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The class 0HP of Riemann surfaces or Riemannian manifolds which do 
not carry (nonconstant) positive harmonic functions is the smallest 
harmonically or analytically degenerate class. In particular, it is strictly 
contained in the classes 0HB and 0HD of Riemann surfaces or Riemannian 
manifolds without bounded or Dirichlet finite harmonic functions, and in 
the classes 0AB and 0AD of Riemann surfaces without bounded or Dirichlet 
finite analytic functions. 

In the present paper we ask: Are there any relations between 0HP 

and the classes 0H2B and 0HzD of Riemannian manifolds without bounded 
or Dirichlet finite nonharmonic biharmonic functions? We shall show that 
the answer is in the negative. Explicitly, if 0N is a null class of AT-dimen-
sional manifolds, and 0N its complement, then all four classes 

UHPnUH2X, UHPC^UH2X^ UHPnUH2X> UHP^UH2X 

are nonempty for both X — B and D, and for any N. This independence 
of N is of interest, as biharmonic degeneracy often fails to have this 
property. Typically, whereas the punctured Euclidean iV-space is not an 
element of Og2B for N = 2, 3, it does belong to it for all N ^ 4 (Sario-
Wang [6]). 

Methodologically, we introduce in §1 a simple type of Riemannian 
manifold which, on account of its rectangular coordinates and noncon-
formal metric, is very versatile in classification problems. 

1. We shall show 

THEOREM 1. 0%P n 0%2B # 0for every N. 

PROOF. Consider the iV-manifold, N ^ 2, 

T = {0 < x < oo, 0 ^ y S 2TT, 0 ^ zt S 2TC}, 

i = 1,. . . , N — 2, with y = 0, y = 2n identified, and zx = 0, z-x = 2% also 
identified for every /. Endow Twith the metric 
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JV-2 

ds2 = dx2 + x2dy2 + Ya dzi-

To see that Te 0HP note that h(x) e H(T) if Ah = - x ~ ^{xh^/dx = 0, 
that is, h = a log x 4- b with constants a, fe. Since \h\ -> oo as x -» 0 or 
oo, the harmonic measure of the ideal boundary of T vanishes, and T 
belongs to the class 0G of parabolic manifolds. In view of 0G c 0HP 

(see e.g. Sario-Nakai [4]), we have Te 0HP. 
An H2J5-function on Tis u = sin 2y. In fact, 

Aw = —x"1 dix'1 - 2cos2y)/dy = Ax'2 smly 

and 

A2w = -4x~ 1 ^ [x - ( -2x - 3 ) s in23 ; ] + ^ - [ x - 1 • x"2 • 2cos2y]> = 0. 

2. Next we prove 

THEOREM 2. 0#P n 0^2B ^ 0for every N. 

PROOF. Equip the punctured N-space with the metric ds = r'1\dx\ so 
as to obtain a manifold M = { 0 < r < o o } with 

ds2 = r'2dr2+ £ <pi(0l9...90N-1)d0f 
i=\ 

where the cpt are trigonometric functions of (0i,.. .,0jv-i)- We have 
h(r)eH(M) if A/t = -r2(h" + r-1/*') = 0, which gives h = alogr + b. 
Thus again M e 0H P . 

To show that MeOH2B, let S„m be the spherical harmonics, n = 1, 
2, . . . ; m = 1,. . . , mn. For a constant p, a straightforward computation 
of A gives rpSnm e H(M) if 

Pn = y/n(n + AT - 2), 

[ « B =* - V w ( " + AT - 2). 

Set /i„w = rPnSnm9knm = rqnSnm. The eigenfunction expansion of any 
/z G H (M) for a fixed r and a — log r yields 

oo mn 

h = I I ( « » A « + b„mhm)Snm + Off + 6 
n=1m=1 

on all of M, with uniform convergence on compact subsets. Again by 
direct computation, the equations Aunm = hnm9 Avnm = knm9 Ax = cr, 
As = 1 are seen to be satisfied by the functions 
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w„m = - ^— rPn log r • S„m, vnm = - — rq» log r • S„w, 
2p„ 2<?w 

T = -è(logr)3 , 5 = - i ( logr ) 2 . 

Every u e H2(M) has an expansion 
oo mn 

U = Z Z (<W»m + *W»m) + ^ + bs 
n=1m=1 

oo m„ 

+ Z Z (c»m^m + dnmknm) + ca + d 
n=1m=1 

on M, with compact convergence implied by that of the expansion of h. 
For fixed (n, m\ 

l u - Snm dœ = ArPn log r + Brqn log r + CrPn + Dr*", 
s 

where dœ is the area element on the unit (N — l)-sphere S. If u e H2B(M), 
the integral on the left is bounded in r, and the same is true, by linear 
independence, of each term on the right. We conclude that anm = bnm 

= cnm = dnm = 0. The remaining terms in the expansion of M are all radial, 
and by their linear independence and the boundedness of u we obtain 
a = b = c = 0. Thus u is constant and M e 0H2B. 

3. We proceed to show 

THEOREM 3. Ö^P n 0%2B # 0 for every N. 

PROOF. First suppose N > 2. Consider the punctured iV-space R with 
the metric ds = r1/3|dx|, r = |x|. The function <x(r) = r~

MN~~2)l* is positive 
and harmonic, hence R e ÖHP. We now let 

U _ r PnC h __ rqnQ 
'lnm ' unm > ^nm ' ^nm > 

1 
Priori = 2 *(W - 2) ± l^(N - 2)2 + 4n(rc + N - 2) 

= /<rPn + 8 /3o Dr<*„ + 8 /3o 

fClogr forJV = 4, 

|Cr-4(N-4)/3 forJV#4, 

and 

s = Dr8/3. 

With this notation, the constants suitably chosen, the reasoning in §2 
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applies, and we have R e 0HiB. 
For N = 2, it is known that the disk |x| < 1 can be given a conformai 

metric that excludes H2£-functions (Nakai-Sario [3]), while harmonicity 
and hence the existence of HP-functions is not affected. 

4. The Euclidean iV-ball is trivially in ÖHP n ÖHiB by virtue of h = r 
4- 1 e HP and r2 e H2B. We may therefore summarize our results thus far 
as follows: 

THEOREM 4. The totality of Riemannian N-manifolds decomposes, for 
every N9 into the disjoint nonempty classes 

nN n / )JV nN _ fîN fîN ~ f)N fîN ^ fîN 

UHP n UH2B> UHP n UH2B> UHP n UH2B> UHP n UH2B' 
5. We turn to the relationship of 0HP to 0H2D. 

THEOREM 5. 0%P n 0HiD ^ 0 for every N. 

PROOF. We recall that the manifold M of §2 is in 0HP. To see that it 
also is in 0HiD we use again the expansion in §2 of u e H2, which we write as 

n = 0 m= 1 

Here for n = 0, 

w01 = ax + bs 4- CG + d = /01 , 

and for n > 0, 

with 

/nm = ,4rp" log r -f- £r«" log r + Crp" + Dr*n. 

Choose a fixed (n, m). Then for any (fc, /) ^ (n, m) and a fixed r0 > 0, 
Q = {xe M|0 < r(x) < r0}, the mixed Dirichlet integral over Q is 

0 = Da{hnm, hkl) = const grad Snm • grad Sw dœ. 
Js 

A fortiori, 

ön(wnm,ww) 

= (grad fnm • grad fkl)SnmSkldV + ƒ„„, ƒ« grad SMW • grad Sk, dF 
Jo J Q 

= 0, 

and therefore 
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/»00 

D(u) ^ D(wnm) = const fnm dr = oo 

unless all coefficients (except perhaps d) in the expansion of u vanish. 

6. We claim 

THEOREM 6. The totality of Riemannian N-manifolds decomposes, for 
every N, into the disjoint nonempty classes 

0HPr\0H2D, 0HP nOH2D, 0HP n 0H2D, 0HP r\0H2D. 

PROOF. For N > 2, the reasoning in §5, with the notation of §3, gives 
ReOH2D, hence 0# P n 0^2 D ^ 0 . For N = 2 this is known (Nakai-
Sario [2]). 

To see that 0# P n Ö ^ ¥" 0 , consider the N-ball 

B» = {\x\ < l,ds], ds = (1 - |x|2)a|dx|. 

It was proved in Hada-Sario-Wang [1] that 

B^eO^oa^ l/(N - 2) for N > 2, 
and 

1 a < 

Ba G OH*D ' 

«* -

In particular, 

and 

B? e 0N
HP n Ö£2/) for 2 < AT ^ 6 

BÏ/CN-6) e OS P nÖS 2 D for N > 6. 

For N = 2, the plane can be endowed with a metric which allows H2D-
functions (Nakai-Sario [2] and Sario-Wang [5]), and we have 0\? 

r^O2
H2D*0. 

The relation 0# P n Ö#2D ^ 0 is again trivial for every AT in view of 
the Euclidean N-ball. 
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