SMOOTH S1 ACTIONS AND BILINEAR FORMS1

BY TED PETRIE

Communicated by Glen Bredon, March 12, 1973

Let S^1 denote the multiplicative group of complex numbers of norm 1. Let X denote a smooth S^1 manifold, i.e., X consists of an underlying smooth manifold denoted by |X| together with a smooth action of S^1 . The equivariant complex K theory of X is $K_{S^1}^*(X) = K_{S^1}^0(X) \oplus K_{S^1}^1(X)$. It is a module over $R(S^1)$ the complex representation ring of S^1 . This is the ring $Z[t, t^{-1}]$. For our purposes there are two important sets of prime ideals in $Z[t, t^{-1}]$:

- (i) the set P_1 consisting of the principal ideals of the form $\mathfrak{p} = (\Phi_{pr}(t))$ generated by the cyclotomic polynomial $\Phi_{pr}(t)$ associated to the prime power p^r , i.e., $P_1 = \{(\Phi_{pr}(t)) \mid \forall \text{ primes } p \text{ and integers } r\}$.
 - (ii) the set $P = \{(\Phi_m(t)) \mid \forall \text{ positive integers } m\}$.

The localized ring $R(S^1)_P$ is denoted by R. It is the subring of the field of fractions of $R(S^1)$ consisting of fractions a/b with b prime to all the ideals of P. Let $K_{S^1}^*(X)_P = K_{S^1}^*(X) \otimes_{R(S^1)} R$. The Atiyah-Singer index homomorphism [1] $\mathrm{Id}_{S^1}^*: K_{S^1}^0(TX) \to R(S^1)$ induces a homomorphism

$$\operatorname{Id}^X: K^0_{\operatorname{Sl}}(TX)_{\operatorname{P}} \to R.$$

Here TX is the tangent bundle of X and |X| is compact without boundary. Suppose that |X| is a spin^c manifold. Then there is an isomorphism

$$K_{S^1}^*(X)_P \xrightarrow{\Delta^X} K_{S^1}^*(TX)_P$$

of R modules [6] and we can define an R valued bilinear form $\langle \rangle_X$ on $K_{S^1}(X)_p$ by

$$\langle a, b \rangle_X = \mathrm{Id}^X(\Delta^X(a) \cdot b).$$

Theorem 1 [2]. The bilinear form $\langle \rangle_X$ is nonsingular, i.e., the associated homomorphism

$$K_{S^1}^*(X)_P \xrightarrow{\Phi^X} \operatorname{Hom}_R(K_{S^1}^*(X)_P, R)$$

is surjective where $\Phi^{X}(a)[b] = \langle a, b \rangle_{X}$.

This result was conjectured in a similar form in [6].

A useful consequence of Theorem 1 is this: Set $K_{S^1}^*(X) = K_{S^1}^*(X)_P/T_X$ where T_X denotes the R torsion subgroup of $K_{S^1}^*(X)_P$. The bilinear form

AMS (MOS) subject classifications (1970). Primary 57E15, 57D99.

¹ Partially supported by N.S.F. grant.

 $\langle \ \rangle_X$ defines a bilinear form again denoted by $\langle \ \rangle_X$ on $\tilde{K}_{S^1}^*(X)$.

THEOREM 1'. The associated homomorphism $\tilde{K}_{S^1}^*(X) \to \operatorname{Hom}_R(\tilde{K}_{S^1}^*(X), R)$ is an isomorphism.

Before mentioning applications, let me discuss the problems to which we wish to apply this result.

- (i) If S^1 acts effectively on M and if N is homotopy equivalent to M, does S^1 act effectively on N?
- (ii) If S^1 acts effectively on a smooth manifold, what are the relations among the representations of S^1 on the tangent spaces at the points fixed by S^1 and the global invariants of the manifold, e.g., its Pontryagin classes and its cohomology?

Towards answering these questions, we introduce the set $S_{S^1}(Y)$ associated to the closed S^1 manifold Y. It consists of equivalence classes of pairs (X, f) where $f: X \to Y$ is an equivariant map such that

- (1) $|f|:|X| \to |Y|$ is a homotopy equivalence;
- (2) $|f^{S^1}|:|X^{S^1}| \to |Y^{S^1}|$ is a homotopy equivalence.

Two pairs (X_i, f_i) , i = 0, 1, are equivalent if there is an S^1 homotopy equivalence $\phi: X_0 \to X_1$ such that $f_1 \phi$ is S^1 homotopic to f_0 . The equivalence class of (X, f) is denoted by [X, f].

Suppose that |Y| is a spin^c manifold. Then if $[X, f] \in S_{S^1}(Y)$, |X| is a spin^c manifold and we can define an induction homomorphism [3]

$$f_*: \tilde{K}_{S^1}^*(X) \to \tilde{K}_{S^1}^*(Y)$$

by $\langle f_*(x), y \rangle_Y = \langle x, f^*(y) \rangle_X$. If 1_X denotes the identity of the algebra $\tilde{K}_{S^1}^*(X)$, then the element $f_*(1_X)$ is a very important geometric invariant of the situation. It relates the algebra $\tilde{K}_{S^1}^*(Y)$ with the differential structures on |X| and |Y| and with the representations of S^1 on the normal bundles to the fixed sets $X^{S^1} \subset X$ and $Y^{S^1} \subset Y$. In order to illustrate these relations in a simple manner, we restrict ourselves to the case where Y^{S^1} consists of isolated points. In addition, we want to assume that the odd dimensional rational cohomology of |Y| vanishes. In this situation the natural homomorphism $K_{S^1}^*(Y) \to K^*(|Y|) \to K^*(|Y|)$ induces a homomorphism $\tilde{K}_{S^1}^*(Y) \to K^*(|Y|) \otimes Q$ and the composition with the Chern character isomorphism ch to $H^*(|Y|, Q)$ is denoted by ϕ_Y . If $p \in Y^{S^1}$, the representation of S^1 on the normal bundle of Y^{S^1} at p is denoted by NY_p . We may assume it to be a complex representation of S^1 .

We remark that if $[X, f] \in S_{S^1}(Y)$, $f^{S^1}: X^{S^1} \to Y^{S^1}$ is a homeomorphism when Y^{S^1} consists of isolated points. Let $g:|Y| \to |X|$ be a homotopy inverse to |f|. We can now illustrate the geometric importance of $f_*(1_X)$ and its relation with the algebra $\tilde{K}_{S^1}^*(Y)$.

THEOREM 2 [5]. Let $[X, f] \in S_{S^1}(Y)$. Then $\phi_Y(f_*(1_X)) = g^*A(|X|)/A(|Y|)$ where A(|X|) denotes the cohomology class associated to the tangent bundle of |X| by the power series $(x/2)/\sinh x/2$.

THEOREM 3 [5]. Let $q \in X^{S^1}$. The restriction of $f_*(1_X)$ to $p \in Y^{S^1}$ is denoted by

$$\begin{split} f_*(1_X)_p &\in K_{S^1}^*(p) = R \quad and \quad f_*(1_X)_{f(q)} = \pm t^{N_q} \cdot \lambda_{-1}(NY_{f(q)})/\lambda_{-1}(NX_q) \in R. \\ Here \ N_q \ is \ an \ integer \ and \ e.g., \ \lambda_{-1}(NX_q) = \sum (-1)^i \lambda^i(NX_q) \in R. \end{split}$$

THEOREM 4 [5]. $f_*(1_X)_{f(q)}$ is a unit of R_{P_1} . (Compare [6, p. 139, Theorem 2.6].)

THEOREM 5 [5]. If $f^*: \tilde{K}_{S^1}^*(Y) \to \tilde{K}_{S^1}^*(X)$ is an isomorphism, $f_*(1_X)$ is a unit of $\tilde{K}_{S^1}^*(Y)$ and $f_*(1_X)_q = \pm 1 \in R$ for all $q \in X^{S^1}$ and $\phi_Y f_*(1_X) = 1 \in H^*(|Y|, Q)$.

Briefly, Theorem 2 relates $f_*(1_X)$ and Pontryagin classes, Theorem 3 relates $f_*(1_X)$ and normal representations and Theorems 4 and 5 relate $f_*(1_X)$ with the algebra $\tilde{K}_{S^1}^*(Y)$. We remark that Theorem 5 together with Theorem 2 actually implies that if f is an S^1 homotopy equivalence, |f| preserves Pontryagin classes.

Here is an interesting example to illustrate the ideas. Let p,q be relatively prime integers. Choose integers a, b such that -ap + bq = 1. Let $N = t^p + t^q$ and $M = t^1 + t^{pq}$ denote the indicated complex 2 dimensional representations of S^1 . The one point compactifications N^+ and M^+ are smooth S^1 manifolds with $|N^+| = |M^+| = S^4$. The map $\Phi: N \to M$ defined by $\Phi(z_0, z_1) = (\bar{z}_0^a z_1^b, z_0^q + z_1^p)$ is proper, hence defines a map $\Phi^+: N^+ \to M^+$ and $[N^+, \Phi^+] \in S_{S^1}(M^+)$. The invariant $(\Phi^+)_*(1_{N^+})$ is

$$(1\ -\ t)(1\ -\ t^{pq})/(1\ -\ t^p)(1\ -\ t^q)\cdot 1_{M^+}\in K_{S^1}^*(M^+).$$

For deeper applications of ideas, see [4] and [5].

Theorems 3 and 4 combine to give a comparison of the representations NX_q and $NY_{f(q)}$ as follows: Let F denote the field of fractions of $Z[t, t^{-1}]$. For each prime ideal $\mathfrak p$ of P let $\| \ \|_{\mathfrak p}$ denote the valuation defined by $\mathfrak p$. We interpret this as a norm on F. Then

Theorem 6. If
$$[X, f] \in S_{S^1}(Y)$$
 and $q \in X^{S^1}$,
$$\|\lambda_{-1}(NX_{f(q)})/\lambda_{-1}(NX_q)\|_{\mathfrak{p}} = 1 \quad \textit{for all } \mathfrak{p} \in P_1.$$

REMARK. If this is true for all $\mathfrak{p} \in P$, then the real representations of $NY_{f(q)}$ and NX_q are equal.

REFERENCES

- 1. M. F. Atiyah and I. M. Singer, *The index of elliptic operators*. I, III, Ann. of Math. (2) **87** (1968), 484–530, 564–604. MR **38** #5243; **38** #5245.
 - **2.** T. Petrie, Smooth S^1 actions (to appear).
- 3. ——, Induction in equivariant K theory and geometric applications, Proc. Conference on Algebraic K Theory (to appear).
- **4.** ———, Real algebraic actions on complex projective spaces—a survey, Ann. l'Inst. Fourier (to appear).
- 5. , A setting for smooth S^1 actions with applications to real algebraic actions on CP^{4n-1} (to appear).
- **6.** ———, Smooth S¹ actions on homotopy complex projective spaces and related topics, Bull. Amer Math. Soc. **78** (1972), 105–153.

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Current address (September 1, 1973 to May 1, 1974): Math Institute, University of Bonn, 53 Bonn, West Germany

Current address (May 1, 1974 to September 1, 1974): Math Institute, Oxford University, Oxford, England