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This note states some results concerning asymptotic enumeration of the 
isomorphism classes of finite modules or algebras (of various types) over 
a Dedekind domain D. Proofs will be published elsewhere. 

1. Finite modules over a ring of algebraic integers. Firstly, let D be the 
ring of integers in a finite-dimensional algebraic number field K. If M is a 
finitely-generated torsion module over D, then standard structure theory 
[8], [9] and the fact that D/P is finite for every prime ideal P implies that 
M is finite in cardinal Further, if ^(D) denotes the category of all such 
modules M and a(n) = aD(n) denotes the total number of isomorphism 
classes of modules of order n in #"(/)), then a(n) is finite and "multiplicative." 

Now recall that, if ND(x) denotes the total number of ideals of norm at 
most x in D, then ND(x) = XKx + 0(xn) where XK is an explicit positive 
constant depending on K and n = 1 - 2/(1 + [K:Q]) [13]. 

(1.1) THEOREM. The function a(n) has mean value XK \\™= 2 CKW More 
precisely, Yjn^xa(n) = [^KY\?=2 CKMI* + 0(x1/2) where ÇK(s) is the Dede­
kind zeta function. 

When D is the ring Z of rational integers, 3F{D) becomes the category 
se of all ordinary finite abelian groups, and the theorem was first proved 
for this case by Erdös and Szekeres [4]. 

(1.2) COROLLARY. Let n^{D)(x) denote the total number of indecomposable 
D-modules of order at most x in ^(D). Then 

7Cj«r(D)(x) ~ x/log x as x -» 00. 

Theorems 1.1 and 2.1 follow from slightly more general results about 
certain categories. Corollaries 1.2 and 2.2 follow with the aid of an abstract 
prime number theorem, as discussed in [15]; for D = Z, see [10], [11]. 

Although it has a finite mean value, a(n) can be very large on prime 
powers: Consider a rational prime p, and define C = C(D, p) by C = aj - 1 

+ • • • + a~x where (p) = Px • • • Pm is the decomposition of (p) into 
prime ideals Pt in D, and Pt has norm pai. 
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(1.3) THEOREM. AS X - oo, ^ ^ ( p " ) = exp{[7r(2C/3)1/2 + o(l)]x1/2}. 
If a l 5 . . . , aw /zai;e g.c.d. 1 then, as n -» oo, 

a(pw) - yln-(m + 3)/4exp[7i(2Cn/3)1/2] 

w/zere ,4 = (ax • • • aJ1 / 22" ( m + 2 ) / 2(C/6) ( m + 1 ) / 4 . 

When D = Z, this theorem follows from the Hardy-Ramanujan 
asymptotic formula for the partition function p(n). In general, Theorems 
1.3, 2.3, and 2.4 below depend on results of Brigham [3], Ingham [7], and 
Auluck and Haselgrove [1], which are also basically founded on work of 
Hardy and Ramanujan [5]. 

2. Semisimple finite algebras over a ring of algebraic integers. If D is as 
above, let <$f(D) denote the category of all semisimple D-algebras whose 
underlying D-modules lie in ^(D), and let ^C{D) denote the subcategory 
of all commutative algebras in 5^(D). With the aid of standard structure 
theory [8], one finds that the total number S(n) = SD(n) of isomorphism 
classes of algebras of cardinal n in ^(D) is finite, and the corresponding 
number Sc(n) for ^C(D) coincides with a(ri) above. Hence the asymptotic 
results of §1 apply directly to ^C{D) also. S(n) is also "multiplicative." 

(2.1) THEOREM. The function S(n) has mean value kKY\rm2>i Cx(rm2)-
More precisely, J\n*x S{n) = [kK Y\rm2>l CK(rm2)> + 0(x1/2). 

(2.2) COROLLARY. Let n^iD)(x) denote the total number of simple D-
algebras of cardinal at most x. Then n^(D)(x) ~ x/logx as x -> oo. 

Remainder terms can be given for Corollaries 1.2 and 2.2. 

(2.3) THEOREM. Let p be a rational prime and C = C(D, p) as before. 
Then Y,n^xS(Pn) = exp{[^7i2C1/2 + o(l)]x1/2} as x -• oo. If at least two 
integers at are coprime, then, as n -> oo, 

S(pn) = exp{[i7i2C1/2 + o(l)]n1/2}. 

When D = Z, ^(D) becomes the category of all ordinary semisimple 
finite rings, and for this case the above results were given in [10], [11]. 
A similar result to Theorem 2.3, using previous techniques and results of 
Ax [2] and Serre [14], is 

(2.4) THEOREM. Let F denote a quasi-finite field, and let s(n) denote the 
total number of isomorphism classes of semisimple n-dimensional algebras 
over F, and sc(ri) denote the corresponding number for the semisimple 
commutative n-dimensional algebras over F. Then as n -» oo, 

s(n) = exp{[i7i2 + o(l)]n1/2} while sc(n) = p(n) ~ (4n^/3ylexp[n(2n/3)1,2l 

For finite F, see [10], [11]. 
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3. Finite algebras over a principal ideal domain. In this section, D 
denotes an arbitrary principal ideal domain with a prime ideal P such that 
DjP is finite. For example, D may be a special ring of algebraic integers or 
a special ring of integral functions of one variable over a finite field. If 
D/P ^ GF(q\ and M is a finitely-generated torsion module over D such 
that the order ideal of each element is some power of P, then M is finite 
with qn elements, for some n. If M is the underlying D-module of a D-
algebra A, we shall call A a P-primary algebra. 

Let A(n), AJji) and AL{n) denote the total number of isomorphism classes 
of P-primary algebras of cardinal cf that are respectively associative, 
commutative and associative, or Lie algebras. Let N(n\ Nc(n) and NL(n) 
denote the corresponding numbers for nilpotent algebras of these respec­
tive types. 

(3.1) THEOREM. AS n -> oo, 4W27+00-1)]"3 ^ N(n) ^ q^3 + 0^~1^3 while 

A(n)Sq[1+0{n~1)]n3-

(3.2) THEOREM. AS n-+ oo, ^ T + O O I - W ^ N ^ N ^ ^ q[i/6+om-w 
while AM AL(n) ^ qw

 + <>(n-w 

The proofs of these results follow a pattern of Higman's for finite 
p-groups [6], and make use of the Frattini subalgebra. In fact, the lower 
bounds are obtainable when D is a general Dedekind domain (with D/P 
finite) and it seems reasonable to conjecture that they provide correct 
asymptotic estimates even for such a general Dedekind domain. (With 
regard to Theorem 3.1 when D is GF(q) or Z, compare [12, Chapter 5]; 
however, we remark that the proofs of 5.2.4 and 5.2.5 in [12] do not seem 
to cover the following rings in all respects: consider the additive group 
Z/(27) together with (i) usual multiplication, (ii) multiplication r • s = 3rs 
where â denotes the coset of a e Z. With regard to Theorem 3.2 when D is 
GF(g) or Z, we understand that R. L. Kruse has similar results for Lie 
algebras (unpublished); compare also [10], [11] in the commutative case.) 

ADDED IN PROOF. The results of §3 hold over any Dedekind domain D 
with D/P finite. For such D and P, generalizations of Theorems 6,7 of [10] 
to finite nilpotent P-primary D-algebras and to finite P-primary bimodules 
over nilpotent associative D-algebras will appear shortly in a joint paper 
by the author and G. E. Burger. 
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