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notation for the range of an extension of a Gödel numbering is carried along 
in a way which can really be a nuisance to a reader. The prose unfortunately 
does not share the clean elegance of the mathematical development. Finally, 
it is surprising that Springer-Verlag did not catch some carelessness with 
proper names, e.g. "Weierstrauss". 

But these minor matters aside, Monk has brought together an enormous 
range of interesting material. He has written an important and valuable book 
which will be a standard reference for some time to come. 

A few errata: p. 19, line 8, the subscript 0 should be 1; p. 31, line 13, "on" 
should be "an"; p. 81, line - 9 , the word "recursive" is (crucially) missing 
after "binary"; p. 267, in the proof of (*), the list of finite structures should 
repeat each one infinitely often; p. 350, line 9, the subscript on Fmla should 
be £; p. 442, line 10, Fmla should have the superscript n (in addition to its 
subscript). 
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Connections, curvature, and cohomology. Vol. I: de Rham cohomology of 
manifolds and vector bundles, by Werner Greub, Stephen Halperin and Ray 
Vanstone, Academic Press, New York and London, 1972, xix + 443 pp., 
$27.50. 

Connections, curvature, and cohomology. Vol. II: Lie groups, principal bundles, 
and characteristic classes, by Werner Greub, Stephen Halperin and Ray 
Vanstone, Academic Press, New York and London, 1973, xxi 4- 541 pp., 
$35.00. 

Connections, curvature, and cohomology. Vol. Ill: Cohomology of principal 
bundles and homogeneous spaces, by Werner Greub, Stephen Halperin and 
Ray Vanstone, Academic Press, New York, San Francisco, London, 1976, 
xxi + 593 pp., $49.50.* 

The topic of these volumes, relations between the topology and the 
differential geometry of manifolds, in particular, the notion of "characteristic 
classes", has occupied mathematicians for a long time. The first instances are 
probably Gauss's expression for the linking number of two curves by a double 
integral; and Dyck's theorem fs KdA = 2<nxs> where S is a closed surface, K 
the Gauss curvature and Xs ^e Euler characteristic (1888, for a surface in 3-
space; later proved (by Blaschke?) intrinsically, with Gauss's Theorema 
Egregium and the Gauss-Bonnet formula). The latter theorem is still the model 
for the present topic. 

Another important example is Hopf's theorem 2 / P == XM> where theyp are 
the indices of the zeroes of a vector field V on the closed manifold M, and \M 

again the Euler characteristic; there is also its earlier companion: The 

1 These books are included as volumes in the Pure and Applied Mathematics Series of 
Academic Press. Vol. I is numbered 47-1, Vol. II is 47-11, and Vol. Ill is 47-111. 
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curvatura intégra of a closed hypersurface M in Rn, n odd, is \XM- The 
Stiefel-Whitney classes (characteristic cohomology classes attached to systems 
of vector fields in a manifold) belong here. (However, they do not appear in 
the text, since the discussion is restricted to real coefficients.) 

All this is, so to speak, the classical period; a new period began in 1940, 
when Allendoerfer and Fenchel, independently, found the long-sought gener­
alization of Dyck's theorem: There is a universal polynomial in the coefficients 
of the Riemann curvature tensor of a Riemannian manifold Mn, n even, that 
happens to be a function on M and whose integral gives XM* 

Soon after this Pontryagin and Chern discovered the characteristic classes 
that now carry their names, cohomology classes attached to the differentiable 
or complex structure of a manifold. In both cases one of the possible 
definitions involves expressions in differential forms related to the curvature 
tensor; it is this aspect that came to be expanded greatly. In 1949 it was 
realized what was going on (A. Weil): The proper objects to look at are 
principal G-bundles P, with G a Lie group; thus G acts freely on P, and the 
quotient P/G is a manifold M. (The prime example: M a Riemannian 
manifold, P the collection of orthonormal frames in the tangent spaces at the 
various points of M ; G = 0(ri) = orthogonal group; an orthogonal matrix 
(ay) sends a frame {i/Jj to the new frame {wj = 2 aijvi)n\) The theory of 
connections (parallel displacement) of differential geometry, as extended to 
this situation by Ehresmann and others, attaches to a connection <o in P (they 
exist) a curvature, expressed as a g-valued (g = Lie algebra of G) differential 
2-form Ö o n P (and equivariant: Q(vg,wg) = Adg"1 • £2(t;,w), with Ad the 
adjoint action of G on g). The fundamental idea now is to take any symmetric 
multilinear (degree r) function (pong that, moreover, is invariant under Ad 
(in brief: an invariant polynomial) and to substitute the curvature form Ü for 
the variables of <p, interpreting multiplication as exterior. It turns out, 
somewhat miraculously, that the 2r-form <p(fi,... ,fi), so obtained, is a form 
on M (and not only on P) and that it is closed, thus defining via de Rham a 
cohomology class of M\ and, moreover, this class is independent of the choice 
of connection. (To prove all this takes time.) The homomorphism from the 
algebra of invariant polynomials on g to the cohomology H*(M) so defined 
is known as the Weil map; the image is the algebra of characteristic classes of 
P. Thus the invariant polynomials on g form the "universal source" of all 
characteristic classes of all principal G-bundles. (For G = 0(n), g = skew A* 
X n matrices, the invariant (under X -> MXM~l) polynomials form a polyno­
mial algebra generated by the "characteristic coefficients", the coefficients of 
tn~~2, tn~4, . . . in the characteristic polynomial of the generic matrix X in g 
[the coefficients of A""1,/"""3,... are 0]. These generators become the 
Pontryagin classes under the Weil map. For G = SO(2m) the last coefficient, 
the determinant, is the square of another invariant, the Pfaffian; the corre­
sponding cohomology class, under the Weil map, is called the Euler class. For 
the frame bundle of M one gets this way the Allendoerfer-Fenchel integrand.) 
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(From the topological point of view the characteristic classes are the image of 
the cohomology of a classifying space, base space of a universal (contractible) 
bundle, from which any bundle can be induced. In the first instance 
characteristic classes serve to distinguish different principal G-bundles over M. 
They become more important in the theory of cobordism [R. Thorn], where 
manifolds are considered modulo the relation of being a boundary, the 
fundamental tool being the evaluation of [top dimensional] characteristic 
classes on the fundamental cycle of the manifold. In this context other, exotic, 
cohomology theories appear, going beyond the frame work of the present 
volumes.) 

In the meantime the theory of Lie groups had taken a new turn with Hopf s 
work: The notion of primitive cohomology class had appeared (these are the 
elements a in #*(G) with /x*(<z) = a 0 1 + 1 ® a, where JX: G X G -» G is 
the product in G). And one has the theorem that 7/*(G), for compact 
connected G, (which according to E. Cartan can be identified with the 
Ad-invariants in the exterior algebra Afi* ; a* = dual of Q) can be written as 
A ^ , the exterior algebra over the space PQ of primitive elements. Combining 
all this with the Weil map led to an algebraic generalization of connections 
(Weil, H. Cartan, Koszul, and others). The leading idea is to replace any 
principal G-bundle P, or, more generally, any manifold on which G acts, by 
its algebra of differential forms (a similar step was taken recently by D. 
Sullivan in his theory of rational homotopy type) and thus to consider 
arbitrary differential algebras R (graded-commutative, with a2 = 0 if degree a 
odd); the action of the (connected) group G on P gets translated into operators 
0{X) (Lie derivative) and i(X) (substitution) on /?, for X in g, with suitable 
relations (e.g., the homotopy formula 9(X) = d o ix + ix o d). The base 
manifold appears as the subalgebra R9i of R formed by the elements that are 
invariant under (= nullified by) all 0(X) and i(X). A connection is a linear 
map from Q* to Rl (degree 1 part of R), suitably related to 0 and /. If a 
connection exists, then curvature £2 can be defined. The Weil map becomes a 
homomorphism from (Vg*)^, the 0-invariants in the symmetric algebra 
V ô*, to H*(R9i). An extensive development, involving a lot of homological 
algebra, spectral sequences and Koszul complexes (complexes attached to 
modules over polynomial rings whose virtue is that they replace whole spectral 
sequences by consideration of a single differential), and difficult to summarize, 
sets in now. The Weil algebra W(Q) is the tensor product of Vg* and Ag*, 
with suitable /, 0, d. There are two main facts: (1) the cohomology of W(Q) 
(and also that of the subalgebra W(Q)0 of the 0-invariants) is 0; and (2) the 
Weil map extends to a "classifying" map of W{§) into any R as above, 
preserving operators. They make W(Q) the analog of the universal bundle in 
bundle theory. There is the notion of suspension or Cartan map from ( V g* )Q 
to ( Ao*)#: x, in the former, is dy in W(g)9; project y to ( Ao*)#. (This way 
of going from base to fiber had appeared, e.g., in Chern's elegant intrinsic 
proof of the Allendoerfer-Fenchel result.) A "reverse" map, transgression, 
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goes from the primitives, ^ , to (Vg*^; in the process one proves the 
important theorem that for a reductive g the invariants ( V g*)^ always form a 
polynomial algebra (example: 0(n) or SO(2m) above). (Hubert's "First Main 
Theorem" only gave finite generation.) The next big result says that transgres­
sion in W{$)Q and the Weil map determine the cohomology of the ^-invariants 
RB (translated to geometry this means / /*(P), G assumed compact). All this 
gets applied to the study of quotient spaces G/H, i.e., of the relative 
cohomology //*(g, i}) of the Lie algebras. The first main result identifies this 
cohomology with that of the Koszul complex ( Vh*)^ 0 A Pfl, relative to a 
differential determined by transgression and the restriction (Vg*)^ to 
(VI)*)^. Starting from these general facts, one can describe #*(g, f)) very 
concretely in terms of its image in the cohomology of g (under the projection 
G -> G/H) and the image of the Weil map ( V t)* )9 -> H* (g, ï)), by setting up 
universal diagrams that relate the various entities. There is a number of 
interesting special cases: G and H of equal rank, symmetric spaces, To 
spell out an example a bit: there is the case "H noncohomologous to 0 in G", 
i.e., the restriction map i/*(g) -> H*(t>) is surjective. This is proved equiva­
lent (under suitable reductivity assumptions) to either: the projection /c*: 
H*(fl, &) -» H* (g) is injective; or: the Weil map ( V Ç*)e -* H*(g, &) is trivial 
("no characteristic classes"); or: //*(g,t)) is generated, as algebra, by odd-
dimensional elements; or several other properties. Similar facts are developed 
for the G///-bundles over a manifold M, derived from principal G-bundles P 
by forming P/H. (A topological approach to the whole theory appears in 
Borel's work on classifying spaces.) 

All of this material (much of it quite difficult to find in the literature) and a 
lot more has been organized in the three volumes under review into a clear, 
coherent and complete account. Everything needed is developed from scratch 
(necessarily sometimes in rather condensed form); very rarely is a fact brought 
in from the outside, only "linear algebra", some real analysis, and basic 
topology are assumed. No single step is ever difficult (however, there are many 
steps and one has to keep many definitions and symbols in mind); one usually 
just defines a linear map (often a derivation), or extends one (possibly 
multiplicatively, symmetric or exterior), or restricts one, or induces one. 
Definitions sometimes have to be taken on faith; motivation may come a good 
deal later. There are a lot of clever arguments and improvements of earlier 
approaches (e.g., Poincaré duality is proved with almost no work). Cohomol­
ogy is defined in terms of differential forms on manifolds (homology appears 
only incidentally, although fully explained at that point). A minor warning: 
The symplectic group Sp{n) is denoted by either Sy(ri) or Q(ri). 

The first volume consists of an excellent account of the basic facts on 
manifolds: vector bundles, differential forms, Poincaré duality (for noncom-
pact manifolds as nonsingularity of the pairing between cohomology and 
compact cohomology), de Rham's theorem (via the cohomology of the nerve 
of a simple cover), degree of a map, Hopfs theorem on maps Mn -> «-sphere, 
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a thorough discussion of integration over the fiber in a bundle, sphere bundles 
and the Euler class, the Thorn isomorphism, Hopfs theorem on vector fields 
and Lefschetz's coincidence theorem, 

The second volume, after an exposition of Lie group theory, introduces 
principal and associated bundles, connections (principal and linear), parallel 
displacement, covariant derivative, and curvature; and then discusses the 
concrete-geometric case of the Weil map, from the point of view of principal 
bundles and also from that of vector bundles with given structure tensors. One 
finds there the cohomology of the classical groups (the exceptional groups do 
not appear) and of some homogeneous spaces, the formulae for the character­
istic classes (Pontryagin, Euler, Chern), and Chern's proof for the Gauss-
Bonnet-Dyck-Allendoerfer-Fenchel-Weil-Chern theorem. 

The third volume, after introductory material on spectral sequences and 
(very welcome) on Koszul complexes, gives a thorough and complete treat­
ment of the algebraic form of the Weil map. Many examples, classical groups 
and homogeneous spaces, are worked out. A minor quibble: The third volume 
does not have an index of notations. 

There is a large number of interesting problems in the first two volumes, 
ranging from simple illustrations to rather difficult general theorems, and 
adding a lot of "general mathematical education". There is a very extensive 
bibliography. The third volume has a set of interesting notes on the history of 
the various facts, and on relations with other topics (e.g., the currently active 
area of characteristic classes of foliations). 

The authors have done us a real service in making this fascinating, but 
rather complex, field accessible and organizing it so clearly and competently. 

H. SAMELSON 
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Applications of sieve methods to the theory of numbers, by C. Hooley, Cambridge 
Tracts in Mathematics, no. 70, Cambridge University Press, Cambridge, 
London, New York, Melbourne, 1976, xiv + 122 pp., $18.95. 

In number theory there are famous conjectures which can easily be 
explained even to a layman, but which still resist a complete solution. Two of 
them are as follows. 

There exists an infinity of primes p such that p + 2 is also a prime (the twin 
prime problem). 

Every even integer greater than 3 is a sum of two primes, or equivalently, 
every integer greater than 5 is a sum of three primes (Goldbach's problem). 

It is in the attempt to solve such problems that sieve methods have been 
developed. The first steps were taken by V. Brun around 1920. Since his 
pioneering work, there has been progress in refining the techniques and 
improving the results of sieve theory. The power of the elementary methods 
originally used has been considerably increased by the combination of 


