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Introduction. Let Y be a connected, noncompact Riemann surface, 
and let A be the ring of all analytic functions on Y. It is known that the 
ideal theory of the ring A is strikingly similar to the ideal theory of the 
ring C(X) of all real valued continuous functions on a completely regular 
topological space X. We show that locally much of the ideal theory of A 
can be recovered from the ideal theory of C(S) for a particular space 2. 
This will provide a device for transforming results about the ideal theory 
of C(S) into results about the ideal theory of A. 

1. Let M be a free maximal ideal of A, and let P* denote the ideal 
Hweiv^P- P* is the largest prime ideal properly contained in M. Let 
AP* be the localization of A at P*. We show in this section that the ideal 
theory of AP* is essentially the same as the ideal theory of C(S)/P for a 
suitably chosen space 2 and a suitably chosen minimal prime ideal P of 
C(2). Let t e M-—{0}. Z(t), the set of zeros of t, is a countably infinite 
closed discrete subset of Y. Denote Z(t) by N; we think of Z(t) as a copy 
of the space N of positive integers. The collection 

l*={Z(f)nN:feM} 

is a free ultrafilter on N and hence corresponds to a point a of J3N—N. 
Let 2 be the space NU{a}, where 2 has the relative topology of /?JV, and 
let P be the minimal prime ideal of C(S) given by 

P = { /eC(2) :Z( / )n iVeM. 

The ideals of AP* (respectively C(2)/P) under multiplication of ideals 
and inclusion form an ordered semigroup J(Apl) (respectively 
y(C(E)/p)). 

PROPOSITION 1. There exists an order preserving isomorphism of 
J{Api) onto «/(C(S)/P) that maps the set of principal ideals of AP* onto 
the set of principal ideals of C(S)/P. 
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OUTLINE OF PROOF. The ring AP* is a valuation ring [1], We describe 
its value group. Let Z be the integers considered as an ordered additive 
group. Form the ultrapower ZNj[x [2]. Identify elements of ZNl/i that 
differ by a standard integer. The quotient group thus obtained is the value 
group of Ap*. C(2)/JP is also a valuation ring [4, Theorem 14.24]. The 
value group of C(S)/P is a quotient GjH of two multiplicative groups. G 
is the multiplicative group of the field RN//JL9 where R denotes the reals. H 
is the group of noninfinitesimal bounded elements of G. This value 
group is ordered as follows: [f/ju]^0 if, and only if, fj[x is bounded. 

The statement of Proposition 1 is equivalent to the statement that there 
exists an order preserving isomorphism of these two value groups. Now 
one can verify that the map given by 

lfl/*y+[glf*]> where £(/f)=exp(-ƒ(/!)), 

is an order preserving isomorphism of the first value group onto the 
second. 

From Proposition 1 it follows that any proposition of ideal theory that 
involves only multiplication of ideals, inclusion, and principalness is true 
for C(S)/P if, and only if, it is true for AP*. 

If M1 and M2 are distinct free maximal ideals of A, it is natural to ask 
to what degree the associated rings AP* and AP* differ. From a deep 
result of Iss'sa [6] it follows that these rings need not be isomorphic (see 
[8, p. 299]). If we assume the continuum hypothesis, however, all ultra-
powers of Z using countable index set and free ultrafilters are isomorphic 
[7]. It follows that AP* and Ap\ have the same value group and therefore 
the same ideal theory in the sense of Proposition 1. 

2. In this section we consider the restricted ideals of A that are con­
tained in P*9 i.e. the ideals of the form InA, where I is an ideal of AP*. 
We call such ideals P*-restricted ideals. This class of ideals properly 
includes all nonmaximal prime ideals of A that are contained in M and 
all the primary ideals of A that are contained in M, except for the powers 
Mn of M. We show that the P*-restricted ideals of A behave essentially 
like the ideals of AP*9 and hence by Proposition 1 essentially like the 
ideals of C(2)/P. 

DEFINITIONS. (1) Let I be an ideal of A. Set 

ƒ* = {feA:fh e I for some he A - P*}. 

(2) If J=(g)% for some g e A, we say that / is P*-principal. 
Using the generalized Weierstrass product theorem [3] one can show 

that the set of P*-restricted ideals is closed under multiplication and 
/*^* = (^)* f° r a ny ideals I and / of A. Therefore we have 
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PROPOSITION 2. The map Iv-*I nA is an order preserving isomorphism of 
J{AP^) onto the multiplicative semigroup of P*-restricted ideals of A. 
This isomorphism carries the set of principal ideals of AP* onto the set of 
P*-principal ideals of A. 

Let J>(A) be the multiplicative semigroup of ideals of A, Note that if 
I e / ( ^ ) and J is a P*-restricted ideal, then / c : / if, and only if, 1% c / . 
Combining this observation with Propositions 1 and 2 we have 

THEOREM. There is a map <j> from J (A) onto </(C(2)/P) with the 
following properties : 

(1) (j) is a semigroup homomorphism. 
(2) The restriction of § to the P*-restricted ideals of A is a surjective 

order preserving isomorphism. 
(3) (j> takes principal (and P*-principal) ideals of A to principal ideals of 

C(S)/P. 
(4) If I e J'(A) and J is a P*-restricted ideal, then / <=/ if and only if, 

The theorem gives rise to a useful transfer principle, which we state 
semiformally. We will need some terminology. Let fl9 / 2 , • • •; Il9 I2, • • •; 
Ji> J%> ' ' ' '•> "i> w2, • • • ^

e first order variable letters. The n{ will range 
over the natural numbers. Any expression of the form (f), Ii9 or Ji will 
be a term. If S, T are terms, let ST and Sn* also be terms. An atomic first-
order formula will be an expression of the form S^T, where S, T are 
terms and T contains no occurrences of any (f) or Jt. Now let Sf be a 
sentence of higher-order logic (see e.g. [10] for precise definitions) whose 
first-order components are built up from our atomic first-order formulas. 
We have then 

TRANSFER PRINCIPLE. Sf is true in A, where the f range over elements 
of A, the J{ range over ideals of A, and the It range over P*-restricted ideals 
of A, if and only if 6^ is true in C(S)/P, where the f range over elements 
of C(L)/P, and the Jt and It range over ideals of C(S)/P. 

3. In this section we present some results of ideal theory that hold in 
C(Si)/P and hence by the transfer principle (or the theorem) hold auto­
matically for the P*-restricted ideals of A. These results (except for 
possibly Examples 5(b) and 5(c)) are known for both rings but have been 
proved by techniques which appear on the surface to be quite different. 

EXAMPLE 1. 7 is prime if, and only if, I=P. This sentence can be written 
as follows: 

^ :V /{7 c / 2 A / 2 c ƒ<-> VfVg[(f)(g) c ƒ-> ((ƒ) <= ƒ y (g) c /)]}. 
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This sentence clearly has the form described in the statement of the 
transfer principle. (It is actually a sentence of first-order logic.) SP is true 
in C(X)/P for all X and all prime ideals P of C(X) [11, Corollary 2.2]. 
Hence for any P*, £f is true for the P*-restricted ideals of A. This is 
proved directly in [12]. 

For the remaining examples we omit the verification that the sentences 
can be expressed in the form required by the transfer principle. 

EXAMPLE 2. I is primary if, and only if, either 

/ = / . / i / 2 or I^I.I1'*. 

This is true in C(S)/P by [11, Corollary 2.10]. It is therefore true for the 
P*-restricted ideals of A (proved directly in [12]). 

EXAMPLE 3. Every nonprime primary ideal is either an upper or a 
lower primary ideal. This is proved for C{X)jP for arbitrary X in [9]. 
Note that the transfer principle enables one to avoid some fairly complex 
machinery necessary to prove this result for the P*-restricted ideals of A 
(see [12, Theorem 2.2]). 

EXAMPLE 4. The set of all upper prime ideals properly between two 
given ones is an 7?rset. For C{X)jP this is [4, Theorem 14.9(b)]. The result 
for the P*-restricted ideals of A is essentially contained in [5]. 

EXAMPLE 5. (a) No nonzero prime ideal is finitely generated, (b) Every 
upper prime ideal is generated by a countable family of P*-principal ideals, 
(c) No lower prime ideal is countably generated. For C(X)[P see [4, 14C]. 
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