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1. Pontrjagin’s maximum principle [6] is a basic result in deterministic
optimal control theory. Analogous results have been obtained for the optimal con-
trol of stochastic dynamical systems (see for example the survey by Fleming [3]),
and a new approach to such problems, using the martingale theory of Meyer,
was made in the paper of Davis and Varaiya [2]. In this paper, by observing
that the cost function is a ‘semimartingale speciale’ (see [S]), we are able to
simplify much of [2] and obtain quickly a very general dynamic programming
minimum principle.

2. The dynamics are described by a stochastic differential equation

(2.1) dx, = f(t, x, u)dt + o(t, x)dB,

with initial condition x(0) = x, € R™. Here ¢ € [0, 1], B is an m-dimensional
Brownian motion and x € C, the space of continuous functions from [0, 1] to
R™. Write F, = o{x,: s <1} for the o-field generated on C up to time ¢. The
control values u are chosen from a compact metric space U. We suppose f and
(nonsingular) o satisfy the usual measurability and growth conditions (see [2]).

If an m-dimensional Brownian motion B, on a probability space (2, p) is
given these conditions on ¢ ensure that the equation

t
X, =xg + foo(s, x)dB,

has a unique solution with sample paths in C.

DEFINITION 2.1. The admissible controls Mf over [s, ] C [0, 1] are the
measurable functions u: [s, #] x C— U (U is given the Borel o-field) such
that (i) for each 7, s <7 <¢, u(7, ) is F, measurable, (ii) for each x € C,

u(-, x) is Lebesgue measurable.

Such functions are nonanticipative feedback controls and the conditions
on f ensure that for such a control u(t, x) € M{: E[exp [E{(f*)] F,] =1as.u.
Here f%(1, x) = f(r, x, u(r, x)) and

t
g = f s 1071, X)f (7, x)Y dB, —% 1071, )7, %)% dr.
Writing M = MJ, for each u € M a measure u,, is defined on (C, F,) by
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putting du,,/du = exp 2},(f “). Girsanov’s Theorem ([4], [2]) then states the
following:

THEOREM 2.2. Under the measure u,, the process wi is a Brownian mo-
tion on Q, where dw! = o™ 1(t, x) (dx, — f(t, x)dt.

3. The cost associated with this process is supposed to be of the form

g(x(1)) + f (1) c(t, x, u)dt

where g and ¢ are real and bounded, g(x(1)) is F, measurable and c satisfies
the same conditions as the components of f. Corresponding to a control u € M
the expected total cost is

Ju) =E, [g(x(l‘)) +f, e dt] ,

where ¢} = c(t, x, u(t, x)) and E, denotes expectation with respect to u,. The
optimal control problem is to determine how u € M should be chosen so that
J(u) is minimized. The minimum cost that can be incurred from time ¢ onwards
is independent of the control used up to time ¢ and is

W) = ve/f\A , E, [g(x(l)) +f c;dtn:,].

Here /\ denotes the infimum in the complete ordered lattice L'(£2, u). From
the ‘principle of optimality’ [2, Theorem 3.1] we have:

THEOREM 3.1 (i) u* € M is an optimal control if and only if W(¢) +
foe¥* ds is a martingale on (2, p,, ), (ii) in general, foru € M W(t) + [%cds
is a submartingale on (S, u,,).

4. From the martingale representation results of Clark [1] we can con-
clude that u* € M is optimal if and only if there is a predictable process g¥
such that [} (%% ds < o as.and W(z) + fict"ds =J* + [} g*aw*".

Here J* = W(0) and the last integral is a stochastic integral with respect
to the Brownian motion w*"* on (, My +). In general, for u € M the submartin-
gale W() + [g ¢y ds has a unique Doob-Meyer decomposition as J* + My +
A}, where M} is a martingale on (£2, u,) and A¥ is a predictable increasing
process. However:

t * »*
(e + [ cds =% + [ graws™ + 1 (4 - cu*)yas
t t _ — * *
= J* +fog*o'1(dxs —f; ds) +fo (g*o 1fs“ +c¥) - (g*o 1fs" +cl)ds.

From Theorem 2.2, dw¥ = ‘l(dxs — f;'ds) is a Brownian motion on
(2, u,) and so fg*dw" is (a priori, local—but in fact a) martingale. Also,
JYg*a " + ") — (g*01f*" + c*")ds is a predictable process. Because the
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submartingale W(r) + f§c¥ ds is a ‘semimartingale special’ (see Meyer [S]) its
decomposition into a constant plus a martingale plus a predictable integrable varia-
tion process is unique. Therefore, in the Doob-Meyer decomposition we must have

t t
Mé = [ grawe, A% = [ o + ) - groT I + M%) as
Because A2 is monotonic increasing we have immediately the following principle of
optimality:

THEOREM 4.1. Almost surely (Lebesgue x ) for every (t, x) € [0,1] x C
gro 4" + 4" = inf g*oTlf% + ¥,
ueU

That is, the optimum control is obtained by minimizing the Hamiltonian
g*o 1f* + ¢*. If there is not an optimal control, one can consider a sequence
of controls approximating the infimum and use compactness of (®) as in Davis
and Varaiya [2]. There is a similar result for the partially observable case;
however, the techniques are more complicated and will be reported elsewhere.
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