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In [4] the first named author discussed the explicit solutions of 
the cubic spline interpolation problems. We are now concerned with 
quintic spline functions. Let 5B[0, n] denote the class of quintic 
spline functions S(x) defined in the interval [0, n] and having the 
points 0, 1, • • • , n — 1 as knots. This means that the restriction of 
S(x) to the interval (*>, J > + 1 ) (P = 0, • • • , n — \) is a fifth degree 
polynomial, and that S(x)£;CA[0, n]. With these functions we can 
solve uniquely the following three types of interpolation problems. 

1. Natural quintic spline interpolation. We are required to find 
S(x) G*55[0, n] such as to satisfy the conditions 

(1) £ « = ƒ « (, = 0, • - . , » ) , 

(2) S'"(0) = S<4>(0) = S'"(») = S^(n) = 0. 

2. Complete quintic spline interpolation. We are to find S(x) 
G«SstO, n] so as to satisfy the conditions 

(3) £ « = ƒ « (* = 0, . . . , * ) , 

(4) S ' (0 ) - / ' ( 0 ) , S"(0) =ƒ"(()), S'(») « /'(n), S"{n)=f'(n). 

3. The interpolation of Euler-Maclaurin data. Here we seek 
5 ( ^ ) e 5 5 [ 0 , n] such that 

(5) 5 0 0 = ƒ<» (K = 0 , . • • , » ) , 

(6) S ' ( 0 W ( 0 ) , S'"(0) =ƒ"'(<)), S ' ( » W ( n ) , S'"(n) = ƒ"'(»). 

In the present note we propose to do for quintic spline interpola­
tion what was done in [4] for cubic interpolation. Also the method 
used is similar; in the present case we derive our results from the 
5th degree case of cardinal spline interpolation discussed in [2]. We 
describe here the results concerning the third problem (5) and (6). 

The foundation of our discussion is the quintic .B-spline 
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M(x) = M,(*) = — {(* + 3)+ - 6(x + 2) ' + 15(* + 1)+ 

(7) 
- 20*+ + 15(* - 1)+ - 6(x - 2)1 + (x - 3)+}, 

where # + = max(0, x). Evidently M(x) is a quintic spline function 
with knots a t —3, — 2, — 1 , 0, 1, 2, 3, and having its support in 
[ - 3 , 3 ] . 

LEMMA 1. Every 5(#)£«S5[0, n] admits a unique representation of 
the form 

n+2 

(8) S(x) = X CjM(x - j ) (0 S x S n). 
—2 

The existence and unicity of the solution of problem 3 (see [l]) 
implies that we may write the solution in the form 

,0. S{x) = £ ƒ(*)£,(*) +/ '(0)Ai(*) +ƒ"'((>) A,(») 
W o 

- ƒ ' ( * ) Ai(» - *) - / ' " (w)A. (* - x), 

where the coefficients of the data are the corresponding fundamental 
functions that are uniquely defined by appropriate unit-data. By 
Lemma 1 we may represent these fundamental functions as follows: 

(10) Lv(x) = X cj,vM(x - j) (y = 0, • • • , »), 
~2 

n+2 n+2 

(11) Ai(s) = X <?i.-iM(a; — j ) , — Ai(» - * ) = J ] cyiW+ilf (a? — i ) , 
_2 - 2 

n+2 n+2 

(12) A8(*) = X) cj,-2M(x — i ) , — A3(w — ff) = Z) cytB+2Af (* — j), 

with coefficients that are yet to be determined. 
Introducing the representation (8) into the equations (5) and (6), 

we obtain a system of n+5 equations for the n+5 unknown coeffi­
cients Cy. We denote the inverse of the matrix of this linear system by 

(13) r 2 = | M 0 > = - 2 , - l , . - . , * + 2 ) . 

The determination of this matrix depends on the four algebraic inte­
gers Xi, X2, X3, X4, which are the zeros of the fifth Euler-Frobenius 
polynomial 

(14) n5(#) = x* + 26xz + 66*2 + 26* + 1 
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(for the generating function of the polynomials Un(pc) and their name 
see [3 ]). These zeros are reciprocal in pairs and satisfy the inequalities 

A4 < X* < - 1 < X2 < Xi < 0. 

Setting x+x~~1 = zi the reciprocal equation II5(x) = 0 reduces to the 
quadratic s 2 + 2 6 s + 6 4 = 0 having the roots - 1 3 ± (105)1/2. I t follows 
that 

(15) Xi + XT1 = - 13 - (105)1/2, X2 + XÏT1 = - 13 + (105)1'2. 

The solution of our problem depends in the first place on the so-called 
fundamental cardinal spline function L(x) satisfying the relations 

L(0) = 1, L(J) = 0 if y ^ 0. 

We find that 

L(x) = a 23 Xi MQ(x — j) + 0 23 X2' MQ(x - j), 
—00 — » 

where 

a"1 - - (Xx - x71)(105)1/2/60, f1 = - (X2 - x71)(105)1/2/60. 

The fundamental functions (10), (11), and (12), may now be ex­
pressed as appropriate linear combinations of L(x) and of the four 
eigensplines 

00 

S,{x) = S x'»Af e(* - J) (y = 1, 2,3,4). 
—00 

It is clear a priori that the elements of the matrix (13) are ra­
tional numbers. Actually, the elements of (13) can be explicitly 
expressed in terms of certain sequences of integers defined by appro­
priate recurrence relations. We define two even sequences (ak) and 
(bk) of integers such that 

U JU I / O *; Jfc I / O 

(16) Xi + X1 = ak - bk (105) , X2 + X2 - ak + bk (105) . 

These sequences may also be defined as solutions of the recurrence 
relation 

(17) xk+4+26xk+z+ + 66xk+2+26xk+1+xk = 0 (— 00 <k< 00), 

with the initial values 

(18) ÖL-2 = 272, dL_i — — 13, aQ = 2, a\ — — 13, 
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and 

(19) 6_2 = - 26, &_! = 1 , bo = 0, éi = 1, 

respectively. We define two further sequences by 

(20) Ak = dk+i — öjfc-i, -S* = bk+i — ft*-i. 

We may now state 

THEOREM 1. In terms of the sequences (a*), (&*), (Ak), (5*), defined 
by the relations (17) to (20), «/£ may write 

120 
(21) cy,o = — 2- (-B„a»-.|y| — Anbn-)j\), 

An — 105i*w 

ttife'k 

(22) ĉ ,» = Cn-y,o« 

Furthermore, 
120 , 

/o?\ ^'v = "Ti inez>2 {^n(ö«~|y-y| + #»-,-ƒ) — ^n(Ôn-l*-il + K-y-j) } , 
v ^ ; ^n — i05.#n 

t / 0 < *>< n, 

A n — lU5i*n 

1 
(25) c,ri = 7 7 ^ TZ^^ K^n - 3 £ n K _ , + 3(4» - 35JB,)6„-/}. 

6(4* - 105£*) 
The remaining coefficients are given by 

(26) Cj,n+1 = — Cn-j,-i, 

(27) î.n+2 == — 6n-y,-2. 

Besides (22), (26), awJ (27), ze># Aa^ /&£ symmetry relations 

(28) c/,„ = cn-j,n-.v, for allj, 0 ^ v S n. 

We may also express our results as follows: The spline function 
S(x) satisfying the relations (5) and (6) is given by (8), where 

C, = *W"(0) + <W(0) + Ê WOO 
(29) 

+ cy.n+i/'W + c,-,»W"W 0 = - 2 , - 1 , • • - ,» +2). 
Here the coefficients Cj,, are the elements of the matrix (13) and their 
values are described by Theorem 1. 

As a numerical example we choose » = 2 and find 
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1 

fi 
.u 

j—1621/60 

189/60 

- 6 1 / 6 0 

29/60 

- 2 1 / 6 0 

29/60 

- 6 1 / 6 0 

- 5 6 

- 4 3 

22 

- 1 1 

8 

- 1 1 

22 

19 

- 2 6 

49 

- 2 6 

19 

- 2 6 

49 

- 5 2 

68 

- 5 2 

68 

- 5 2 

68 

- 5 2 

49 

- 2 6 

19 

- 2 6 

49 

- 2 6 

19 

- 2 2 

11 

- 8 

11 

- 2 2 

43 

56 

61/60 

- 2 9 / 6 0 

21/60 

- 2 9 / 6 0 

61/60 

-189/60 

1621/60 

The problem 3 hereby solved was referred to as concerning the 
Euler-Maclattrin data for the following reason. From the results of 
[ l ] it is clear that if we integrate the interpolating spline function 
(9) between the limits 0 and n we obtain the relation 

(30) 
ƒ f{%) dx 

1 
•/(0) + /(D + 

1 
+ ^fW+~(f'(0)-f'(n)) 

~ m ( r ' ( 0 ) ~ r m 

which is the Euler-Maclaurin quadrature formula for our data. The 
reason for this is that our interpolation process, as well as the quadra­
ture formula (30), are both exact for the class of spline functions 
£5[O, n ] , and that both are uniquely characterized by this property. 
This connection also explains the title of the present note. 

Among our three interpolation problems the third is the most 
readily accessible by our method. From its solution similar explicit 
results can be derived for the first two problems. Our approach also 
generalizes to heptic and higher odd-degree spline interpolation 
problems. 

In conclusion let us point out that if we let w—»oo, then the matrix 
(13) converges rapidly to an infinite matrix r + whose elements are 
the coefficients corresponding to the semicardinal quintic spline inter­
polation of the d a t a / " ( O ) , / ( 0 ) , / (0) , ƒ(1), ƒ(2), • • • (see [4] for the 
corresponding cubic case). 
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