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H. S. Bear that the Gleason parts of the spectrum of a function algebra are 
determined by mapping into an appropriate convex set K and showing that 
the Gleason parts are just the inverse images of the sets of the Nikodym 
decomposition of K. 

Part IV looks at the effects of choosing an ordered field other than R. Part 
V returns to linear spaces over R to compare these algebraic-geometric 
operations in L with more usual topologies for L. The book ends with some 
account of the natural topology in L. 

The authors have surveyed and digested the literature of this topic quite 
thoroughly. This set of lecture notes gives interested mathematicians a very 
full account of the kind of topological structure forced on a linear space by its 
scalar field. 

M. M. DAY 
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Model theoretic algebra: Selected topics, by Greg Cherlin, Lecture Notes in 
Mathematics, vol. 521, Springer-Verlag, Berlin and New York, 1976, iv + 
232 pp., $9.50. 

In an address to the International Congress of Mathematicians at Cambridge, 
Massachusetts in 1950, Abraham Robinson pointed out that "contemporary 
symbolic logic can produce useful tools-though by no means omnipotent 
ones-for the development of actual mathematics, more particularly for the 
development of algebra and, it would appear, of algebraic geometry." A 
similar observation was made by Alfred Tarski in an address to the same 
Congress in which he defined some of the basic notions of that branch of logic 
which is now called model theory-that is the study of the properties of 
mathematical structures expressible in formal mathematical languages. 

That the expectations of these two giants of model theory were more than 
fully realized in the succeeding decades is indicated by the scope of the volume 
under review, which is an exposition of selected results in the model theory of 
such diverse algebraic systems as groups, rings, modules, fields, division rings, 
ordered fields and valued fields. Not all of the results presented are applica­
tions of model theory to algebra in the strict sense that they are theorems 
expressed in conventional algebraic terms and proved by model-theoretic 
methods; but many of the others are applications in the broader sense that 
they show how-in the words of Robinson in a later paper [9]-"certain basic 
facts and notions of Algebra, for example the notion of an algebraically closed 
field, can be placed and generalized within the framework of Model Theory." 

The book under review, which consists of lecture notes of a course given by 
the author at M.I.T. in 1974 and again at the University of Heidelberg in 1975, 
constitutes an expeditious and extensive introduction to the burgeoning field 
of "model theoretic algebra." The author is a knowledgeable and informative 
guide, who provides a broad view of the subject, never losing sight of the forest 
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for the trees. (The reverse side of the same coin, however, is that the reader is 
often given only a very sketchy map to find his way through the trees: a good 
deal of effort is required on the part of the reader to fill in all the details of 
proofs.) The book is successfully organized around "a few main themes which 
were championed by the late Professor Abraham Robinson. In particular we 
lay great stress on the role played by transfer theorems and existentially 
complete structures in algebra." The model theory dealt with in the book is 
almost exclusively "classical" model theory, which deals with statements of the 
first-order, or lower, predicate calculus; these are, roughly, finitary expressions 
built up from relation and function symbols using variables, constants, logical 
connectives ("and", "or", "not", "implies") and quantifiers ("for all", "there 
exists"); the statements are "first-order" in that variables are understood to 
stand for elements of the domain of the structure and not, for example, for 
subsets of the domain. (The author provides a brief summary of the basic 
notions of model theory in Chapter 0, but some previous familiarity with these 
ideas is an almost essential prerequisite for reading this book.) 

A typical example of a transfer theorem is the following, formulated in 
Robinson's 1950 paper. Let <p be a first-order statement about fields; then <p is 
true in some algebraically closed field of characteristic zero if and only if <p is 
true in every algebraically closed field of characteristic zero if and only if there 
is an integer n such that <p is true in all algebraically closed fields of finite 
characteristic p > n. The first equivalence is a precise but weak form of the 
heuristic Lefschetz's Principle of algebraic geometry; it is weak in that most 
theorems of algebraic geometry are not naturally formulated as statements of 
the lower predicate calculus1. Nevertheless, this transfer principle has interest­
ing consequences; one elementary but notable one escaped attention until 
1967 when it was observed by James Ax: an injective morphism of an 
algebraic variety into itself is surjective. 

A striking early success of the model theoretic approach to algebra was 
Abraham Robinson's solution of Hubert's Seventeenth Problem, solved 
originally by Artin and Schreier. Robinson's method (discussed in Chapter I 
of Cherlin's book) provides a beautifully transparent solution based on an 
important concept from model theory, that of model completeness. A class 2 
of algebraic structures is called model complete if the members of 2 satisfy the 
following transfer principle: whenever 3t and 93 belong to 2 and 21 is a 
substructure of 93, then any first-order statement about 9t-which may refer to 
elements of 91—is true in 9Ï if and only if it is true in 93. The fact that the class 
of real closed fields is model complete may be proved in a number of ways, 
all depending ultimately on the crucial algebraic fact that the real closure of 

1 Other precise versions of Lefschetz's Principle, which come closer to capturing the content of 
the informal original, have been given by logicians using formal languages stronger than the lower 
predicate calculus. The reviewer's version is discussed in Cherlin's article [2]. 
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an ordered field is unique up to isomorphism.2 Once model completeness is 
proved, the solution to Hilbert's problem follows quickly by a kind of 
mathematical pun. A similar sort of argument can be employed to prove the 
Hilbert Nullstellensatz, using the fact that the class of algebraically closed 
fields is model complete3. 

The greatest achievement of model-theoretic algebra thus far is probably the 
Ax-Kochen-Ershov result on Artin's conjecture for Q^, the field of /?-adic 
numbers. As Cherlin emphasizes in Chapter II, the main theorem may be 
viewed as a transfer principle for Hensel fields, from which one obtains in a 
special case the fact that the ultraproducts irpQp/D and 7TpFp((t))/D satisfy the 
same first-order statements. (Here Fp is the field of order p and D is a 
nonprincipal ultrafilter over the set of primes.) The known Diophantine 
properties of i£((/))-which inspired Artin's conjecture-then lead to the truth 
of Artin's conjecture "almost everywhere" for Q^, a best possible result in 
view of Terjanian's counterexample. Cherlin sketches the proof of the transfer 
theorem but refers for detail to the excellent exposition by Kochen [5]. Cherlin 
does discuss Kochen's /?-adic analogue of Artin-Schreier Theory, which is 
based on the model completeness of the class of "p-adically closed" fields. 

The class of real closed fields intuitively bears the same relation to the class 
of ordered fields as the class of algebraically closed fields does to the class of 
fields. This analogy can be made precise by means of model theory; indeed 
the subclass in each case is the class of structures which are existentially 
complete with respect to the larger class. A structure 31 in a class 2 is called 
existentially complete with respect to 2 if whenever 2t C 93 and 93 E 2, then 
any "existential statement"-i.e. a statement which in prenex form involves 
only existential quantifiers-about 9t is true in 3t if and only if it is true in 93. 
That the formalization of this analogy is more than just an idle exercise is 
indicated by the fact that it led Robinson to the definition of a differentially 
closed field, which has turned out to be a valuable concept in differential 
algebra and one whose study continues to make important use of model-
theoretic methods. (A useful introduction to this subject, which is not 
discussed by Cherlin, is given in the article [12].) 

While the class of algebraically closed fields is axiomatizable by first-order 
statements and the same is true for real closed fields and differentially closed 
fields, the situation is quite different in the case of existentially complete 

2 Artin-Schreier's original proof of this fact was based on Sturm's Theorem. Cherlin gives as an 
exercise to prove the uniqueness theorem using only the Intermediate Value Theorem-a problem 
which defeated the efforts of a number of notable mathematicians. He provides a terse hint, but 
for a complete proof one may consult the paper of H. Gross and P. Hafner in Comment. Math. 
Helv. 44 (1969), 491-494. A proof using only the Intermediate Value Theorem was also given by 
James Ax in 1966 but was apparently never published by him. 

3 Robinson also obtained results about bounds in Hilbert's Nullstellensatz and Hilbert's 
Seventeenth Problem. For information on this subject, which is not discussed in the book, see 
Robinson's article [9] or the reviewer's survey article [3]. A valuable expository article on the 
general subject of model completeness is A. Macintyre's [6]. 
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(noncommutative) groups or division rings. (Existentially complete groups are 
usually called "algebraically closed".) Just how different is made clear in the 
investigations carried out by A. Macintyre and W. Wheeler using a combina­
tion of model-theoretic and recursion-theoretic methods (and relying heavily 
on the algebraic results of Paul M. Cohn in the case of division rings). The key 
model-theoretic tool, the forcing construction, due to A. Robinson-inspired by 
Paul J. Cohen's set theoretic notion-is discussed in Chapter III of Cherlin and 
the application to division rings and groups in Chapter IV. (See also [4].) As 
an example of the power of the forcing method, we mention one of its early 
successes: the proof by Macintyre (solving a problem posed by the asomatous 
Eli Bers) that there are countable algebraically closed groups which do not 
satisfy the same first-order statements; the forcing technique is crucial here in 
that it provides a method of construction concrete enough to yield distinguish­
able algebraically closed groups. 

Chapter V treats the theory of existentially complete modules, due to G. 
Sabbagh, E. Fisher and the reviewer. Here, model theory sheds light on the 
notions of injective and pure-injective and gives a central position to an 
algebraic condition, weaker than noetherian, called coherence. 

The last two chapters of the book provide brief introductions to other areas 
of active investigation in model-theoretic algebra. Chapter VI deals with the 
first-order model theory of abelian groups, which is well understood thanks to 
the work of W. Szmielew. (Cherlin's presentation follows a later approach, due 
to E. Fisher and the reviewer, which is based on an analysis of the structure 
of saturated groups.) But the use of infinitary languages and of set-theoretic 
ideas continues to be a fruitful method of studying infinite abelian groups. The 
final chapter, on Kj-categorical fields, affords a glimpse of the significant role 
which stability theory, a major area of research in pure model theory (see [11]), 
has come to play in the study of algebraic systems from a model-theoretic 
point of view. 

(Two errata: on p. 131, a stronger version of Q is needed to make D' 
existentially complete; on p. 225, reference 45 is due to Schreier not Schilling. 
There are a number of other typographical errors which will not cause 
difficulty.) 

To sum up, the book under review is a well-written, wide-ranging survey of 
a field which connects mathematical logic and algebra with benefits to both. 
The list of references which follows consists of expository articles and books 
which supplement the material contained in this book. 
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Pattern synthesis, lectures in pattern recognition, Volume 1, by U. Grenander, 
Applied Mathematical Sciences, No. 18, Springer-Verlag, New York and 
Berlin, 1976, vii + 509 pp., $14.80. 

A generation or so ago, applied mathematics consisted primarily of the 
solution of partial differential equations subject to diverse geometrical con­
straints. The development of computers radically altered this emphasis: 
numerical methods superseded analytical approximations, and the rapidly 
expanding capacities of digital computers obviated the need for ingenious 
shortcuts. 

Analog computers, with their versatile internal structures, would probably 
have given rise to investigations into structural configurations if they had not 
fallen behind digital automata because of their restricted speeds. Nevertheless, 
the design of digital computer circuitry itself has stimulated work on configu-
rational mathematics, and the very scalar quality of the digital computer has 
necessitated an analytical approach to pattern recognition. The theory of self-
organizing automata (Turing), the genetic code and research on neural nets 
have proven the power of an algorismatic approach to structure. 

A pattern is an ordered array whose components bear a well-defined 
relation to each other. Pattern recognition amounts to the identification of 
these components, and the nature of their interrelationships. Such identification 
is to a certain extent subjective: the expression of the internal vibrations of 
material objects as a series of monochromatic mutually orthogonal functions 
is convenient, but not necessarily fundamental in acoustic theory. The 
description of a crystal in terms of stacked cubical unit cells may please the 
crystallographer, but the solid-state chemist will prefer a model based on 
stacking spheres of different diameters. Thus the same crystal will appear in 
different "gestalten" in different contexts. 

A very effective way of reducing the apparent complexity of a pattern is the 
above-mentioned algorismatic approach, namely by synthesizing it according 


