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who have to cope with congestion in the real world often find simulation, or 
numerical evaluation, to be more useful tools in the computer age. 

But blind simulation is a very expensive business, and the mathematician is 
still needed to provide insights rather than formulae. Information of a 
qualitative or approximate kind about stability, robustness, sensitivity, rates 
of convergence, may be just what the practical man needs, or if not will 
enable him to ask the right questions of his computer. There has been 
distinguished work along these lines, but much remains to be done; in 
particular the many-server queue still presents a formidable challenge. 

Although the Russian school has been by no means isolated from Western 
developments, it has inevitably differed in emphasis, and an account from 
that viewpoint of the present state of the theory is valuable and stimulating. 
Borovkov has taken a very fundamental approach, fitting a wide variety of 
models into a general framework. Explicit formulae are kept in their place, 
and he usefully stresses the limiting results which justify robust approxima­
tions of real practical use. 

He does not discuss the relevance of the theory to the real world, and the 
book is only (!) an authoritative synthesis of the underlying mathematics. It 
will be read, and with great profit, by mathematicians seeking uses for the 
powerful tools of random process theory. Will they be able to make any 
contribution, however indirect, to the world which does not read the learned 
journals? There is no doubt that modern telecommunications systems work 
better because of the achievements of Erlang and his successors, but some 
other applications of the theory have been less fruitful (largely because a 
queue is often a complex feedback mechanism). Perhaps one rather trite 
conclusion is that here, as in other areas of applied mathematics, mathemati­
cians should direct their attention to questions to which someone, somewhere, 
wants to know the answer. 

J. F. C. KINGMAN 
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 83, Number 3, May 1977 

Matrix groups, by D. A. Suprunenko, Translations of Mathematical Mono­
graphs, vol. 45, American Mathematical Society, Providence, Rhode Island, 
1976, viii +252 pp., $31.20. 

If I recall correctly, John Thompson prefaced his talk at the group theory 
symposium at the University of Illinois in 1967 with the remark "I believe in 
a heliocentric view of the universe, with the linear groups playing the role of 
the sun". Given the nature of the development of group theory in the past one 
hundred years, such a credo seems very appropriate. The earliest work in 
group theory was concerned mainly with permutation groups, the principal 
example of which was the Galois group acting on the roots of a polynomial 
equation. Interest in linear groups arose first in a geometric context. Boole and 
Cayley in the 1840's and 1850's initiated invariant theory, i.e. the study of 
rational functions of several variables that are invariant under various groups 
of linear or affine changes of variables. This work occupied the attention of 
many prominent mathematicians for many years; one major development was 
the annunciation of Klein's Erlanger Program, which stressed that geometric 
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properties should be viewed as properties left invariant by suitable transfor­
mation groups. Several lines of inquiry arose in this geometric discussion; for 
instance, Lie developed his theory of continuous transformation groups, in 
order to study partial differential equations, while Bravais, Jordan and others 
studied the discrete groups that act on crystalline structures, in order to 
understand the geometry of molecules. 

The book under review is not concerned with these concrete applications, 
so we will henceforth discuss linear groups from a discrete point of view. The 
notion of an abstract group developed in the middle years of the nineteenth 
century, and it is not clear who deserves credit for the definition. Cayley first 
defined finite groups in 1854 (by means of properties of the multiplication 
table); but, according to E. V. Huntington, the first explicit general axioms 
were given by Kronecker in 1870. In any case, the early practitioners of 
abstract group theory quickly realized that permutations and matrices are 
nicer than abstract group elements, since these concrete objects come 
equipped with various handy invariants (cycle structure, traces, invariant 
subspaces and the like). Therefore, representation theory arose as a primary 
tool in the theory of abstract groups. From Cayley's work, one knew that any 
group could be viewed as a permutation group on itself; by linearization, any 
finite group could be viewed as a group of matrices. (Throughout this 
discussion, we refer only to finite matrices; there is little known about groups 
of infinite matrices.) More generally, one discusses all representations, i.e. all 
homomorphisms of a given group into either a symmetric group or a linear 
group. The use of such representations leads to many results in group theory 
which are difficult or, perhaps, impossible to obtain otherwise. For instance, 
Burnside showed by this method that a finite group whose order is divisible 
only by two primes is solvable. It was not until a few years ago that a purely 
group-theoretic proof was found. To my knowledge, there is as yet no 
nonrepresentation-theoretic proof known of the theorem of Frobenius giving 
the structure of the class of finite groups that bear his name. To this day, every 
finite group theorist must have ordinary and modular representation theory in 
his arsenal. As for infinite groups, much less is known about representations 
(although there is a considerable body of knowledge about particular types of 
continuous representations of certain topological groups). Indeed, I know of 
no algorithm for determining whether a given group admits a finite-dimension­
al faithful (i.e. one-to-one) representation by linear transformations on a 
vector space over a skewfield. A recent result of Procesi shows that a periodic 
group which can be embedded in a linear group over a commutative ring must 
be locally finite. Hence, the finitely generated, infinite />-group discovered by 
Golod admits no such representation. On the other hand, L. Auslander and R. 
G. Swan have shown that any polycyclic group admits a faithful representa­
tion by integral matrices. More generally, Merzljakov has shown that the 
holomorph of a polycyclic group has a faithful integral representation (recall 
that the holomorph of a group G is the natural split extension of G by its 
automorphism group). A beautiful theorem of Malcev asserts that if a group 
G is the union of a directed system {Ha} of subgroups, each of which has a 
faithful representation of degree n (fixed) over a field Fa (variable), then there 
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is a field F (obtained as an ultraproduct of the Fa
9s) over which G has a faithful 

representation of degree n. 
This discussion leads to one of the three fundamental types of questions one 

asks about linear groups. Given a subgroup G of GL(V) for some vector space 
V over a field F, one asks what effect the linearity of G has on its group-
theoretic properties (e.g. If G is solvable, can the solvable length of G be 
estimated in terms of the dimension of VI), how G sits in GL(V) (What is its 
normalizer, what are its conjugates . . .?) , and how G acts on V (Is G 
irreducible, i.e. without invariant subspaces, is F a direct sum of irreducible 
G-subspaces . . .?) . 

The early work in the area concentrated on the third question, from the 
viewpoint of representations of finite groups. For example, we have Maschke's 
Theorem, which asserts that if the order of G is relatively prime to the 
characteristic of F, then every G-invariant subspace of V has a G-invariant 
complement, whence F is a direct sum of irreducible G-subspaces. A result 
showing the interplay between the second and third questions asserts that if F 
is an algebraically closed field, then G is irreducible if and only if the F-algebra 
of endomorphisms of V spanned by G is the full F-endomorphism ring of V, 
i.e. G contains (dimFF) linearly independent matrices. 

Let us now leave behind these remarks on representations of finite groups, 
and look at the structure of infinite linear groups. An excellent survey has 
recently been published in these pages, namely John Dixon's review of 
Wehrfritz' Infinite linear groups, which appeared in this Bulletin 80 (1974), 
1071-1074. For the reader's convenience, we will recall some of that material, 
and add a few points not noted there. 

One of the earliest purely abstract results on linear groups goes back to 
1878, when Jordan showed that a finite group G of n X n complex matrices has 
an abelian normal subgroup A whose index in G is bounded by a certain 
function of n only. In 1911, Schur gave a generalization of this to infinite 
periodic groups of complex matrices. The case of finite groups in finite 
characteristic was handled by Brauer and Feit in 1966 (in this case, the bound 
depends not only on n, but also on the Sylow subgroups of G). Results of this 
sort are extremely valuable, since they give some control of the degrees of 
representations of finite simple groups. 

The general subject of periodic linear groups has, in fact, been the source of 
much interest. In the process of proving his generalization of Jordan's 
theorem, Schur showed that any periodic complex linear group G is unitary 
relative to a suitable inner product, that such a group is completely reducible, 
and that if G is finitely generated, then it is finite. A result complementary to 
the last of these was Burnside's theorem of 1905, which shows that a linear 
group G (in characteristic zero) is finite if and only if it is of finite exponent. 
(In finite characteristic, finite exponent implies nilpotent-by-finite.) This 
theorem gave rise to the famous Burnside problem: Is a finitely generated 
group of finite exponent finite? This problem enjoyed much attention for 
about sixty years, and was recently resolved in the negative by Novikov and 
Adjan. 

After these early efforts on periodic linear groups, there was a lengthy 
period during which little was done in the abstract theory of linear groups. 
There were isolated works, such as the studies of Malcev mentioned above on 
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characterizing linear groups, and other papers of Malcev and Zassenhaus 
dealing with solvability. These efforts showed that a locally solvable linear 
group is solvable, with derived length bounded in terms of the degree. In fact, 
the group is necessarily nilpotent-by-abelian-by-finite. The bounds on derived 
length were improved later by Huppert and Dixon. Stronger results are 
available for solvable linear groups over the integers; namely, such groups are 
polycyclic, and the number of infinite cyclic factors in a normal series is 
bounded in terms of the degree. This result is essentially the converse of the 
Auslander-Swan result mentioned earlier. Suprunenko, in the late 1940's, 
began the work on nilpotent and solvable linear groups that has occupied him 
ever since. 

However, most of the work on linear groups from 1910 to 1960 was 
somewhat specialized. There were extensive developments in the representa­
tion theory of finite groups, especially the modular (nonzero characteristic) 
case. Allied to these developments was a discussion of linear groups over finite 
fields as sources of simple groups. The most profound advance in this area 
came in 1955, when Chevalley showed how the classification of simple Lie 
groups could be used to construct finite simple groups. The process was later 
generalized by Steinberg, Hertzig, Ree and many others. Chevalley was also 
instrumental in a revival of interest in the subject of algebraic groups (the 
algebraic geometer's analogue of Lie groups), particularly the linear ones. 
Kolchin developed this theory further, with an eye toward the Picard-Vessiot 
theory of differential equations. The entire subject has blossomed recently in 
connection with the revolution in algebraic geometry; in particular, invariant 
theory has reappeared, with the emphasis now on determining the structure of 
orbit spaces as varieties. There was also some interest in properties of 
particular linear groups, such as the modular group. The emphasis here was 
strictly on applications to number theory and complex function theory. Lie 
theory was widely developed and applied in both mathematics and physics. 

Starting around 1960, there was a rebirth of interest in many aspects of 
abstract linear group theory. Some recent results depend on new methods, 
while others are more in the spirit of hammer-and-tongs computation. To 
exemplify the first trend, we mention the method of finite approximation, first 
used by Malcev in 1940, and then strengthened by Platonov in 1966. The basic 
result asserts essentially that for any element z of a finitely generated linear 
group C, there is a homomorphism ƒ from G to a linear group in finite 
characteristic, with the property that z £ ker/. From this, one may deduce for 
example that no finitely generated infinite linear group is simple, and that 
every finitely generated linear group has nilpotent Frattini subgroup. In 
another direction, there is a remarkable theorem proved by Tits in 1972: any 
linear group which is not solvable-by-locally finite contains a free subgroup on 
two generators. Many corollaries follow from this result. For instance, any 
Noetherian linear group is solvable-by-finite. 

Along more computational lines are the results on solvable and nilpotent 
linear groups. The results here are usually somewhat technical, so we will 
mention just one structural result: If F is an algebraically closed field, then 
GL(n,F) has only finitely many conjugacy classes of maximal solvable 
subgroups; the number of such classes is bounded by a function of n alone. 
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Along more technical lines, one has such things as catalogues of maximal 
solvable linear groups over finite fields. Kindred results are also available for 
nilpotent groups. 

Let us turn to an examination of Suprunenko's book. The first chapter is an 
introduction to permutation groups, and it seems a bit out of place. A few of 
the ideas in it reappear in the linear group theory, and there is a strong analogy 
between permutation groups and linear groups. However, these points are not 
clearly made in the book, and it would probably have been preferable to 
intersperse this material in the body of the text, as needed. The second chapter 
contains gross generalities about the general linear group. It is here that a 
certain unevenness first appears. There is a lengthy and entirely elementary 
discussion of the matrix representation of a linear transformation. One 
presumes that potential readers of an advanced text in algebra have no need 
for such a discussion; but they might profit from a definition of algebraic 
groups, which are mentioned without explanation later on. The chapter also 
contains discussions of Dieudonné determinants and the normal subgroups of 
the full general linear group. 

Chapter HI is perhaps the most useful in the book, at least as a contribution 
to the expository literature. It contains Bass' description of the normal 
subgroups of the stable general linear group over a ring, and the Bass-Lazard-
Serre-Mennicke results on the normal subgroups of the general and special 
linear groups over the integers. The importance of these theorems in algebraic 
^-theory is well understood. 

Other chapters deal with reducibility, imprimitivity, solvable linear groups, 
periodic linear groups and nilpotent linear groups. The material covered here 
is generally done better in Wehrfritz' book. Many of the results mentioned 
earlier are either omitted or mentioned without proof. For example, one 
cannot find proofs of the Auslander-Swan theorem, nor of Tits' theorem in 
Suprunenko's book. The method of finite approximation is not discussed. 

The book has other deficiencies as well. There are no exercises; the 
translation (done by the Israel Program for Scientific Translations) is ade­
quate, but so stilted in places that it becomes hard to read; the typography and 
printing are in the muddy style which we have, unfortunately, come to expect 
in the publications of this Society. The book also contains bits of Russian 
chauvinism; for instance, the notion of wreath product is attributed to 
Kaloujnine, even though it was essentially known well over a century ago. In 
summary, the book is mediocre. The reader or library with a limited budget 
would do much better to purchase a copy of Wehrfritz. 
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Lecture notes on queueing systems, by Brian Conolly, John Wiley & Sons, New 
York, London, Sydney and Toronto, 1975, 176 pp., $9.95. 

The theory of queues is a subarea of the field of stochastic models. It deals 
with the special stochastic processes which arise from the waiting lines made 
up of randomly arriving items (customers) which require processing by one or 


