## THE VITALI-HAHN-SAKS AND NIKODYM THEOREMS FOR ADDITIVE FUNCTIONS. II

## BY R. B. DARST

Communicated by Robert Bartle, January 10, 1973

ABSTRACT. In this note appropriate versions of the Vitali-Hahn-Saks and Nikodym theorems are established for s-bounded additive set functions with values in an abelian topological group G.

Although we shall use + and 0 to denote addition and identity in both G and R, the real numbers, no confusion should arise. Thus we denote by  $\mathscr U$  the set of symmetric neighborhoods of 0 in G, and for  $U \in \mathscr U$  we set 1U = U and  $(n + 1)U = \{x + y : x \in nU, y \in U\}$ ,  $n \in N$ , the set of positive integers.

A subset H of G is said to be bounded if for each  $U \in \mathcal{U}$  there exists  $n \in N$  such that  $H \subset nU$ .

We suppose that finite subsets of G are bounded.

Let  $\Omega$  be a nonempty set and let  $\mathscr S$  be a sigma algebra of subsets of  $\Omega$ . A function  $\mu$  from  $\mathscr S$  to G is said to be additive if  $\mu(\phi) = 0$  and  $\mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F), E, F \in \mathscr S$ .

An additive function  $\mu$  is said to be s-bounded (cf. [1],[5]) if  $\lim_{n}\mu(E_n) = 0$  (i.e., for each  $U \in \mathcal{U}$  there is  $m \in N$  such that  $\mu(E_n) \in U$ , n > m) for each sequence  $\{E_n\}$  of pairwise disjoint elements of  $\mathscr{S}$ .

Notice that if  $\mu$  is s-bounded,  $U \in \mathcal{U}$ , and  $\{E_n\}$  is a sequence of pairwise disjoint elements of  $\mathcal{S}$ , then there exists  $n \in N$  such that if M is a finite subset of  $N^n = \{k \in N : k \ge n\}$  then  $(\sum_{i \in M} \mu(E_i)) \in U$ .

An additive function  $\mu$  is said to be bounded if  $\mu(\mathcal{S}) = \{\mu(E) : E \in \mathcal{S}\}$  is a bounded subset of G.

For the case when  $\mu$  is sigma-additive, versions of our results can be found in [4]; for the case where  $\mu$  is merely additive and G = R, one can refer to [2].

Our version of Nikodym's theorem, a striking improvement of the principle of uniform boundedness, follows.

THEOREM 1. Suppose that T is a set of s-bounded functions such that for each  $E \in \mathcal{S}$  the set  $T(E) = \{\mu(E): \mu \in T\}$  is bounded, then  $T(\mathcal{S}) = \{\mu(E): \mu \in T, E \in \mathcal{S}\}$  is bounded.

AMS (MOS) subject classifications (1970). Primary 28-00, 28A45, 46G99. Key words and phrases. Vitali-Hahn-Saks theorem, Nikodym theorem, s-bounded, additive set function, abelian group.

PROOF. It suffices to consider the case where T is a countable set  $\{\mu_k\}$ . Suppose on the contrary that  $T(\mathcal{S})$  is not bounded; then let  $U \in \mathcal{U}$  such that  $T(\mathcal{S}) \not= nU$ ,  $n \in N$ . Since  $T(\Omega)$  is bounded, there is  $q_0 \in N$  such that  $T(\Omega) \subset q_0U$ . Notice that if  $\mu_{k_1}(E) \notin (2q_0 + p_1)U$ , then  $\mu_{k_1}(\Omega - E) \notin (q_0 + p_1)U$ ; choose such  $k_1$  for  $p_1 = 2$ . At least one of the restrictions to E and  $(\Omega - E)$  behaves like the original problem. Thus, we set  $\Omega_1 = E$ ,  $\mathcal{S}_1 = \{E \cap \Omega_1 : E \in \mathcal{S}\}$ ,  $T_1 = \{\mu | \Omega_1 : \mu \in T\}$ , and  $F_1 = \Omega - E$ , if  $T_1(\mathcal{S}_1)$  is unbounded; otherwise,  $\Omega_1 = \Omega - E$ ,  $\cdots$ . Iterating this process and relabeling if necessary  $(k_j \to j)$  we obtain a sequence  $\{F_j\}$  of pairwise disjoint elements of  $\mathcal{S}$  such that  $\mu_k(F_k) \in \{q_kU - [(\sum_{j < k} q_j) + k + 1]U\}$ ,  $k \in N$ . Partitioning  $\{F_k\}_{k \geq 2}$  into a sequence of subsequences and using the fact that  $\mu_1$  is s-bounded yields a subsequence  $\{F_{n_i}\}_{i \geq 1}$  such that  $\mu_1(\mathcal{S} \cap (\bigcup_{i \geq 1} F_{n_i})) \subset U$ . Repeating this process gives us a subsequence  $k_1 = 1, k_2 = n_1, \cdots$  such that  $\mu_{k_j}(\mathcal{S} \cap (\bigcup_{i > j} F_{k_i})) \subset U, j \in N$ . Set  $G = \bigcup_i F_{k_i}$  and notice that the contradiction  $\mu_{k_i}(G) \notin k_iU$ ,  $i \in N$ , follows. Thus Theorem 1 is established.

When T is a one element set, Theorem 1 specializes as follows.

COROLLARY 1. An s-bounded function is bounded.

Theorem 1 also permits us to assert that if  $\mu_k(E)$  is Cauchy,  $E \in \mathcal{S}$ , and G is complete, then the additive function  $\mu$  defined by  $\mu(E) = \lim \mu_k(E)$  is bounded; a corollary of the following Vitali-Hahn-Saks theorem asserts that  $\mu$  is s-bounded.

A sequence  $\{\mu_k\}$  of s-bounded functions is said to be uniformly s-bounded (or uniformly additive—cf. [3]) if for each  $U \in \mathcal{U}$  and each sequence  $\{E_i\}$  of pairwise disjoint elements of  $\mathcal{S}$ , there exists  $m \in N$  such that  $\sum_{i \in M} \mu_k(E_i) \in U$  whenever  $k \in N$  and M is a finite subset of  $N^m$ .

THEOREM 2. Suppose that  $\{\mu_k\}$  is a sequence of s-bounded functions such that  $\{\mu_k(E)\}$  is Cauchy for each  $E \in \mathcal{S}$ . Then  $\{\mu_k\}$  is uniformly s-bounded.

PROOF. Suppose that  $\{\mu_k\}$  is not uniformly s-bounded. Then there exists a sequence  $\{E_k\}$  of pairwise disjoint elements of  $\mathscr{S}$ ,  $U \in \mathscr{U}$ , a sequence  $\{M_k\}$  of pairwise disjoint finite subsets of N, and an increasing sequence  $\{n_k\}$  of elements of N such that

- (i)  $\mu_{n_k}(F_k) \notin 5U$ , where  $F_k = \bigcup_{i \in M_k} E_i$ ,
- (ii)  $b_k = \max\{i \in M_k\} < \min\{i \in M_{k+1}\} = a_{k+1}$ ,
- (iii) if M is a finite subset of  $N_{b_{k-1}} = \{n \in N : n \leq b_{k-1}\}$ , then  $(\mu_{n_k} \mu_j)(\bigcup_{i \in M} E_i) \in U, j > n_k$ , and
- (iv) if M is a finite subset of  $N^{a_{(k+1)}}$ , then  $\mu_{n_k}(\bigcup_{i\in M}E_i)\in U$ . Set  $\nu_k=\mu_{n_k}-\mu_{n_{(k+1)}}$ ; then  $\nu_k(E)\to 0$ ,  $E\in \mathcal{S}$ , and  $\{F_k\}$  is a sequence of pairwise disjoint elements of  $\mathcal{S}$  with  $\nu_k(F_k)\notin 4U$ ,  $k\in N$ . Partition  $\{F_i\}_{i\geq 2}$  into a sequence  $\{\{F_{i,j}\}_{j\geq 1}\}_{i\geq 1}$  of subsequences. Since  $\nu_1$  is s-bounded there

is a least integer  $i_1$  such that  $i \ge i_1$  implies that  $\{v_1(E): E \in \mathcal{S}, E \subset \bigcup_{j=1}^{\infty} F_{i_j}\} \subset U$  (i.e.,  $\{v_1|(\bigcup_{j\ge 1} F_{i_j})\} \subset U$ ). Then since  $v_{i_1}$  is s-bounded we can repeat this process and choose a subsequence of  $\{F_{(i_1)_j}\}$  on which  $v_{i_1}$  stays in U. This process may be iterated, after which a diagonalization and relabeling yields (cf. (iii))  $v_k(\bigcup_{i\in M\subset N_{k-1}} F_i) \in U$ ,  $v_k(F_k) \notin 4U$ , and  $v_k(F) \in U$  if  $F \in \mathcal{S}$  and  $F \subset (\bigcup_{j>k} F_j)$ . Thus, the contradiction  $v_k(\bigcup_{i\ge 1} F_i) \notin 2U$ ,  $k \in N$ , obtains, and Theorem 2 is established.

An immediate corollary follows.

COROLLARY 2. If  $\{\mu_k\}$  is a sequence of s-bounded functions and  $\mu(E) = \lim \mu_k(E)$ ,  $E \in \mathcal{S}$ , then  $\mu$  is s-bounded.

In conclusion we remark that several generalizations are possible (cf. the theorems in  $\lceil 4 \rceil$ ).

## REFERENCES

- 1. R. B. Darst, The Lebesgue decomposition, Duke Math. J. 30 (1963), 553-556. MR 28 # 176.
- 2. ——, On a theorem of Nikodym with applications to weak convergence and von Neumann algebras, Pacific J. Math. 23 (1967), 473–477. MR 38 #6360.
- 3. \_\_\_\_\_, The Vitali-Hahn-Saks and Nikodym theorems for additive set functions, Bull. Amer. Math. Soc. 76 (1970), 1297-1298. MR 41 #8625.
- 4. D. Landers and L. Rogge, The Vitali-Hahn-Saks and uniform boundedness theorem in topological groups, Manuscripta Math. 4 (1971), 351-359. MR 44 # 402.
- 5. C. E. Rickart, Decomposition of additive set functions, Duke Math. J. 10 (1943), 653-665. MR 5, 232.

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80521