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1. Pontrjagin's maximum principle [6] is a basic result in deterministic 
optimal control theory. Analogous results have been obtained for the optimal con­
trol of stochastic dynamical systems (see for example the survey by Fleming [3]), 
and a new approach to such problems, using the martingale theory of Meyer, 
was made in the paper of Davis and Varaiya [2]. In this paper, by observing 
that the cost function is a 'semimartingale speciale' (see [5]), we are able to 
simplify much of [2] and obtain quickly a very general dynamic programming 
minimum principle. 

2. The dynamics are described by a stochastic differential equation 

(2.1) dxt =f(t, x, u)dt + o(t, x)dBt 

with initial condition x(0) = xQ € Rm. Here t £ [0, 1], B is an m-dimensional 
Brownian motion and x G C , the space of continuous functions from [0, 1] to 
Rm. Write Ff = o{xs: s <t) for the a-field generated on C up to time t. The 
control values u are chosen from a compact metric space U. We suppose ƒ and 
(nonsingular) o satisfy the usual measurability and growth conditions (see [2] ). 

If an m-dimensional Brownian motion Bt on a probability space (£2, n) is 
given these conditions on o ensure that the equation 

xt = xo + So°(s> x)dBs 

has a unique solution with sample paths in C. 
DEFINITION 2.1. The admissible controls Mf

s over [s, t] C [0, 1] are the 
measurable functions u: [s, t] x C —• U (U is given the Borel a-field) such 
that (i) for each T,S <T <t, U(T, •) is F r measurable, (ii) for each x G C, 
w(-, x) is Lebesgue measurable. 

Such functions are nonanticipative feedback controls and the conditions 
on ƒ ensure that for such a control u(t, x) G M£: ^[exp [££(ƒ")] FJ = 1 a.s. ju. 
Here ƒ "(r, x) = f(r, x, u(j, x)) and 

tXf") = SI {° - 1(r , x)f"(r, x)}'dBT - \$l \O-\T, XY*(T, X)\2 dr. 

Writing M = MQ, for each u E M a measure /xw is defined on (C, Vx) by 

AMS (MOS) subject classifications (1970). Primary 93E20; Secondary 60H10. 
Copyright © 1976, American Mathematical Society 

944 

file:///o-/t


A STOCHASTIC MINIMUM PRINCIPLE 945 

putting d[ijd\i = exp ££(ƒ"). Girsanov's Theorem ([4], [2]) then states the 
following: 

THEOREM 2.2. Under the measure ixu the process w" is a Brownian mo­
tion on 12, where dw" = o~l(t, x)(dxt - fu(t, x)dt. 

3. The cost associated with this process is supposed to be of the form 

&(1))+P0c(t,x,ü)dt 

where g and c are real and bounded, g(x(l)) is Fj measurable and c satisfies 
the same conditions as the components of ƒ. Corresponding to a control u E M 
the expected total cost is 

J(u) = Eu[g(x(l))+j1
0ctdt\, 

where c" = c(t, x, u(t, x)) and Eu denotes expectation with respect to nu. The 
optimal control problem is to determine how u E M should be chosen so that 
J(u) is minimized. The minimum cost that can be incurred from time t onwards 
is independent of the control used up to time t and is 

HO = A , EV r^(i»+f i cv
tdtw}. 

*>e M ^ L J 

Here A denotes the infîmum in the complete ordered lattice Lx(Çl, /*). From 
the 'principle of optimality' [2, Theorem 3.1] we have: 

THEOREM 3.1 (i) w* E M is an optimal control if and only if W(t) + 
f*ocs * ds is a martingale on (12, ixu *), (ii) in general, for u E M W(t) + f*0c"ds 
is a submartingale on (12, (JLU). 

4. From the martingale representation results of Clark [1] we can con­
clude that u* E M is optimal if and only if there is a predictable process g* 
such that ƒ* £*|2 ds<oo a.s. and W(t) + f'0cf ds=J* + ff

0g*dwu*. 
Here /* = W(0) and the last integral is a stochastic integral with respect 

to the Brownian motion wu* on (12, MW*)- In general, f or u E M the submartin­
gale M/) + /o c" ^s has a unique Doob-Meyer decomposition as /* 4- Mf + 
^4", where Mf is a martingale on (12, juw) and >1" is a predictable increasing 
process. However: 

m)+ƒ i < <&=/*+ƒ;, * w * + ƒ i (<* - cf > * 

= ƒ* + J i^a -^dSc , - ƒƒ <b) +f0 (g*a-Vs" + < ) " <g*o-lff + cf)ds. 

From Theorem 2.2, dw" = o"1(dxs - f"ds) is a Brownian motion on 
(12, juM) and so fg*dwu is (a priori, local—but in fact a) martingale. Also, 
ff(fg*o~lfu + cu) - (g*o~xfu* + cu*)ds is a predictable process. Because the 
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submartingale W(i) + ffâ ds is a 'semimartingale special' (see Meyer [5] ) its 
decomposition into a constant plus a martingale plus a predictable integrable varia­
tion process is unique. Therefore, in the Doob-Meyer decomposition we must have 

M» = f0g*dwu, A» = Jofe**-"1/" + cu) - (g*(Tlfu* + cu*)ds. 

Because A° is monotonie increasing we have immediately the following principle of 

optimality: 

THEOREM 4.1. Almost surely (Lebesgue x pt) for every (f, x) € [0,1] x C 

^ a " 1 / " * +cM* = inf g*o~lfu + cu. 
u(EU 

That is, the optimum control is obtained by minimizing the Hamiltonian 
g*cT1fu + cu. If there is not an optimal control, one can consider a sequence 
of controls approximating the infimum and use compactness of V(<f?) as in Davis 
and Varaiya [2]. There is a similar result for the partially observable case; 
however, the techniques are more complicated and will be reported elsewhere. 
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