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1. Introduction. There has been recently the development of a 
general theory of dynamical systems going beyond ordinary differ­
ential equations which includes functional differential equations, 
partial differential equations, systems arising in the theory of elas­
ticity, etc. A large number of examples of such dynamical systems and 
more complete references can be found in the paper [ l ] by Hale. 
For extensions to periodic systems and certain nonautonomous sys­
tems see [2] and [3]. Applications can be found in [4]-[7]. 

In this same spirit we develop here a general theory of dissipative 
periodic systems that applies to systems which "smooth" initial data 
(retarded functional differential equations, for example). This 
extends the work of Billotti in [s]. Nonlinear ordinary differentials 
which are periodic and dissipative were studied by Levinson in [9] 
in 1944, and more general results can be found in [lO] and [ l l ] . For 
ordinary differential equations one studies the iterates of a map T 
of a state space into itself where the map T is topological and the 
space is locally compact (w-dimensional Euclidean space). However, 
for the applications we have in mind the solutions will be unique only 
in the forward direction of time and the state spaces are not locally 
compact. Because of this the generalization of the results for ordinary 
differential equations is by no means trivial. 

The basic theory of disspative periodic processes on Banach spaces 
is developed in §§2 and 3. How this applies to retarded functional 
differential equations of retarded type is discussed briefly in §4. 

2. Dissipative mappings. Let R denote the real numbers, R+ the 
nonnegative reals, and let X be a Banach space with norm ||-| | . 
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Consider a mapping u:RXXXR+—>X and define (t, T):X~*X for 
each tÇîR and each TÇ:R+ by (t, r)x = u(t> x, r ) . Interpret (t, r)x as 
the state of the system at time t+r if initially the state of the system 
at time / was x. A process on a Banach space X is a mapping ulRXX 
XR+—+X with the following properties: (2.1) u is continuous, (2.2) 
(/, 0)x = x, (2.3) (t+a, r)(t, a) = (t, a+r). Thus a process here is 
essentially what was called in [2] a "generalized nonautonomous 
dynamical system" and differs by the continuity on u from what was 
called a process in [3]. 

A process is said to be periodic of period w > 0 if (t+w, r) = (t, r) 
for all tÇiR and all r £ ^ + . For any fixed tÇzR there is then associated 
with a periodic process a continuous mapping T:X—>X defined by 
T(x) = (*, <a)x. With Tn the nth iterate of T it follows from (2.3) that 
Tn(x) = (t, no))x and the sequence Tn(x)} w = 0, 1, 2 • • • , is called the 
(positive) motion or orbit through x. Since for a periodic process 
(t, T+koo) = (t, r)(ty &co), we see that the fixed points of 7"* correspond 
to periodic motions of the periodic process. 

Thus motivated we will now spend the rest of this section studying 
the discrete dynamical system defined by an arbitrary continuous 
mapping T:X—>X where X is a Banach space. A point y is said to be 
a limit point of the motion Tn(x) if there exists a subsequence nu of 
integers such that w*.—»°o and Tnh(x)—>y as k—><*>. The limit set L(x) 
is the set of all limit points of Tn(x). Note that L(x) = Ç\JL0 Cl U£., !Tn(x), 
where CI is closure. 

A set MQX is said to be positively invariant if T(M)<ZM and 
negatively invariant if MC.T(M). It is said to be invariant if 
JH(M) = Af ; i.e., if it is both positively and negatively invariant. Nega­
tive invariance implies the existence of an extension over all inte­
gers of each positive motion through a point of M and the negative 
extension is contained in M. 

LEMMA 2.1. If the motion Tn(x), w = 0, 1, 2, • • • , is precompact, then 
the limit set L(x) is nonempty, compact and invariant. 

For most applications other than ordinary differential equations the 
state space X is not locally compact and there is the practical 
difficulty of determining compactness. For many processes T smooths 
the initial data and with suitable topologies for the state spaces 
boundedness of the motion implies that the motion is precompact 
(see, for example, [ l ] ) . With applications in mind we develop a 
theory of dissipative processes based on boundedness and require a 
smoothing property stronger than that mentioned above. 

DEFINITION 2.1. T is said to smooth if there is a nonnegative integer 
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n0 such that for each bounded set B in X there is a compact set B* 
in X such that Tn(x)EB, for n = 0, 1, • • • , N (N^n0), implies 
Tn(x)£:B* for n = n0y n 0 + l , • • • , N. 

For ordinary differential equations every continuous T smooths 
with n0~0 (X is locally compact) and for retarded functional differ­
ential equations T smooths with n^u^r (co the period and r the 
retardation). 

DEFINITION 2.2. T is dissipative if (1) it smooths and (2) there is a 
bounded set B in X with the property that given x £ X there is a 
positive integer N(x) such that Tn(x)ÇzB for N{x) Sn^N(x)+n0. 

This next result generalizes Theorems 2.1 and 2.2 of [ l l ] and here 
the proofs are both simpler and more elegant. If the space is locally 
compact (ordinary differential equations), then every continuous T 
smooths and T is dissipative if there is a bounded set B such that for 
each xÇzX there is an N(x) such that TN(x)(x)Ç:B. If the space is 
not locally compact, the assumption that T smooths is needed and for 
each # £ X the motion Tn(x) must remain in B long enough to smooth. 

THEOREM 2A. If T is dissipative, then there is a compact set K in X 
with the property that given a compact set H in X there is a positive 
integer N(H) and an open neighborhood OH of H such that Tn(OH)QK 
for alln^NQB). 

The principle result is an easy consequence of the Schauder fixed 
point theorem. 

COROLLARY 2.1. If T is dissipative, Tj has a fixed point for each 
integer j greater than some integer k. 

If T maps bounded sets into bounded sets, then using Browder's 
extension [12] of the Schauder fixed point theorem one obtains: 

COROLLARY 2.2. If T is dissipative and maps bounded sets into 
bounded sets, then Tj has a fixed point f or each integer j ^ no. 

For ordinary differential equations and for retarded functional 
differential equations with co ^ r (co is the period and r is the retarda­
tion), n0 = 1 and the conclusion is that T itself has a fixed point. This 
was shown by Yoshizawa (see [13] or [14]) for periodic retarded 
functional differential equations if the solutions are uniformly 
bounded and uniformly ultimately bounded. The above corollary 
includes Yoshizawa^ result. Under even stronger conditions this 
problem has been studied by Jones in [15] and [16]. One suspects 
that T being dissipative would imply that T has a fixed point but this 
is at the moment merely a conjecture. For an example of a retarded 
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functional differential equation where bounded sets are not mapped 
into bounded sets by the flow defined by solutions see [17]. 

There is a very special class of dissipative systems where T has a 
unique fixed point. In the theory of oscillations this unique fixed 
point corresponds to the "steady state" oscillation. For a topological 
map T and hence for periodic ordinary differential equations a result 
of this type was given in [18, Corollary 2]. (For ordinary differential 
equations see also [ l l ] and for retarded differential equations see 
[19].) 

DEFINITION 2.3. T is said to be extremely stable if (1) there is a 
bounded motion x,T(x), • • • , Tn(x), • • • and (2) \\Tn(x)-Tn(y)\\->0 
as n—*<x) for each x, yÇzX. 

COROLLARY 2.3. If T is smooth and extremely stable, then T has a 
unique fixed point which is a global attractor. 

3. The limit set 7. We wish now to point out that if T is dissipative 
then there is a compact invariant set I that is globally asymp­
totically stable. Just as in [9] for second order ordinary differential 
equations I will be the maximum compact set invariant under T. 

Let K be the compact set of Theorem 2.1. Define / = n * Œ 0 Tn(K). 
Of course, K is not unique, but it is not difficult to see that I does not 
depend on K. 

I t is interesting to relate I to the motion K, T(K), • • • , 
Tn(K), • • • . Given a set H in X we define L(H), called the limit set 
of the motion through H, by L(H) = f)^0 CI (J«=; Tn(H), where CI 
denotes closure. Then yÇE.L{H) means there exist sequences ni and 
yiÇzH such that wt—»<*> and Tni(yi)—*y as i—»<*>. Thus when H is a 
single point x this is the usual limit set L(x). Now just as for Lemma 
2.1 it follows that 

LEMMA 3.1. If for somej sufficiently large U*Œ>/ T
n(H) is precompact, 

then the limit set L(H) is nonempty, compact, and invariant. 

THEOREM 3.1. Assume that T is dissipative. Then I — L{K) and 
hence I is nonempty, compact, invariant and is the maximum compact 
invariant set in X. 

We recall that a set M is a global attractor if Tn(x)~->M as #—>«> 
for each x(EX. Since each motion Tn(x) is precompact (Theorem 
2.1) and its limit set L(x) is nonempty, compact and invariant 
(Lemma 2.1), it follows from the above theorem that L(x) is in / 
for each xÇiX. Hence / is a global attractor. For S > 0 let M* denote 
the S-neighborhood of M (Af*= {y; \\y—x\\<ô for some # £ A f } ) . A 
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set M is said to be stable if given € > 0 there is a ô > 0 such that x£ilf5 

implies that Tn(x)(E:M* for all w^O. If the set M is both stable and 
a global attractor it is said to be globally asymptotically stable. By an 
argument similar to that used by LaSalle to prove Theorem 3 in 
[20] it follows that 

THEOREM 3.2. If T is dissipative, then the set I is globally asymp­
totically stable. 

4. Retarded functional differential equations. We examine briefly 
how §§2 and 3 can be applied to retarded functional differential 
equations. Let Rn be a real ^-dimensional vector space with norm 
| - | . Given r>0> C—C([ — r, 0] , Rn) will denote the space of 
continuous functions <j> mapping [ — r, 0] into Rn with | |$| | 
= sup {<j> (6) ; — r ^ 6 g 0 } . Let ƒ be a continuous function taking RXC 
into Rn. A retarded functional differential equation is a system of 
the form 

(4.1) x(t) ==ƒ(/, xt), where x is the derivative of x and ^ G C is de­
fined by xt(0) =x(t+d), — r^OgO. A function x mapping [to — r,t0+a) 
into Rn is said to be a solution of (4.1) on [t0, to+a) with initial value 
</>£C at t0 if x has a continuous derivative on [to, t0+a) satisfying 
(4.1) and x*o=0. 

A brief survey of the history of functional differential equations is 
given in [21 ]. For general theorems on existence, uniqueness, con­
tinuation and continuity see [ l ] , [4], [14], [22], or [23]. These 
theorems are quite similar to those for ordinary differential equations, 
and we make the general assumption that ƒ satisfies, in addition to 
the continuity condition above, conditions sufficient to insure unique­
ness of solutions to the right. We shall also assume that the solution 
x(t, to, 4>) of (4.1) satisfying xfo(/0, <£) =<f> is defined for all t^to. This 
will be implied by dissipativeness. Then u(t0, <£, r) =x*0+r(2o, $) is, as 
described in §2, a process on the Banach space C. We shall assume also 
(1) f (Pi <t>) is periodic in t with period co>0 and (2) ƒ maps bounded 
sets of RXC into bounded sets of Rn. If x(t) is any solution of (4.1), 
we see that | x ( / ) | < 6 for / £ [t0, t0+T) implies | | i t | | < d for 
tÇz[h+r, tQ+T). Thus corresponding to each bounded set B in C 
there is a compact set B* in C such that xtÇ£B for / £ [t0, t0+T) im­
plies XtÇzB* for tÇz [h+r, U+T). This smoothing of the initial data 
was exploited by Hale [l ] although he did not use and did not need a 
smoothing property as strong as this one. Defining T(0) = #«0+w(̂ o, <t>) 
for any fixed 2o, we see that T smooths in the sense of Definition 2.1 
with nQ the least integer such that notour. We see also that T will be 
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dissipative if there is a number b such that given 0 £ C there is a 
h = h(<t>, to) with the property that | x(t, t0, <f>) \ < b for all h£>t^£i+n0co. 
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