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1. Relative homology for pairs. Homology and cohomology for a pair of 
groups G D S (cf. [6] ) can be extended to pairs (G, S) consisting of a group G 
and a family of subgroups S = {St}, as follows: If S = 0 one takes the usual 
(absolute) groups of G. If S =£ 0, let A be the kernel of the G-homomorphism 
(&.Z(GlS?) ->• Z given by augmentations;^! being a G-module, we put 
Z/*(G, S; A) = fl*-1^; Hom(A, ,4)) and Hk(G, S; A) = Hk_t(G; A® A) where 
G acts diagonally in Hom(A, A) and A ® A. One has exact sequences 

>H*(G, S;A)->Hk(G;A) - * II #*(£.; ,4) ~ ^ #*+ 1 (C SM) - * • • • , 

^ j t + i ^ « S M ) " ^ ®Hk(StA)^Hk(G;A)-+Hk(G, S;A)-+--. 

2. Poincare' duality pairs. The product structure for Ext* and Tor* (cf. [4, 
Chapter XI]) yields, for a G Hn(Gf S\ B), cap-products a n - : Hk(G; A) —• 
Hn-k(G> S;B9A) and Hk(G, 5; A) - » ^n_k(G; B ® A), with diagonal 
G-action in B ® -4. 

(1) DEFINITION. (G, 5) is a Poincaré duality pair of dimension n (in 
short: PZ^-pair) if there is a G-module structure Z on Z and an element e G 
Hn(G, S; Z) such that e O -: #*(G; ,4) —» H

n_k(G, S\ A) is an isomorphism 
for all A and &. 

Z is called the "dualizing" module. A stands for Z ® A. If *S is empty, 
(1) coincides with the usual definition (cf. [1]) of a Poincaré duality group of 
dimension n (in short: PEP -group). 

(2) THEOREM. (G, S) is a PDn-pair with dualizing module Z if and only 
if G is a duality group (cf [3] ) with dualizing module A. 

Thus various results and criteria for duality groups can be applied to PDn-
pairs; note that A is Z-free. We give here, and in §3, a list of consequences of 
(1): Definition (1) is equivalent with en-: Hk(G, S; A) —> ^n^k(G; A) being 
an isomorphism for all A and k. The module Z and the dimension n are deter­
mined by the pair (G, S). The pair is called orientable if G acts trivially on Z, 
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otherwise nonorientable. The group Hn(G, S; Z) is infinite cyclic generated by 
e; choice of a generator e is called an orientation (even in the nonorientable 
case!). The family S is finite; all Si in S are PI/1"1 -groups; an orientation of 
(G, S) determines an orientation for each Sf. We call S (with these orientations) 
the boundary of the (oriented) PZ^-pair (G, S). For an oriented group the minus 
sign denotes change of orientation. 

3. Extensions and amalgams. Using (2) and criteria for duality one proves 

(3) THEOREM. Let N >+G - ^ Q be a short exact sequence of groups, 
S a family of subgroups Sf of G each containing N, and K = it(S). IfN is a 
PDn-group and (Q, K) is a PIT1-pair, then (G, S) is a PET +m-pair. 

There is a converse of this in the sense of [2, Theorem A] ; and there is 

also a "finite extension Theorem" generalizing the corresponding result in [1] 
and [5]. 

(4) THEOREM, (a) If the subgroups U of G and V of H are isomorphic, 
and if (G, S U U) and (H, R U V) are PDn-pairs men so is (G * j , #, S U i?).1 

(b) Let U, V be isomorphic subgroups of G, with o: U -=-> V. If 
(G, S U UU V) is a PLf-pair, then so is (G * v 0> S), where G * v a is the 
HNN-extension for o. 

Repeated application of (4) yields, for the "fundamental group G(($) of 
a graph of groups" in the sense of Serre [7] : 

(5) THEOREM. Let (Gv, Sv) be a finite family of PDn-pairs, and <$ a 
graph of groups whose vertices V(i$) are the groups Gv and whose edges E(i&) 
some pairs of isomorphic subgroups Siv\ Sf', e Uv S^v\ Further, let S be the 
family of those SW not occurring in E({$). Then (G(($), S) is a PDn-pair. 

4. Oriented cobordism. Here all PD-groups and -pairs are assumed orient-
able and oriented. 

(6) DEFINITION. TWO finite families S, T of PDn~~l -groups are cobordant 

if there exist finitely many PLP -pairs such that S U (- T) is the disjoint union 
of their boundaries. 

This is an equivalence relation: it is easily seen that it is reflexive and 
symmetric; transitivity is proved by means of (5). We write (S) for the class of 
S, and Sln for the set of all classes of families S of PDn -groups. With addition 
of classes defined by <5> + (T) = (S U T), £ln is an Abelian group (0 = 0, 
- <S> = ( - iS>); it is generated by the classes (S> of single groups. Sl0 = Z, gener­
ated by the class <1> of the trivial group. The direct product of groups defines 
a graded (skew-) commutative multiplication £ln x Slm —• Sln+m turning the 
graded group SI* into a graded ring with unit. 

^ o r families S, T, the union S U T is taken with respect to the disjoint union of 
the indexing sets. 
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The signature of an orientable PU1 -group is defined as for manifolds (for 
dimensions 4k9 otherwise 0). One can show that it is 0 for (S) = 0, and that it 
defines a unitary ring homomorphism S2* —• Z. From known examples of 
PD4 -groups with signature =£ 0 (even with arbitrarily large signature) it follows 
that fi* does not consist of fi0 only. 

Oriented cobordism can, of course, also be defined by admitting orientable 
and nonorientable PDn-groups and -pairs. Using (4)(a) above, one proves that 
the parity of the Euler characteristic is an invariant. Nonorientiable higher genus 
surfaces with odd Euler characteristic thus provide examples of PD2-groups S 
with (S) =£ 0. 

5. Nonoriented cobordism. If orientable and nonorientable PDn-groups 
and -pairs are admitted and all orientations disregarded, the nonoriented co­
bordism ring 9Î* is obtained (all elements are of order 2). One then can prove 
that for (S) = 0 all Stiefel-Whitney numbers of S are 0 (mod 2 characteristic 
classes for PW -groups and -pairs can be defined algebraically via the Steenrod 
squares and the Wu formula). 
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