx and C2 as above determines the rest of the 
elements of T uniquely. In particular, we no longer have the freedom to 
normalize T2. In T, C2CX = (C4C3)"1; hence the axis of C4C3 must also be the 
imaginary axis but with /oo as the attracting fixed point. Since any curve on 
the underlying (0; 4) surface which joins the projections of hc and hc must 
intersect the projection of hc c , the fixed points of C3 must be negative. Let r 
be the attracting fixed point of C3. 

We renormalize T2 to obtain T2 using the above conditions. Having done 
this, we can draw the polygon illustrated in Figure 3. q is the intersection 
point of the axes of C3C4

X and C4
xCy qx « C4{q) and q2 = Cfx(q). Again 

the conditions of Poincaré's theorem are satisfied, and by the Klein-Maskit 
combination theorem [17] the group generated by the transformations iden­
tifying the sides of the polygon is Fuchsian and is, in fact, T. 

Since the above construction would work equally well for any arbitrarily 
chosen negative number T, T can be taken as the sixth parameter for our 
Teichmüller space. 

r, however, is not a trace and hence isn't "natural". We would like to find 
an element of T whose trace would determine r uniquely. We have decom­
posed T arbitrarily in some sense. We could as well have decomposed it into 
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FIGURE 3 

T\ - <C„ C4>, T'2 = <C2, C3> with / / ' - <(C,C4)-' = C3C2>. Mimicking the 
above construction of T in terms of these new groups, we see that trace 
C3C2 = k23 enters where trace C2CX did before. We can compute k23 in terms 
of T and try to solve. Unfortunately, the resulting equation is quadratic in T 
(see [12]). A geometric interpretation of the existence of two solutions is given 
in Remark 4.1. A third natural decomposition is T'{ = <C„ C3>, T'2' = 
(C3C2C3\ C4> with H" = (C3Ct = C3C2

XC3-
XC^X}, and a fourth is F," = 

<C2, C4>, T2" = ( Q - ^ Q , C,> with H'" = <C4C2 = C^C^C^C^. We 
can compute trace C3Ct = A:13 and trace C4C2 = A;24 in terms of T. We have 

= / (2k, + *2tfI2 + kl2J)/4 - (K2 + y)(*12 - Ku)/4\ 

' \ ~ (*.2 + *i2)(*2 ~ -0 /4 (2A:, - k2Kn - kl2J)/4 J 

e, = 

r ) / 4 (2/c, 

(k2-J)/2 (K2 + J)/2 
(K2-J)/2 (k2 + J)/2)' 

c2c{ 
/ ( * 1 2 + * 1 2 ) / 2 0 \ 

I 0 (*,2-^12)/2J' 

C4 = 

(Â:3 + ƒ )/2 (AT3 - ƒ ) T / 2 

( ^ 3 + / ) / 2 T ( / c 3 - J ) / 2 

(2/c4 - k3Kl2 -kl2J)/4 - (K3 - J' )(kl2 - Kn ) T / 4 | 

- (tf3 + ƒ )(kl2 + Kl2 ) / 4 T (2A:4 + k3Kn + kj ) /4 

where jfe, < - 2 , / = 1, 2, 3, 4, fc12 < - 2 , Kt =^kf - 4 , 
/ = (2A:, - k2kn)/Ki2, J = (2*4 - k3kl2)/Kn. Therefore, 
*23 - i [ k 2 k 3 - JJ + (T + T-')(/C2A-3 + / / ) - (T - T - ' ) ( / A : 2 + / A : 3 ) } , 

*13 - ï(*l*3 + W + {k{2/4){jj-k2k3) 

- Ï (T + T-*){/C12(/C2^3 + /ƒ ) - * 1 2 ( / * 2 + y*3)} 

+ 1(T - r-l){kl2(lK3 + JKl2) - Kl2(K2K3 + JJ')}, 
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*24 - s ( * i * 3 + k2k4) + (kl2/4)(JJ - k2k3) 

- i(T + r-l){KQ(K2K3 + JJ) + ki2(JK2 + JK3)} 

+ i ( r - T-l){Kl2(K2K3 + JJ) + kn{JK3 + JK2)}. 

From these equations we have 

(4.1) Kj3 + k24 = kxk3 + /c2/c4 — ^12^23 

and 

/c?2 -f /cf3 + k\3 + kl2k23kl2 - kn(kxk2 + fc3/c4) - kl3(k{k3 + /c2/c4) 
( 4 ' 2 ) ~k23(k2k3 + *,*4) + A:? 4- *f + £3

2 + fc| + fc,A;2A:3A:4 - 4 = 0. 

Note that these equations are invariant under cyclic permutation of the 
indices. 

Let us set 

ç — ~'^12? V == ~ k23, £ == ~~ ^13? S = ~" ^24' 

«/1 ^ K\K2 i rC3rC4, J2
 : = »^2 3 ^1^45 «^3 = = *^i*^3 ' ^ 2 4 ' 

/ 4 = A:? + *f + *f + fc* + kxk2k3k4 - 4. 

Note that ƒ, > 8, / = 1, 2, 3, and / 4 > 28. Equation (4.1) becomes 

(4.iy ? + r - ft - /3, 
and equation (4.2) becomes 
(4.2)' ^2 + v2 + ? 2 _ ^ + / i € + j 2 l + y 3 f + / 4 = 0. 

For fixed /cl5 /c2, &3, /c4 (4.2)' describes a 2-dimensional surface ^ = 
9H(A:l5 /c2, A:3, k4) in the Euclidean space determined by the rectangular 
coordinates £, 17, f. Combining these results and those in [9]-[12], we have 

THEOREM 4.1. The Teichmüller space T(S) of surfaces of type (0; 4) is 
described by the six manifold ?)tl X R4 in R7, where R4 is given by 
(kl9 k2, k3, k4), kt < — 2, and 91L is the surface ?!\i(kv k2, /c3, k4) determined 
by equation (4.2)' above. 

PROOF. Given the coordinates (k{, k2, k3, /c4, £, i\, f ) we have described 
above an explicit construction for the marked group T. That is, we can 
explicitly write down generating transformations as identifying transforma­
tions of the sides of a nondegenerate non-Euclidean polygon. This polygon, 
with its sides identified, corresponds to a marked surface of type (0; 4). On 
the other hand, we have proved [9] that every marked surface of type (0; 4) 
admits a canonical modular polygon of this type. From the polygon we can 
read off the coordinates. 

REMARK 4.1. Note that in the above development we singled out f = kX3 

over l' — k24 in equation (4.2)'. Suppose we consider a surface corresponding 
to a point (&,, k2, k3, k4, £, 17, f ) and let T be the normalized Fuchsian group 
corresponding to it. Let R be the mapping of U which is the reflection in the 
imaginary axis ( i + / ) - > - x + iy), and form a new group F = RTR ~K 
This reflection induces an orientation reversing self-map of the underlying 
surface. Now let T be the linear functional transformation which sends 0, 00 
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into themselves and sends the image of the reflected attracting fixed point of 
C3 to + 1 . If f = TRTR ~lT~\ f is properly normalized and its coordinates 
{k\i k2, 3̂» ^4' £> J7> o) satisij^ /Cj = K4, /C2 = /c3, /c3 = /C2, /c4 = /Cj, J | = j j , 
J2 = /2, /3 = /3, /4 = /4 and I = £, TJ = 7j, f = T. 

Call the mapping R induces on Teichmüller space R also, and call points /, 
t' E T with t' = R (t) conjugate points. From the above equations we see that 
R leaves each surface 91L invariant. In the construction above, the expression 
for k23 was quadratic in r; the two solutions correspond to conjugate points. 
Since R is an orientation reversing involution, R does not belong to the 
mapping class group. 

4B. Our next task is to study the mapping class group for surfaces of type 
(0; 4). Suppose a representative basis for the marking of T is S = {y,, y2, y2, 
Ï4' Ï1Ï2Ï3T4 ~ 1} a n d 7,- is freely homotopic to the projection of hc. Let a, be 
the Dehn twist about 7^2, o2 the Dehn twist about 7273 and a3 the Dehn twist 
about 7374. Then 

°\' 7l -» Ï2> y2 -* Y2_1TlY2? Ï3 -* 73> 74 "* 74> 
a 2 : 7i -» 7i> Y2 -* 73» 73 -* 73~ V273> 74 -> 74' 

<*3:7i->7i> Y2-+Y2> 73-*74> Y4^Y4"
1Y3Y4-

We have 

THEOREM 4.2. The mapping class group M for surfaces of type (0; 4) admits a 
presentation with the Dehn twists ovo2, a3 as generators and oxo3 = o3ov 

ala2al = a 2 a l a 2> a 2 a 3 a 2 = a3a2a3> a l a 2 a 3 a 2 a l = 1 a ^ fal^^)4 = 1 ^ ^ e " 
fining relations. 

PROOF. (See [16, p. 156], [5, p. 155].) We can derive another presentation 
from this one in which the generators are no longer simple Dehn twists but 
are more suitable for our purposes. Using the relations repeatedly we can 
show (o{o2o3)

4 = (olo2ojo2o[)(o3o2)
3 and, hence, (o3o2)

3 = 1. Similarly, (o2a3f 
= (aia2)3 = (a2ai)3 = 1. Let T = olo2a3 ( T _ 1 = or3a2a,) and o = o3a2. It is 
easy to check that b and r generate M and satisfy defining relations a3 = 1, 
T 4 = 1. 

We compute the action of a and r on the curves of the basis S, and their 
products. 

o : 7 i - * Y p Y2-*Y3> 73-*74> Y4"^ (Y3Y4)
_1Y2Y3Y4^ Y1Y2Y1-1. 

Y1Y2 ~» 7i73> Y2Y3 -» Y3Y4 ~ (YiY2)~ \ Y1Y3 - * Y1Y4 ~ Yi (Y2Y3)~1YfV 

Y2Y4-»Y3YiY2Yr1-

T: YI -> 74» 72 -> 74~
 !Yi 74» 73 -» 74~ S ^ 74 -» 74" V3Y4' 

7 i7 2 -^ 7 i 7 4 ^ 7i(7273)~17f1» 7273 ~> 74~17i7274> 7 i7 3 -* 7274» 

7274-^74"
17i7374-

Call the induced mapping of the moduli of Theorem 4.1, S and T7, 
respectively. Then 

»3 * /Cj —> /Cj, K2 —> rC3, K3 —> /C4, /C4 —> K2, K\2 —^ ^13' 

k23 —» /c12, /c13 —» /c23, K24 —> /c2/c3 -f klk4 — A:12/c13 — /c23, 

* - £ , * - » € , ? -» i j , ? ' - • « : - 1 J - / 2 . 
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«/1 "~" fC*K2 • **3*^4 """"̂  *^l**3 * ^4*^2 """" 3* 

J2
 = = »̂ 2 3 KxK4

m-J> ^24 1 2 3K I' 

*^3 = *^i*^3 » *̂ 2 4 """̂  AC1AC4 » *̂ 3*̂ 2 =a= 2* 

«/4 =5S AC 1 "F AC2 "T AC3 T /C4 T* KXK2K3K4 """"' ^ 

—> /Cj T /C2 • AC3 T /C4 T K\k2K3K4 *— 4 s c «74, 

i * ACj -~> /C4, # 2 "•""* /c j , AC3 —> AC2> /C4 —> AC3, 

*12 ~~* *23> *23 """* ^12» ^13 ~ * *24> ^24 "~* ^13' 

£-->*?, *?-*£, f~>r, r-*£, 
«/j —•¥ J29 **2 "~̂  'M* 3 """** 3' 4 """"* 4* 

S and r satisfy the relations S3 = 1 and T4 = 1. We write out for future use 
the element of infinite order, S ~ lT~!: 

«J i • AC * "-"^ *^2' 2 """"̂  *^1> *^3 """"̂  *^3» ^ 4 *"""̂  *^4> 

£->£, *?~*r, ?-*ÎÏ> r-»£r ~ ^ - */2> 
y j —> , / j , «/2 "-* 1/3, «/3 "~̂  J 2i «̂ 4 """"* «'4* 

We consider the action of these maps on the 7-tuple (&,, k2, k3, k4, £, % f )» 
Each map permutes the coordinates (kt$ k2, k3, k4) and sends the point 
(£> fj> f ) on the surface ?S\l(kl9 k2, k3, k4) into another point on the same 
surface. This is analogous to the situation we encountered in §3, and we 
proceed to pursue this analogy further. Consider those points of 9H left fixed 
by T; they lie on the curve defined by £rj - 2f - J3 = 0. Call this curve Ky 

The curve S(K3) » AT, on 9H is defined by rjf -~ 2£ - ƒ , = 0 and is left fixed 
by STS -1 ; the curve S ^ 1 ^ ) = AT2 on 9)1 is defined by £f - 2r/ - 72 - 0 
and is left fixed by S ~lTS. Assuming any two of these curves intersect leads 
to a contradiction since £, TJ, Ç\ J$, i * 1, 2, 3, 4, are all positive. Moreover, 
the region A of 91L bounded by AT,, /f2

 anc* ^3 *s simply connected and 
defined by rtf - 2£ - Jx > 0, £J - 2TJ - J2 > 0 and £q - 2J - J3 > 0. The 
curves £ = rç, TJ = £, 1 = ? don't play quite the same role as they did before. 
However, we compute that £ * ^ intersects only A"3,77 = J intersects only A",, 
£ = J intersects only AT2 and that the three intersect in a point inside A. Figure 
4 shows a schematic representation of 9H on which A is shaded. 

The curve £ = 2A is a hyperbola on C?1L given by the equation 

7}2 - 2Artf -f f2 4- J2Ï) + Ji$ + 4A2 4- 2A7, + 74 = 0. 

i] attains its minimum value r}0(\) = (73A -f J2)/2(\2 - 1) at 2Af - 2TJ - 72 

= 0 and f attains its minimum value f0(A) = (72A -f J3)/2(X2 - 1) at 2Ài] -
2J* - 73 = 0. The segment //x° of //A between (T)0, £(%)) and (r)(f0), f0)

 i s 

called the minimal segment of Z/A. 
The curve 17 = f intersects Hx once and the intersection point is in the 

minimal segment. If 2A < TJ0, Hx doesn't intersect the curve £ = 17 at all. 
Similarly, if 2À < f0, Hx doesn't intersect the curve £ = f. If 2À = TJ0, //x and 
£ = 7] have exactly one common point and they are tangent to each other at 
that point. If 2A > TJ0, Hx and £ = t\ intersect in two points. Similarly, if 
2A = f0, Hx and £ = f have one common point where they are tangent, and if 
2A > f0 they have two common points. 
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FIGURE 4 

LEMMA 4.1. Let q = (k{9 kl9 k39 k49 £, TJ, f ) be the coordinates of a marked 
surface of type (0; 4). Let ?HL = tyfl(kl9 kl9 k39 k4) be the surface defined by 
equation (4.2)'. Then there is a marked surface of type (0; 4) with coordinates 
q = (kv k29 k3, k4, £', rj, J) equivalent to qsuch that (kx, k2, k3, k4) is a 
permutation of (kl9 k2, k3,Jc4) and (& jj, J) is a point on_ the surface 
9IL(fcl9 kl9 k39 k4) such that I < rj9 I < I, & - 2rj - J2 > 0 and ly - 2£ - J3 

> 0. 

PROOF. The transformation S changes the ordering of the 4-tuple 
(kl9 kl9 k3, k4) and sends the surface 9IL into itself permuting the coordinates 
(& *]> ?)• It also permutes the curves rjf - 2£ - 7, = 0, £rç - 2f - / 3 = 0 and 
£f - 2TJ - / 2 = 0 and sends the region A bounded by them into itself. 

Applying S or S " l if necessary to our point q9 we may assume that £ < TJ, 
£ < f. Only one of the inequalities (i) £f - 2t\ - J2 > 0, (ii) £rç - 2 f - J3 > 
0 can fail to hold for q. Assume the latter does not hold. These conditions on 
q imply also that TJ < f. As a first step in obtaining q from #, set qx = 
S - ! r - ! ( * ) - ( . • . €', ii1, f1), where € ! - €, V - 6» - f - J3 - f '> * ! - ^ 
/ / = J{9 J2 = 73, J3 = Jr The above inequalities and remarks imply the 
coordinates of ql satisfy £ ! < f, rjl < f, £ < £' < f, 

(0 É V - 2T,1 - / j - -fc, + 2? + / 3 > 0. 

The point q{ again lies on the hyperbola H^2. It is either in the minimal 
segment H^2 or in the same component of the complement of the minimal 
segment as q and situated between q and the minimal segment. If qx is not in 
the minimal segment, £ V - 2J1 - /31 < 0, and we set q2 = S~lT~l(qx). q2 

is either in the minimal segment or closer to it than qv We define recursively, 
qn = S~~lT~l(qn„i). Since these points qn are all congruent under the modu­
lar group, and since the modular group acts discontinuously, the points qn 
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cannot accumulate. Hence for some N, qN lies in the minimal segment. Apply 
S or S ~l to qN if necessary to obtain the desired q (see Figure 4). Q.E.D. 

Let us now recall the reflection transformation R which we defined in 
Remark 4.1. Let F be the group generated by JR, S and T. Since R induces an 
orientation reversing homeomorphism of the underlying marked Riemann 
surface, the group F is a representation of the group of all homeomorphisms, 
orientation preserving and reversing, of the underlying surface. F acts discon-
tinuously on the Teichmüller space T(S). We verify that the following 
relations hold in F: R2 = S3 = T4 - 1, RT3 = TR, STR = RTS~\ 

M is a subgroup of index 2 in F. Therefore we will first construct a 
fundamental domain A* for F acting on T(S) and obtain a fundamental 
domain for M acting on T(S) by forming à* u R (A*). 

THEOREM 4.3. A fundamental domain A* for F, acting on T(S), is defined by 
the inequalities kx < k2 < k3 < k4 in R4, and the inequalities £rj — 2£ — 73 > 
0, £f — 2TJ — J2 > 0 tfftd rjf — 2£ — / j > 0 on the corresponding surfaces 
JIC^/Cj, /C2, /C3, At 4^. 

PROOF. Consider the transformation RTS in F: 

I \ l ö . rCi —^ »V4, Av2 —^ Av3, Av3 —^ Avi, ÀV4 —^ ^ 2 ' 

€-»& i»-»?, r-^, r ^ ^ - î j - / 2 . 
I /J —> t / j , t/2 —^ «/3> «/3 —^ J2* 4 —* 4* 

Using Lemma 4.2 and the transformation RTS if necessary, we can find, 
given an arbitrary point q E T(S)9 a point q congruent under the group F to 
q such thatthe coordinates (£, TJ, f) of q satisfy 

! < TJ < f, £TJ - 2? - / 3 > 0 , 

and the coordinates (kl9 /c2, A:3, A:4) are some permutation of the coordinates 
(kv k2, k3, k4) of q. 

This region A0, defined by £ < TJ < f and frj - 2 f - J3 > 0, on the surface 
^ ( / c j , /c2, A:3, k4) is one sixth of the domain A defined above; that is, 

A =[A0 u S(A0) u S2(A0) u RTS(A0) U *rS2(A0) u *r(A0)] . 

We must also consider restrictions on the (kv k2, kv k4) coordinates in the 
construction of a fundamental domain since they undergo permutation under 
the various mapping elements. To this end we remark that the maps T2

9 

ST2S2 and S2T2S leave ({, ij, f) fixed and yield a permutation of 
(kx, k2, k3> k4) of order 2. From among these images of q we choose the 
4-tuple with smallest first entry (&?, k2> k3, k4); S and S2 permute the last 
three coordinates cyclically and we may choose that 4-tuple and its corres­
ponding point in A with smallest second coordinate: (/c?, k2, k3, k4). If 
k3 < k4 we have described A*; if not, the map T2RTS interchanges the 
coordinates k3 and k4, and since T2 doesn't affect the (£, % J) coordinates, 
T2RTS sends these into (£, f, r}). Therefore given any point q we can find a 
congruent point in the region A*. This completes the first half of the proof. 

To finish the proof that A* is a fundamental domain for F, we must show 
that if W is any word in F, not equal to the identity, and if À* is the interior 
of A*, then W(h*) n A* = 0 . We first note that since any word W acts at 
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most by permutation on the coordinates (A:,, k2, A:3, k4) of any point q in A*, 
and the conditions defining A* completely determine the order of these 
coordinates, it will suffice to prove that W(\) n A0 = 0, where AQ is the 
interior of A0. Next we note that A0 is a domain on the surface 91L and that 
the element T2 of F, while permuting the coordinates (/q, k2, k3, k4) of a 
point q, acts as the identity on the coordinates (£, 17, f ) and, hence, also on 
the surface (31t. We therefore consider the group F= F/(T2} which is a 
group of self-mappings of the surface 91L and agrees with the action of F on 
the surface 91L. Hence it will suffice to prove that for W, any nontrivial word 
in F, ^(Ao) n Ao = 0 . 

F is generated by R, S and f, the images of R, S and T of F under the 
quotient mapping. The relations these generators satisfy are S3 = f2 = R2 

= 1, RT = fÂ, (ÂfS)2 = 1. It will, however, be more convenient to consider 
the following set of generators for F: R{ = R, R2 = RTS, R3 = RÎ; they 
satisfy the relations R2 = i?2

2 = ^ 3 2 = ^ 
Now consider the region A0 and let W be a word in the generators Rx, R2, 

Ry Each ^/(A0), / = 1, 2, 3, is a reflection of A0 in one of its sides. Suppose 
there were a point q E Â0 n W(\). Associate a closed path y on ^ to Ö as 
follows: if R( is the first letter of ^(reading from right to left) we join q to a 
point #! in Rt (A0) = A! by a path oji 9IL which crosses the side of A0 left 
fixed by/*,. The next letter Rh of W determines a reflection in one of the 
sides of At; set A2 = Rt (At) and join qx to a point <y2 ' n ^2 by a path which 
crosses the side of àx left fixed by Rt. We continue this procedure for each 
letter of W until we arrive at a region A„ such that q E Aw. We join #w_j to 
<ln = ^ by a path crossing the common side of àn_x and An. We propose to 
show that Aw = Ao and, hence, that W is the identity. This will complete the 
proof. 

The generators of F are all involutions of 91L. The generators R2 and R3 

are reflections of 91L in the planes 17 = f and £ = 17, respectively. The vertex, 
£ = 7) = £, of A0 is a fixed point of the element ^ 3^ 2 which satisfies 
(R3R2)

3 = 1. To see how the involution Rx acts on 91L we consider the 
intersection of the plane | = 2À with the surface 91L. This is a hyperbola Hx 

given by 
ÎJ2 - 2Àîtf + f2 + 72Tj 4- y3f + (2/A + J4 + 4A2) = 0 

on 9H. Except for the point (?], (2\r) - J2)/2) there are two points on Hx for 
each value of 17. R{ leaves the point (?j, (2ÀTJ - J2)/2) fixed and interchanges 
the pair of corresponding points of Hx for every other value of 7]. As £ varies, 
these fixed points define a curve £17 — 2 f - J2 = 0 on 9lL which is left 
point wise fixed by Rv The reflections in the planes send their fixed curves 
into one another as do the reflections in the hyperbolas. 

A0 has two vertices; one where the curves on 9H defined by £ = 17 and 
17 = f intersect and one where £ = rj intersects the curve on ?)IL defined by 
2f = £17 — J2. The curve on 9IL defined by £ = I passes through the first 
vertex although it isn't a boundary of A0. We see therefore that there are six 
curves which meet at the first vertex and four which meet at the second. 
_ Consider now these curves and all their images on 9IL under the action of 

F. Since all the elements are reflections as described above, the images of the 
vertices will again be points where six or four curves meet. 
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Let us look now at the curve y we have associated to the word W. The 
curve is far from unique. The region on 911 that it bounds is compact though 
and contains only finitely many images of the vertices. We can put a grid on 
91L small enough so that each vertex is contained in only one square of the 
grid. Following Poincaré [24], we see that going around y yields the same 
word as going around the squares of the grid contained inside y. However, 
each square is either totally inside some image of A0, crosses one side and 
returns through that side or goes around a single vertex. It is clear that the 
transformation associated to each of these possibilities can only be the 
identity. We conclude that An » AQ and that W is the identity as required. 
Q.E.D. 

Since we have identified each point in T(S) with its conjugate, it follows 
that: 

THEOREM 4.4. A fundamental domain for the Teichmiiller modular group M 
acting on the Teichmiiller space of marked surfaces of type (0; 4) is the domain 
defined by the inequalities kx < k2 < k39 kx < k2 < k4 in R4, and the inequali­
ties £rj - 21 - / 3 > 0, £f - 2TJ - J2 > 0 and rjf - 2£ - Jx > 0 on the corre­
sponding surfaces 91L(/c1? k2, k3, k4). 

5. Surfaces of type (2; 0). 
5A, We turn now to the next case: the Teichmiiller space of surfaces of 

type (2; 0). The Fuchsian group T corresponding to such a group is a one 
relator group on four generators and has the following presentation: 

T = (Al9Bl9A2,B2; B2-Uï%A2Bl-
lAr*BlAl = 1>. 

Set C = B{~XAX
XBXAX = A2

XB2
XA2BV Since the presentation arises from a 

canonical basis, the axis hc of C projects onto a simple closed geodesic y 
which divides the surface into two tori, each with a hole. As in §4A we 
express this situation group theoretically by writing T = Tx * T2{am / / } , 
where Tf = (Ai9 Bf), i « 1, 2, and H = <C>. 

To determine moduli, we construct normalized fundamental polygons from 
the traces of Ai9 Bf, AjBt and C according to the procedure in §3A. Recall, if 
xt = trace Ai9 y{ = trace Bi9 zt = trace AiBi and £ = —trace C, then xf + yf 
-f zf - xiyizi - 2 -f i = 0, i = 1,2. We thus have seven parameters and two 
relations spanning a space of dimension 5. We note, however, that we have 
normalized both T, and T2 and are really only entitled to normalize one of 
these groups. When we renormalize T2 so that BflA^lBxAx = A2

XB2
XA2B2, 

we still have one degree of freedom, exactly as we had before in §4A. In fact, 
we can consider our surface of type (2; 0) as a surface of type (0; 4) with the 
holes identified in pairs. In this regard the role of C, is played by A{9 that of 
C2 by B{-XAX

XBX9 that of C3 by A2 and that of C4 by B2
XA2

XBV We have 
£ = (trace C\. We set TJ = |trace A2BX

 XAX
 XBX\9 f * (trace A2Ax\. We rewrite 

equation (4.2)' in these terms, and from [11] and [12] we conclude: 

THEOREM 5.1. The Teichmiiller space T(S) of surfaces of type (2; 0) is 
described by the six-manifold in R9 defined by the equations: 

(SA) x\ + y] + z\ - xxyxzx + £ - 2 = 0, 

(5.2) x\ + y\ 4- z\ - x2y2z2 -f £ - 2 = 0, 
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(5 3) * 2 + *2 + f 2 - M + (*? + *!)« 
-f 2xxx2{j] + t) + 2x\ + 2x1 + *i*l - 4 « 0. 

(ƒ/* f/ie notation of (4.2)\ / , = x2 + jcf, / 2
 = ^3 = 2*i*2> A ~ 2(*J + xf) + 

x2*2 - 4.) 

5B. The action of the modular group M is much more complicated than it 
was in the previous cases. We can no longer study M group theoretically but 
must work geometrically. Moreover, we cannot obtain as good a description 
of the space R(S) as we did before, We obtain a region R(S) which is a 
fundamental domain for T(S) in the following sense. 

DEFINITION 5.1. R(S) is a rough fundamental domain for M(S) acting on 
T(S) if 

( i )U^„<)p(*(S) )= r (S) , and 
(ii) the set {U^M(q>(q) H R(S))} is finite for each q G T(5> 

Note that for a fundamental domain, the set of condition (ii) contains only 
one point for almost all q. 

M is generated by Dehn twists about the projections of the axes of AX9 B{, 
Av B2 and B2A2

 XB2
 lAj ([5], [6]). 

REMARK 5.1. A Dehn twist about a curve y on the surface changes the free 
homotopy class of only those curves which intersect y. Classes corresponding 
to curves disjoint from y are left invariant. Consequently, twists about disjoint 
curves commute. 

The elements of M are defined only up to free homotopy. We will assume, 
therefore, that the element <p G M that we write down sends the geodesic of a 
free homotopy class into the geodesic of the image class. We denote a Dehn 
twist about the geodesic y by <p?. 

DEFINITION 5.2. A partition of a surface S of type (g; m) is a set of 
3g - 3 4- m simple disjoint geodesies. Since there is a unique geodesic in 
each free homotopy class, this is the maximal number of such curves which a 
surface admits. 

The partitions belonging to a surface of type (2; 0) contain 3 curves. In [15] 
we proved that at most one dividing geodesic can belong to a partition. We 
therefore define: 

DEFINITION 5.3. A partition of type I on a surface of type (2; 0) contains a 
dividing geodesic. A partition of type II contains no dividing geodesic. 

In [13] we proved 

LEMMA 5.1. Let S be a surface of type (g; m) and let a and /? be simple 
geodesies on S which intersect. Then there is a number p > 0, which is 
independent of S and its type, such that \\a\\ • || /?|| > p2, where \\a\\ and \\fi\\ 
are the lengths of the geodesies. 

Using this lemma, Bers proves the following theorem which is crucial to the 
arguments below. 

THEOREM 5.2. Let S be a surface of type (g; m) and let /,, — , lm be the 
lengths of the geodesies corresponding to the holes. There exists a number L 
depending only on g and the numbers lv ... ^lm such that S admits a partition 
in which each curve of the partition has length less than L. 
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We can assume without loss of generality that L > p. 

DEFINITION 5.4. A partition in which each geodesic has length less than L is 
called a B-partition. 

For surfaces S of type (2; 0) define 

(5.5) Tl(S) = [S ET(S)\S admits a ^-partition of type 1} 

and 

(5.6) TU(S) = [S ET(S)\S admits a ^-partition of type II}. 

We see that T(S) is the union of Tl(S) and TU(S) and that these subspaces 
of T(S) have a nonempty intersection. We want to find rough fundamental 
domains for the action of M on each of these subspaces. Since each surface 
admits only a finite number of ^-partitions, we look first at those elements of 
M which leave each curve of a given ^-partition invariant. 

All the closed curves we encounter below are really defined only up to free 
homotopy. Hence we will assume, unless specifically stated otherwise, that 
closed curves are geodesies. 

If we consider a point in T(S) and look at those closed curves on S which 
are the projections of the axes of AX9 A2 and C, we obtain a partition of type 
I. If we consider the projections of the axes of A{9 A2 and AxAl9 wejobtain a 
partition of type II. If L is the bound in Bers' theorem 5.2, let L be the 
corresponding bound on the traces of the conjugacy classes of elements of I\ 

Let Rl be the subset of Tl whose coordinates satisfy 

Z> \ Xi9 Xy9 % ^ JL'j Xi ^ Xy9 X: ^ y;, X: ^ Z:9 

xy, - 2z, > 0, x,z, - 2y, > 0, i = 1, 2, £rj - 2f - J3 > 0, 

K - 2i) - J2 > 0, rjf - 2£ - / , > 0, / , = x\ + x\, 

J2
 = J\ s = Z>X^X29 J A ^ 2>Xt *T" 2>X2 T* X\X2 "~~ 4 . 

LEMMA 5.2. {U^M(p(R1)} D T\ 

PROOF. Let q be a point of r1. By definition, the underlying marked surface 
5 of q admits a /^-partition of type I. Label the geodesies of the partition 
(Pvfi2>y) where y is the dividing geodesic. Clearly, (/?i,/?2>Y) are not 
necessarily the geodesies arising from the marking. We want to use these 
closed curves to construct a new marking on S and, hence, an equivalent 
point q to q such that q E Rl. y divides S into two surfaces Tx and Tv each 
of type (1; 1). Each Tt can contain only one of the nondividing geodesies of 
the partition. Let Tx be the half containing flx and T2 the half containing fi2. 

Let k be the trace of the conjugacy class of elements in T determined by 
the geodesic y. Let x{ and x2 be the corresponding traces for (5X and /?2 and 
assume we have labelled so that xx < x2. Using Theorem 3.2 we can find two 
unique points in the moduli space of surfaces of type (1; 1) which represent 
each Tt and whose coordinates xi9 yi9 zt and k satisfy 

xf + yf + zf - xftz, - 2 « *, x, < yi9 zl9 x^ - 2zi > 0, xizi - 2yt > 0. 

In this way we obtain curves at on Tt so that the marking (a/? fa} 
corresponds to the moduli xi9yi9 zi9 i = 1, 2. We can obtain a marking for S 
by joining the intersection points of the geodesies ai9 /?, by a curve (open 
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geodesic) a and taking the intersection point of ax and {tx as base point. The 
marking is then {a1? fil9 oa2a~\ ofi2o~1}. We have much freedom in 
choosing a. 

However, if we consider the amalgamation process described in the state­
ments before Theorem 5.2 we can apply Theorem 4.4 and choose o so that 
the corresponding elements of the group T with this marking are Av Bv A2, 
B2, C and if |trace C\ = — k = £, |trace AXB2A2B2

X\ = t\ and |trace 4̂î 42l
 = 

f, then fc Tj, and £ satisfy £i) - 2£ - J3 > 0, # - 2rj - / 2 > 0 and ijf - 2£ 
- Jx > 0. Q.E.D. 

LEMMA 5.3. 7%e sef { U yejrfK?) H #*} is finite for each q G r1. 

PROOF. For each point of Rl, the curves (pv )82, y) determined from a 
corresponding marking on the underlying surface form a /^-partition of type 
I. Any surface admits only a finite number of ^-partitions of type I without 
regard to marking. We therefore need to show only that for each unmarked 
surface 5, with fixed 5-partition of type I, there are only finitely many 
marked surfaces in R \ with underlying surface S, such that the closed curves 
(A, P29 y) °f ^ e marking are the curves of the fixed partition. It is clear, 
however, from the construction of the point in Rl corresponding to a given 
point in Tl

9 that there are only finitely many such points. The construction is 
defined up to choice of orientation of curves and up to choice from among 
the points which lie on boundaries of the fundamental domains of Theorems 
4.4 and 3.2. In any event there can be only finitely many points. Q.E.D. 

Let Rll be the subset of Tu whose coordinates satisfy 

2 < xx < x2 < £ < L, £q — 2f — 2xxx2 > 0, £f — 2r\ — 2xxx2 > 0, 

itf - 2£ - (x\ + xf ) > 0 and xf + yf + zf - xpft + i\ - 2 = 0 

with x, < ƒ„ x, < zt and jy , — 2z, > 0, x,^ - 2^ > 0, / = 1, 2. 

LEMMA 5.4. UveA#[y(i« I I)D r11]. 

PROOF. Let q be a point of Tn . By definition, the underlying surface S 
admits a partition of type II. Label the geodesies of such a partition (fiv /?2, 
/?3) in order of increasing length. As in the proof of Lemma 5.2, we want to 
use these closed curves to construct a new marking on S and, hence, a point q 
in R n equivalent to q. In this case we first let S0 be the surface of type (0; 4) 
obtained from S by cutting along the geodesies (ix and /?2. We order the 
resulting holes so that the first and second correspond to the two sides of the 
f$x curve and the third and fourth to the two sides of the fi2 curve. We let xx 

and x2 be the corresponding traces. If £ is the trace corresponding to the 
curve /?3 which divides S0, we can apply Theorem 4.4 to find t] and f 
satisfying 

i2 + n2 + f2 - M + (x2
x + x\)i 

+ 2xxx2{y] + f) + 2(x? + xf) + x\x\ - 4 = 0 

and 

fij - 2J - 2xjX2 > 0, tf - 2ij - 2x^2 > 0, itf - 2$ - (x? + xf) > 0. 
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Of the geodesies corresponding to t\ and J, one of them must divide the 
original surface S, Since the pairs of holes of S0 have equal length, we can 
interchange f and TJ and remain within the fundamental domain of Theorem 
4.4. Therefore, we assume the geodesic corresponding to TJ is the one which 
divides on S; call it y. 

We now divide S along y as in the proof of Lemma 5.2 to obtain one holed 
tori, Tx and T2. We use Theorem 3.2 to find geodesies ax and a2 on Tx and T2 

so that the corresponding traces yt (and zt) satisfy 
xf + yf + zf - *&izi - rç + 2 = 0, i = 1, 2, 

and 

*i < >>,•> */ < *i> x#i ~ 2z/ > °> */*/ ~~ 2 ^ > °> / = 1, 2. 
We define the curve a joining the intersection points of a, and /?,. so that £ is 
the trace corresponding to the curve axoa2o~l with base point the intersection 
of of, and (3X. This gives us the desired new marking on S and, hence, the 
point q E Ru which is equivalent to the original point q. Q.E.D. 

LEMMA 5.5. The set { U <P<=M[<P(<1) H ^ n ]} is finite for each q G Tu. 

PROOF. We argue as in the proof of Lemma 5.3 and consider what choices 
we made in the construction of the proof of Lemma 5.4. Again the only 
choices are in orientation and from a finite set within or on the boundaries of 
the fundamental domains of Theorems 3.2 and 4.4. Q.E.D. 

Combining these lemmas, we obtain 

THEOREM 5.3. A rough fundamental domain for M acting on the Teichmüller 
space T(S) of surfaces of type (2; 0) is the subspace R — Rl \j Ru where Rl 

and R u are defined above. 

6. The Teichmüller space of surfaces of type (g; m). The construction of 
Teichmüller space for surfaces of type (g; m) is analogous to that for surfaces 
of type (0; 4) and that for surfaces of type (2; 0). We break up a surface of 
type (g; m) into simple subsurfaces of types (1; 1) and (0; 3), we construct 
spaces for each of these simple surfaces and then combine them as we did in 
§§4A and 5A. The construction proceeds as follows. We consider the marked 
surface and determine a set of geodesies on the surface from the marking 
which we call moduli curves. There are three types of moduli geodesies: 
dividing curves, handle curves and twist curves. The dividing curves break up 
the surface into the subsurfaces; the handle curves are on the tori; and the 
twist curves are those which occur in the recombination process. 

As in §4A, it is easier to work with marked Fuchsian groups and the traces 
of their elements than to work directly with the surface. The axes of the 
elements we look at project onto the moduli curves on the surface. Those 
elements whose axes project onto handle curves are the handle elements, those 
whose axes project onto dividing curves are the dividing elements, and those 
whose axes project onto twist curves are the twist elements. 

Let T be the marked Fuchsian group and let S = {AXBV ..., Ag, Bg, 
Dv . . . , Dm) be the canonical presentation. The elements At, Bt and AtBi9 

i = 1 , , . . , g, are the handle elements; let xt = |trace A(\9 yt = |trace Bt\, 
Zj = I trace ,4,. 2?; I. Let Ct = Bi~

xA[~xBiAi, i = 1, . . . , g. These are dividing 
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elements; let kt = |trace C,|, i = 1 , . . . , g. The elements DJ9 j = 1 , . . •, 01, 
are also dividing; let kg+j = |trace Dj\9 j = 1 , . . • , m. Consider further the 
dividing elements C2CX = E{9 C3C2CX = £2, * . , , Cg • • * Q = ^- i> 
DxCg . . . d - £ , , . . . , Dm_2Dm_x . • . Z>,Cf • • • C, - £,+m_3; let ty « 
|trace £)U = 1, . . . , g + m - 3. 

DEFINITION 6.1. The projections of the axes of Al9. • *, Ag9 CX9..., Cg and 
£ , , . . . , Eg+m_3 form a partition on the underlying surface S; we call this 
partition a canonical partition for the marked surface 5 or for the marked 
group T. 

Cutting S along the curves corresponding to CX9 . • * , Cg and 
El9 . . . 9 Eg+m_$ renders it into g surfaces of type (1; 1) and g + m - 2 
surfaces of type (0; 3). Label as Tt the (1; 1) surface bounded by the dividing 
curves corresponding to Ci9 i - 1, . . . , g. Set £0 = CX9 Cg+j = £>,, j = 
1 , . . . , m - 1, and Eg+m_2 = Z>m. Then label as Sj the (0; 3) surface 
bounded by the dividing curves corresponding to Ej_X9 EJ9 and Cj+V j =* 
1, . . . , g + m - 2. Tj is attached to S ,̂ 7) + 1 is attached to Si9 i = 2, . • . , 
g - 1. (If m = 0 both Tg_x and Tg are attached to 5g_2.) 

Using the constructions in §§4 and 5 as models, we consider pairs of twist 
curves which intersect the boundary curves of the subsurfaces. The traces of 
the corresponding twist elements are the parameters determining the twists. 
For convenience below we label the geodesies with the names of the corre­
sponding group elements. 

Across Cx: AXC2 and A2EX; set |trace^1C2| = lX9 |trace^2^il = mv 
Across C,: Afi^ a n d 4-£/-i5 set |trace A^^] = lg9 |trace ^ ^ . J = mi9 

i = 2 , . . . , g. 
The surface Sj is attached to the surface SJ+l. The twists in this case are: 
Across Ej\ Ej_xEJ+x and CJ+lEJ+l9 set 

|trace £,._,£}+,!= £y, |trace Cj+XEJ+X\= ÇJ9 j = 1 , . . . ,g + m - 3. 

THEOREM 6.1. The Teichmiiller space of surfaces of type (g; m) is the 
6g + 3 m — 6 dimensional subspace of R9*+4m-9 spanned by the parameters 
xi9yi9 zi9 ki9 /„ mi9 i = 1,. . . , g, kg+j9 j = 1, . . . , m9 £J9 t)j9 $j9 7 « 1 , . . . , 
g -I- m — 3, etfc/* varying in the interval (2, 00) ÖM*/ subject to the 3g + m — 3 
constraints 

(6.2.1) x,2 + yf + zf - W , - 2 + *, - 0, / = 1,. . . , g. 

(6.2.2) kf + (2 + m2 - y,#w, + 7,'*, + jy, + J^mt + /{ = 0 

/ / = xf + Vi-iVi-i* J2 = */0»/-i + ty-2) " Ji> 

J A = 2x2 + 17,2_, + T},2_2 + x J V ^ . a - 4, / = l, . . . , g, 

and 

(6.2.3) €ƒ + TJ/ + £ƒ - ^ , + tfft + K{T,J + K#j + K{ = 0 

where 

Ki = nj-iVj+i + *y+i*/+2» 
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K{ = l j y - i ^ + 1 + lly+lty + 2 a i l d 

7 = 1,. . . , g + m - 3. 
PROOF. The proof is given in [11], [12]. 

7. Partitions. If S is a surface of type (g; m) the action of the modular 
group M on the space T(S) is quite complicated. Therefore, as in §5B, we 
make critical use of Bers' Theorem 5.2. Partitions play a crucial role in this 
approach and we turn our attention now to a classification of them. 

Recall that a partition on a surface of type (g; m) consists of 3 g — 3 + 2m 
simple closed mutually disjoint geodesies, m of these are the dividing geodes­
ies of the free homotopy classes of the boundary curves. Cutting the surface 
along all the curves of a partition yields m infinite funnels and 2g + m — 2 
surfaces of type (0; 3) truncated along the boundary geodesies. Each such 
sphere with three holes is attached to one, two or three other such spheres 
across its boundary curves. It may or may not be attached to itself. The ways 
in which these spheres are attached are invariant under topological mappings. 

In our construction in §5B, we were able to use ^-partition geodesies as 
moduli curves. For the cases of higher genus, many types of partitions are 
such that not all of the partition geodesies can be used as moduli curves. As 
we shall see, the dividing curves of the partition may always be used as 
moduli curves, hence the more dividing curves a partition has, the easier it is 
to handle with our methods. 

LEMMA 7.1. The maximum number of dividing curves in a partition on a 
surface of type (g; m) is 2g + 2m — 3. 

PROOF. Since the boundary geodesies are dividing by definition, there are 
always at least m dividing curves. 

First we consider the special case g = 0 and prove the theorem by induc­
tion on m. On a surface of genus zero any simple closed curve is dividing. 
Therefore, we need to count how many disjoint homo topically nontrivial 
curves we can have on such a surface. If m = 3, any simple closed curve is 
homotopic to one of the boundary curves so the theorem is true. Assume it is 
true for surfaces of type (0; k), k < m. Now let S be a surface of type (0; m), 
m > 3, and let y be any simple closed geodesic on S which is not homotopic 
to a boundary curve, y divides S into two surfaces, Sx of type (0; k) and S2 of 
type (0; /), such that k + / = m + 2 and /:, / > 3. Hence, k, I < m and by 
the induction hypothesis we can find a maximal set of 2k — 3 disjoint simple 
closed dividing curves on SY and a maximal set of 2/ — 3 disjoint simple 
closed dividing curves on S2. Since y is counted on both Sx and S2 we have 
2k — 3 + 2/ — 3 - 1 = 2m - 3 disjoint simple closed dividing curves on 5. 
This set is maximal since any simple closed geodesic not intersecting y lies 
either wholly on Sx or wholly on S2. 

We turn now to the general case of a surface of type (g; m) and prove the 
theorem by induction on g. We assume it is true for all surfaces of type (k; 
m), k < g, and let S be the given surface of type (g; m). Let y, be any simple 
closed dividing geodesic on S and let Sx and S{ be the two surfaces into 
which yx renders S. If their types are, respectively, (g{; mx) and (g\; m[\ then 
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£i + 8\ = 8 and mx + m\=* m + 2. If g, and g\ are both nonzero we apply 
the induction hypothesis to Sx to obtain a maximal set of 2gx + 2mx — 3 
disjoint simple closed dividing curves on Sv and to S{ to obtain a maximal 
set of 2g\ + 2^2 — 3 simple closed dividing curves on S{. Then since S = Sx 

U Sf and Yj is counted on both Sx and S{ we have 2gx + 2mx — 3 + 2gj + 
2mi — 3— 1 = 2g + 2m — 3 disjoint simple dividing curves on S. Any other 
simple dividing geodesic disjoint from yx lies wholly either on Sx or S{ and by 
the maximality condition of the induction hypothesis must intersect some 
curve of the set on Sx or S{. 

Suppose that g[ = 0; then there is a maximal set of 2m\ — 3 disjoint simple 
dividing curves on S[. Let y2 be a simple dividing geodesic on Sx. Let S2 and 
S2 be the resulting surfaces of respective types (g2; m2) and (g2; m2); 
82 + £2 " 8\ = £> m2 + m2 = m i + 2. As above if neither g2 nor g2 is zero 
the induction hypothesis implies the desired conclusions. If g2 = 0 we con­
tinue recursively; at the ith step we obtain a surface of type (g; m,) with 
mi < mt — 1. After n steps the geodesic yn renders Sn_x into Sn and S^ such 
that Sn has type (g; 1) and £„' has type (0; m'n). If g = 1 there is only one 
simple dividing curve on Sn, the boundary curve. If g > 1, any simple closed 
dividing geodesic yn+x on Sn not homo topic to the boundary curve divides Sn 

into two surfaces Sn+X and Sw'+1 of respective types (gw+1; m„+\) and (g^+1; 
K+i) w h e r e &+i» «i+i > °̂  &+i + *i+i = S> w«+i + w«+i - mn + 2 = 3. 
Let S" = U ?J"i1S'/. S' has type (g^+1; m - mn+x + 2); applying the induction 
hypothesis to 5" we find a maximal set of 2g^+, + 2(m — mn+x) + 1 disjoint 
simple closed dividing curves on S'. Similarly we find a maximal set of 
2g„ + i + 2mM+1 - 3 disjoint simple closed dividing curves on Sn+X. S = S' U 
Ŝ  + j and yn+x is counted on both S' and 5,,+! so that we have 2g + 2 m - 3 
disjoint simple closed curves on 5. Again the maximality of the sets of 
geodesies on the subsurfaces implies we have a maximal set for 5. Q.E.D. 

The next lemma is a generalization of Lemma 5.2. 

LEMMA 7.2. Let S of type (g; m) be given with a partition P which has 
2g + 2m — 3 dividing curves. There is a marking for 5, and hence for the 
Fuchsian group T representing S, such that the canonical partition for the 
marked group T is precisely P. 

PROOF. Let S be the given surface of type (g; m) and let P be a partition 
on S, 2g + 2m — 3 of whose curves are dividing; the remaining g curves are 
nondividing. The dividing curves render S into g surfaces of type (1; 1) and 
g -f m - 2 surfaces of type (0; 3). On each surface Ti9 of type (1; 1), label the 
nondividing geodesic at and the boundary geodesic y,. Then, according to 
Theorem 3.2 we can find a nondividing geodesic /?, on Ti such that the traces 
of the group elements corresponding to ai9 /3i9 ai^i and y, satisfy the inequali­
ties stated therein. These inequalities yield bounds for the lengths of /?, and 
aifii in terms of the lengths of the partition curves a, and /?,.. a, and /?,. generate 
the fundamental group of Tt and the base point pt can be taken as their 
intersection point. 

According to the proof of Theorem 2.1 we can find a point q} on each 
surface Sj of type (0; 3) such that if y}9 yj and yj are the three boundary 
curves of Sj and aj, oj, oj are open geodesies joining qj to each of the three 
curves yj, yj and yj, respectively, then the curves oJyj(oJ)~\ ojyj(oj)~l and 
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o?Yy?(o?)~! generate the fundamental group for Sj with base point qr 

According to the proof of Theorem 4.4, for each pair of adjacent sub­
surfaces Sj and Sk (or Tk% there exists a geodesic joining qf to qk (or/?*), such 
that if yj, yj and yk, yk (or ak, (a*)""1) are the boundary curves of the union, 
then the traces of the group elements corresponding to ŷ 1, y?, yk, yk, yj = yk, 
yjyk, Yjll satisfy the inequalities stated therein. These inequalities yield 
bounds for the lengths of the moduli curves yjyl and yjyk in terms of the 
lengths of the partition curves yj9 y?, y?, y* and yk. 

If we now choose/?! as base point, and consider all the curves we have on 
the surface as joined by the open geodesies to/?,, they constitute a canonical 
basis for the fundamental group of S, The canonical partition for the 
correspondingly marked group T is precisely the partition with which we 
began. Q.E.D. 

In view of this lemma, we can refer below to partitions with a maximal 
number of dividing curves as canonical partitions. Since from our point of 
view canonical partitions are most desirable, we want to classify topologically 
different types of partitions in terms of their deviation from canonical 
partitions. 

Given a partition ? on a surface 5, we first determine the number 
d0 = d0(P) °f dividing curves in the partition. Since any simple closed 
geodesic on S which doesn't belong to the partition intersects at least one 
partition curve, we ask the following question. Consider all possible simple 
dividing geodesies which we can draw on the surface which are disjoint from 
the d0 dividing curves of P; then what is the least number nx = nx(P) of 
partition curves which are intersected by such a dividing curve? If S has type 
(2; 0), either d0 = 1 or d0 = 0 and nx = 1. We now draw as many as possible 
mutually disjoint simple dividing curves which are disjoint from the d0 

dividing partition curves and which intersect nx partition curves. Call this 
number d„t = dni(P). Clearly dn% < 2g + 2m - 3. 

We continue in a recursive fashion. We look at all simple dividing curves 
which we may now draw on S which are disjoint from the original d0 

partition dividing curves and also from the dx new dividing curves we have 
added. What is the least number n2 = n2(P) of nondividing partition curves 
that one of these geodesies must intersect? Let dn be the maximum number of 
mutually disjoint such curves. If d0 + dny + d„2 = 2g + 2m - 3 we are done; 

Figure 5 illustrates the various possible types of partitions when S has type 
(3; 0). 

Before looking at the general picture we consider the following special case. 

LEMMA 7.3. Let T be a surface of type (1 ; 2) and suppose P is a partition on T 
without a dividing curve. We can find a dividing curve on T whose length is 
bounded in terms of the lengths of the partition curves, in the sense described in 
the proof of Lemma 7.2. 

PROOF. Label the boundary curves of T, 8X and 52. Label the other two 
nondividing partition curves y1 and y2. We can consider T as a sphere with 
four holes, two of which are identified. Let the four holed sphere have curves 
$v ^2' Ti» Tf1 a s boundary curves. We can find a geodesic o in the class 
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determined by 8 ^ whose length is bounded in terms of the lengths of yx, 8,, 
S2 and y2 by using Theorem 4.4 as we did in the proof of Lemma 7.2. o is 
dividing; it divides T into a torus with one hole (bounded by a) and a sphere 
with three holes (bounded by a, 8, and 82). (See Figure 6.) 

d0 = l nx = 1 dn% = 1 
" 2 = 2 dn = 1 

tf0=2 ^ = 1 rfWi = 

<*o=0 « ! = 1 </„,= = 2 

" 2 = 3 ^ = 1 

^n = 0 «, = 2 tf„ = 3 

FIGURE 5 

FIGURE 6 
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LEMMA 7.4. Let S be a surface of type (g; m) and let P be any partition on P. 
We can find a new partition P on S which is canonical and such that the lengths 
of the curves of the new partition are bounded in terms of a set of inequalities 
involving the lengths of the curves of the original partition. 

PROOF. We may assume 6g — 6 + 3 m > 6 since we have treated all the 
other possibilities above. Moreover, let us assume that the given partition is 
not canonical because in that case the theorem holds trivially. 

Let a be a simple closed dividing curve on S which intersects exactly nx(P) 
nondividing partition curves. First, suppose nx = 1, and let y be the partition 
curve which o intersects, y is the boundary curve of two distinct (0; 3) 
surfaces, Sx and S2 determined by the partition. Were Sx = S2, Sx U S2 

identified across y, would be a surface of type (1; 1) and there is a unique 
dividing geodesic on such a surface which doesn't intersect any simple 
nondividing geodesic on it; hence Sx and S2 are distinct. Sx U S2 is, therefore, 
either a surface of type (0; 4), if the remaining boundary curves are all 
distinct, or a surface of type (1; 2) otherwise. Since we are assuming 
6g — 6 4- 3 m > 6, these are the only possibilities. In either of these cases, a 
can be chosen so that its length is bounded in terms of the lengths of the 
partition curves using the method of Lemma 7.3 or Theorem 4.4. 

Suppose now nx(P) > 1. Travelling in a given direction along a, let yv y2 

and y3 be three consecutive partition curves which o intersects. Although a 
intersects each partition curve twice, we may, since nx > 1, choose y^ y2

 an(* 
y3 so that yx and y2 are distinct. Let Sx be the (0; 3) surface two of whose 
boundary curves are yx and y2. Let S2 be the (0; 3) surface two of whose 
boundary curves are y2 and y3. Unless y3 = y2 or y3 = yx, Sx and S2 are 
uniquely determined. If y3 = y2, Sx is uniquely determined and either S2 = 
Sx or S2 is an adjacent three-holed sphere; we choose S2 ^ Sx. If y3 = yx the 
union of Sx and S2 across y, is uniquely determined although which three-
holed surface should be called Sx and which S2 is not determined. The union 
in this case is a surface of type (1; 2) and the length of a can be bounded in 
terms of the lengths of the partition curves by Lemma 7.3. (See Figure 7.) 

?! 72 

FIGURE 7 
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In the nonexceptional case yx ^ y2 ¥= y3; on the four-holed sphere which is 
the union of Sx and S2 across y2, we can find a curve ax in the class 
determined by y ^ whose length is bounded by the lengths of the partition 
curves as in §4B. Since ax and a are geodesies they don't intersect. Moreover, 
since ax is on the four-holed sphere Sx U S2, the only partition curve it 
intersects is y2. Now consider the revised partition Px on the whole surface 
whose curves are ax and all those of P except y2. For this partition the 
number nx(P

l) is nx(P) — 1. We can repeat this process to find a2 whose 
length is bounded in terms of the lengths of the original curves and a,. We 
revise the partition Pl to obtain P2 where a2 replaces another partition curve 
and such that nx(P

2) is nx(P) - 2. After nx - 1 such steps, nx{Pn'~x) = 1 and 
we can obtain aWj, which is dividing as in the first part of the proof. The 
length of an is bounded in terms of a series of inequalities involving the 
original partition curves and al9 . . . 9an_x. Moreover, a intersects nx of the 
original partition curves. The revised partition P"1 has one more dividing 
curve than P does: d0(P"1) = d0(P) + 1 . 

We repeat the above procedure for the partition P"1 = P starting with a 
dividing geodesic a which is disjoint from all of the original dividing curves, 
and also from an , and such that a intersects a minimal number, nx(P\ of 
nondividing curves of the partition P. We obtain a revision P of P which has 
dQ(P) + 2 dividing curves. Repeating this procedure a finite number of times 
we obtain a revised partition with a maximal number of dividing curves and 
such that the lengths of the curves of the revised partition are bounded in 
terms of a sequence of inequalities involving the lengths of the original 
partition curves and the lengths of the curves of the intermediary revised 
partitions. Q.E.D. 

8. The rough fundamental domain. Let T(S) be the Teichmüller space of 
surfaces of type (g; m). Let the numbers Xv À2, . . . , Xm be given. Let f(S) 
be the subset of T(S) such that the moduli (k +X9 kg+29. . . , kg+m), corre­
sponding to the boundary curves are some permutation of the m-tuple 
(Xv . . . , Xm). Let M be the Teichmüller modular group. It clearly acts on 
T(S). Let r be the number of topologically distinct types of partitions that a 
surface of type (g; m) admits. Recalling definition 5.5 we define TV(S) = {S 
E T(S)\S admits a i?-partition of type v], v = 1, . . . , r. As in §5B we see 
that T(S) is the union of these subspaces and that they have a nonempty 
intersection. Let TV(S) be the union of TP(S) as the numbers \l9 . . . , Xm 

vary from 2 to 00. Then 
r 

T(S) = U T'(S). 

Let q be a point in TV(S) and let S be the underlying surface. For any 
fi-partition of type v on S9 we can, by Lemma 7.4, find a canonical partition 
such that the lengths of the dividing curves of the canonical partition satisfy a 
set of inequalities involving the bound L on the lengths of the ^-partition 
curves. By Lemma 7.2 we can find a marking from the canonical partition 
such that the twist curves have lengths which satisfy inequalities involving the 
bound L also. _ 

Let R" be the subset of T"(S) such that if L = 2 cosh(L/2), the handle 
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moduli xt satisfy x, < L, j = 1 , . . », g, and such that the dividing and twist 
moduli satisfy the inequalities of Lemmas 7.2 and 7.4. (Recall Lemmas 5.2 
and 5,4.) 

LEMMA 8.1. f ' (S) = U^ M <P(* ' ) -

PROOF. Every point in fp(S) admits a J?-partition of type v and Lemmas 
7.2 and 7.4 describe an algorithm to construct a point in Rp congruent to the 
point. Q.E.D. 

LEMMA 8.2. The set { U v6*<p(?) H A'} is finite for each q E f "(S). 

PROOF. For each point of i?p, we can read off, in terms of the moduli 
curves, a set of curves on the underlying surface S which form a /^-partition 
of type v. The surface S admits only finitely many different ^-partitions of 
type v. Looking at the proofs of lemmas 7.2 and 7.4 we see that corresponding 
to each possible ^-partition of type v there are only finitely many points in Tp 

satisfying the inequalities which define Rp« Q.E.D. 
Let Rv be the subset of TP(S) formed by taking the union of the sets Ap as 

the parameters \ , i = 1 , . . . , m, vary from 2 to oo. We have finally 

THEOREM 8.L A rough fundamental domain for M acting on T(S) is the 
subspace R = UUi^"-

PROOF. Every point in T(S) lies,in some fp(S) and, hence, by Lemma 8.1, 
is congruent to some point in Rp which in turn belongs to Rp. Moreover, 
every point q £ T(S) belongs to only finitely many of the subspaces TP(S) 
and, hence, to only finitely many of the subspaces TP(S). Consequently, by 
Lemma 8.2, the set { U TGM(p(?) n T(S)} is finite, Q.E.D. 

9. Cusps. We now consider the boundary of T(S% dT(S). A point on the 
boundary corresponds again to a marked Fuchsian group such that if T is a 
normalized marked group in the interior of T(S) and T0 is a normalized 
marked group on the boundary, there is a natural homomorphism ƒ: T -» T0. 
There is no longer a quasi-conformal homeomorphism of the underlying 
surfaces though. 

DEFINITION 9.1, A marked group r0 on the boundary of T(S) is called a 
cusp if for some hyperbolic element A G F, f (A) is parabolic, that is, |tr f(A)\ 
« 2. See [3], [19]. 

Geometrically, in a neighborhood of a cusp ro, there is a sequence of 
marked groups Tn in T(S), Tn -> T0, such that on qn, the underlying marked 
surface, there is a distinguished geodesic yn and the length of yn tends to 0 as 
n tends to oo. 

LEMMA 9.1. Let T(S) be either the Teichmüller space of surfaces of type (1; 
I) or (0; 4). Let k be the boundary modulus in the (1; 1) case; let (kv k2, A:3, k4) 
be the boundary moduli in the (0; 4) case. Let R(S) be the fundamental domain 
for M(S) acting on T(S) constructed in §§3B or 4B, respectively, such that 
each of the boundary moduli is bounded by an arbitrary constant M. Then 
R(S)n dT(S) is a set of cusps. 

PROOF. We carry out the proof for the case where S has type (1; 1). The 
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computation when S has type (0; 4) is analogous. 
The domain R(S) is described by the relation x2 + y2 + z2 - xyz - 2 -f 

A: *= 0, and the inequalities xy — 2z > 0, xz — 2y > 0, x < ƒ, x < z, 
x,.y, z > 2, 2 < fc < M. We want to show that if any of the parameters tend 
to oo within R (S) some other parameter tends to 2. Our restriction on k says 
it cannot tend to oo. Recall that for a fixed k and x = X,y and z lie on the 
minimal segment of the hyperbolay2 + z2 - 2X/z 4- X2 - 2 4- k = 0. Let the 
coordinates of the endpoint of the minimal segment such that Xy = 2z be (À, 
Jo, \ ) /2) . The inequalities defining the minimal segment are then y0 < y < 
^Vo/^Jo < z < ^o /2- As y and z tend to oo,y0 tends to oo. Since 

*2 + yl ~ - ? - 2 + it = o, x2 = 4 — — 
4 [ ƒ 0 - 4 

as Jo tends to 00, X tends to 2. Q.E.D. 
The following theorem was conjectured by Bers [3], 

THEOREM. Let T(S) be the Teichmuller space of surfaces of type (g; m). Let 
R(S) be the rough fundamental domain constructed in §8 such that the 
boundary moduli are all less than some arbitrary constant M. Then R(S) 
H dT(S) is a set of cusps. 

PROOF. We want to show that whenever one of the moduli tends to 00 
within the region R (S), there is some curve on the underlying surface such 
that the trace of the corresponding group element tends to 2. We need only 
consider those moduli curves which are not elements of a 5-partition on the 
surface since the latter remain bounded by definition. 

Let a be a moduli curve whose length tends to 00 as we travel along a path 
in R (S). Suppose a is a 5-partition curve which a intersects and which is also 
a moduli curve. There are various possibilities. Either a is a handle curve and 
o lies on the handle determined by a in the algorithm for constructing R(S), 
in which case, via Lemma 9.1 it follows that the modulus corresponding to a 
tends to 2; or a is a twist curve and o lies on a subsurface of type (0; 4) 
determined by the twist «, in which case, again by Lemma 9.1, the modulus 
corresponding to a tends to 2. 

If a intersects no ^-partition curve which is also a moduli curve, we must 
be more careful. We must proceed step by step as in the constructions in 
Lemmas 7.2 and 7.4. Suppose first, a intersects only one curve a, belonging to 
a 5-partition, but not a moduli curve. Then a is the boundary curve of two 
adjacent surfaces of type (0; 3), the rest of whose boundary curves belong to 
the partition, o is then a twist curve on the union of these surfaces and we can 
again apply Lemma 9.1 to conclude that the trace of the element correspond­
ing to a tends to 2. 

If a intersects more than one such nonmoduli, J?-partition curve a, we 
proceed through the refinements of the ^-partition as described in §7 until we 
reach one where o intersects only one such curve a. We now apply the above 
argument. Q.E.D. 

REMARK 9.1. It is clear that the condition on the boundary moduli is 
necessary because all control on the area, diameter, collars, etc., disappears 
when the boundary elements are arbitrarily long. 
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