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A number of authors have attempted to apply Nonstandard Analysis to 
Probability Theory. Unfortunately, the nonstandard reformulations heretofore 
proposed have retained most of the essential difficulties inherent in the standard 
formulations. As a result, the application of nonstandard techniques has met 
with limited success. Hersh [4] produced a nonstandard analogue of Wiener mea­
sure. His "measure", however, is not countably additive; moreover, it is supported 
on a countable subset of C([0, 1]). Using a different approach, Hersh and Green­
wood [5] established some interesting results about nonstandard increments in 
Brownian motion and other stochastic processes, but failed to produce a success­
ful formulation of the Itô integral or a proof of Itô's Lemma. 

In a recent paper [9], Peter A. Loeb introduced a new technique for form­
ulating probabilistic problems in nonstandard terms. He showed that any non­
standard measure space within a denumerably comprehensive enlargement could 
be converted into a standard measure space which inherited important structural 
properties from the nonstandard space. Loeb gave applications to coin tossing 
and the Poisson process. The present paper outlines how Brownian motion and 
Itô integration can be successfully treated using Loeb's technique; the details 
will be presented in a subsequent article. 

Let 7? be an infinite natural number, in the sense of nonstandard analysis. 
Define an internal measure space (£2, 21, v) by £2 = {-1 , l}7*, 31 = {internal sub­
sets of 12}, v(A) = \A \l2n for A G 21. Thus, v is counting measure. Loeb's re­
sults show that the standard part of v is necessarily countably additive; hence, by 
the Carathéodory Extension Theorem, it has a unique extension to the a-field 
generated by 21. We shall call the completion of this extension the Loeb space 
corresponding to (12, 21, v), and denote it by (12,1(21), L(y)). 

Define a random walk x- *[0, 1] x 12 —> *R by 

Xfcco)- Z ^ + ( i , r - [ l , f ] ) î i 2 t t l ± l 
k<[nt] \n Vf? 

and define 0: [0, 1] x 12 —• R by 0(f, co) = °x(t, co). 
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THEOREM, (i) ($ is a normalized Brownian motion; hence Brownian mo­

tion exists. 

(ii) For L(v)-almost ail co, x( ' > co) is near-standard in *C([0, 1]) and 

j3( • , co) is continuous; hence Wiener measure exists. 

The proof of this theorem is quite easy compared to the standard proofs 
of existence and path continuity of Brownian motion. Moreover, the intimate 
link between the Brownian motion 0 and the random walk x gives rise to major 
simplifications in the theory of Itô integration. 

Let ƒ : [0, 1 ] x £2 —» R be a function Itô integrable (in the standard sense) 
with respect to 0. We can lift ƒ to an internal step function g: *[0, 1] x £2 —* 
*R. Since the random walk x is of *-bounded variation, we can define the *-
Stieltjes integral of g with respect to x-

THEOREM. For t G [0, 1], J* /(r , co) dflr, co) = °jj g(r, co) dX(r, co). 
For Hyyalmost all co, the "path" JQ g(r, co) dx(r, co), v/ewed AS a function of 
t G *[0, 1], is near-standard in *C([0, 1] ); hence, the "path" Jg f(r, co)dj3(r, co), 
viewed as a function of t E [0, 1], is continuous. 

Using this theorem, we can give an all but trivial proof of Itô's Lemma. 
The essence of the proof is illustrated by the following argument. If we consider 
the nonstandard time interval [f/rj, (i + 1)/T?] , with i G *N, we have dt = l/i? and 
(dx)2 = (± 1/\A?)2 = 1/r? = cfr. Hence, the heuristic standard statement (dp)2 = 

dt is realized as an exact statement (dx)2 = dt in the nonstandard theory. 
The theorem also implies immediately that 

(I 0(r, co) rfflr, co) = °]T x(*A?, ")wfc+ iV*?-
A:=0 

A simple formal manipulation of sums reduces this to °(1Â(x2(t, co) - t)); hence 
we obtain an easy proof that ƒ<£ j3(r, co) dj3(r, co) = ^(j32(r, co) - 0-
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