ON THE EXISTENCE OF A CONTROL MEASURE FOR STRONGLY BOUNDED VECTOR MEASURES

BY JAMES K. BROOKS1

Communicated by Bertram Yood, April 29, 1971

In this note we extend a theorem of Bartle, Dunford, and Schwartz [1] which states that for every countably additive measure defined on a σ -algebra there exists a positive "control measure" ν such that $\nu(E) \to 0$ if and only if $\|\mu\|(E) \to 0$, where $\|\mu\|$ is the semivariation of μ . In this paper, μ , which is defined on a ring Σ , is assumed to be finitely additive and strongly bounded (s-bounded) [8] (that is $\mu(E_i) \to 0$ whenever $\{E_i\}$ is a disjoint sequence of sets). The existing decomposition and extension theorems for vector measures can now be easily deduced by using the control measure. These applications will be presented in [2].

 \mathfrak{X} is a Banach space over the reals (the complex case is treated in a similar fashion); S^* is the unit sphere in the conjugate space of \mathfrak{X} . $\sigma(\mathfrak{E})$ denotes the σ -algebra generated by the class of sets \mathfrak{E} . A δ -ring is a ring of sets closed under countable intersections.

THEOREM 1. Let Σ be a ring of subsets of a set S. $\mu: \Sigma \to \mathfrak{X}$ is finitely additive and s-bounded if and only if there exists a positive finitely additive bounded set function ν defined on Σ such that

$$\lim_{\nu(E)\to 0}\mu(E)=0$$

and

$$\nu(E) \leq \sup\{\|\mu(F)\| : F \subseteq E, F \in \Sigma\}, \quad E \in \Sigma.$$

Sketch of the proof. First assume Σ is an algebra. Let T be the isometric isomorphism of $ba(S, \Sigma)$ onto $ba(S_1, \Sigma_1)$, where Σ_1 is the Stone algebra of all open-closed subsets of the compact totally disconnected Hausdorff space S_1 [4, IV.9]. U is the isometric isomorphism between $ba(S_1, \Sigma_1)$ and $ca(S_1, \Sigma_2)$, where $\Sigma_2 = \sigma(\Sigma_1)$.

We prove that $\{(UT)(x^*\mu): x^* \in S^*\}$ is uniformly countably additive on Σ_2 . It suffices to show that $\{(UT)[(x^*\mu)^+]: x^* \in S^*\}$ is uniformly countably additive, where $x^*\mu = (x^*\mu)^+ - (x^*\mu)^-$ is the Jordan

AMS 1970 subject classifications. Primary 22A45.

Key words and phrases. Stone algebra, unconditional convergence, weak convergence, weakly compact.

¹ This research was supported in partly by NSF Grant GP 28617.

decomposition of $x^*\mu$. Assume the contrary. There exist $A_i \in \Sigma_2$, $A_i \setminus \emptyset$, $\epsilon > 0$, $x_i^* \in S^*$ such that $|\lambda_i(A_i)| > \epsilon$, $i = 1, 2, \cdots$, where $\lambda_i = (UT) (x_i^* \mu)^+$. Let Σ_{01} be a countable subalgebra of Σ_1 such that all the A_i belong to $\Sigma_{02} = \sigma(\Sigma_{01})$. By a diagonal process, we may assume that the λ_i converge pointwise on Σ_{01} . Let λ denote this limit. By using the unconditional convergence property of s-bounded measures [8, 2.3], the Orlicz-Pettis theorem, and a result of Procelli [7], we can show that the sequence λ_i converges weakly to λ in $ba(S_1, \Sigma_{01})$. By a result of Leader [5] this implies that the λ_i are uniformly absolutely continuous with respect to a positive finitely additive bounded set function φ defined on Σ_{01} . The extensions of the λ_i to Σ_{02} are uniformly absolutely continuous with respect to the extension of φ to Σ_{02} . This yields a contradiction since the $A_i \in \Sigma_{02}$. Now since the $\{(UT)(x^*\mu)^+: x^* \in S^*\}$ are uniformly countably additive and uniformly bounded on Σ_2 , the Bartle-Dunford-Schwartz theorem yields a ν'_{+} defined on Σ_{2} that acts as a control measure for the family $\{(UT) (x^*\mu)^+: x^* \in S^*\}$. ν'_- is obtained in a similar fashion. $1/2[(UT)^{-1}(\nu'_{+}+\nu'_{-})]$ yields the desired set function.

Now assume Σ is a ring. By analysing the structure of the algebra Σ^* generated by Σ , one can prove that μ can be extended to Σ^* and that the extension is s-bounded on Σ^* . This then reduces to the previous case.

REMARK 1. By means of an example found in [3], one can show that the conclusion of the theorem is false if the assumption of s-boundedness is dropped.

In view of the above theorem and the results in [9], we have the following:

COROLLARY. Let $\mu: \Sigma \to \mathfrak{X}$ be finitely additive, where Σ is a ring. μ is s-bounded if and only if the range of μ is conditionally weakly compact.

THEOREM 2. Let $\mu: \Sigma \to \mathfrak{X}$ be countably additive, where Σ is a ring. Then there exists a countably additive bounded set function ν defined on Σ which is a control measure for μ if and only if μ is s-bounded.

Sketch of proof. If μ is s-bounded, then by Theorem 1 there exists a bounded finitely additive control measure ν . The conclusion in Theorem 1 implies that $\nu(E) \leq \|\mu\|(E) = \sup\{\|\mu(F)\| : F \subseteq E\}$. One can show that since μ is countably additive, $E_i \searrow \emptyset$ implies that $\|\mu\|(E_i) \rightarrow 0$; this in turn implies that ν is countably additive.

REMARK 2. Due to a recent result of Rybakov, one can choose the control measures appearing in Theorems 1 and 2 to be the total variation function of the measure $x^*\mu$, for some $x^*\in\mathfrak{X}^*$.

Remark 3. Using Zorn's lemma, the control measures can be chosen

to be dominated by $\|\mu\|$ and also be maximal with respect to the usual order defined on set functions.

REMARK 4. For the bounded case this answers the question posed by Dinculeanu and Kluvanek [3, p. 505] concerning the existence of control measures for vector measures defined on δ -rings. If one requires that ν be only finite valued and not bounded, then S. Ohba has shown [6] that ν exists, without the requirement of s-boundedness of μ , when $\mathfrak X$ is separable. Examples show that without the separability condition the result is false.

We say that a family Γ of vector measures is uniformly s-bounded if $\mu(E_i) \rightarrow 0$ uniformly for $\mu \in \Gamma$, whenever $\{E_i\}$ is a disjoint sequence of sets. This concept is equivalent to uniform countable additivity when the measures are countably additive on a σ -ring. The technique in the proof of Theorem 1 is used to prove the following theorem.

THEOREM 3. Let Σ^* be the σ -ring generated by the ring Σ . If a uniformly bounded family of countably additive vector measures is uniformly s-bounded on Σ , then the family is uniformly countably additive on Σ^* .

The following theorem contains a converse to the Nikodym theorem. The proof uses the above theorem and Lemma IV. 8.8 in [4].

THEOREM 4. Let $\{\mu_n\}$ be a uniformly bounded sequence of countably additive vector measures defined on a σ -ring Σ^* generated by the ring Σ such that for every E in Σ $\lim_n \mu_n(E)$ exists. Then $\lim_n \mu_n(E^*)$ exists for every E^* in Σ^* if and only if $\{\mu_n\}$ is uniformly s-bounded on Σ .

REFERENCES

- 1. R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305. MR 16, 1123.
- 2. J. K. Brooks and H. Walker, On strongly bounded vector measures and applications to extensions, decompositions and weak compactness, Rev. Roumaine Math. Pures Appl. (to appear).
- 3. N. Dinculeanu and I. Kluvánek, On vector measures, Proc. London Math. Soc. (3) 17 (1967), 505-512. MR 35 #5571.
- 4. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 5. S. Leader, The theory of Lp-spaces for finitely additive set functions, Ann. of Math. (2) 58 (1953), 528-543. MR 15, 326.
 - 6. S. Ohba, Correction to "On vector measures. I", Proc. Japan Acad. (to appear).
- 7. P. Porcelli, Two embedding theorems with applications to weak convergence and compactness in spaces of additive type functions, J. Math. Mech. 9 (1960), 273–292. MR 23 #A2034.
- 8. C. E. Rickart, Decomposition of additive set functions, Duke Math. J. 10 (1943), 653-665. MR 5, 232.
- 9. J. J. Uhl, Jr., Extensions and decompositions of vector measures, Proc. London Math. Soc. (to appear).

University of Florida, Gainesville, Florida 32601