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In this note we extend a theorem of Bartle, Dunford, and Schwartz
[1] which states that for every countably additive measure defined
on a g-algebra there exists a positive “control measure” » such that
v(E)—0 if and only if ”,u“ (E)—0, where ”,u” is the semivariation of u.
In this paper, u, which is defined on a ring 2, is assumed to be finitely
additive and strongly bounded (s-bounded) [8] (that is u(E;)—0
whenever {E;} is a disjoint sequence of sets). The existing decompo-
sition and extension theorems for vector measures can now be easily
deduced by using the control measure. These applications will be
presented in [2].

¥ is a Banach space over the reals (the complex case is treated in a
similar fashion); S* is the unit sphere in the conjugate space of X%.
a(8) denotes the g-algebra generated by the class of sets §. A §-ring is
a ring of sets closed under countable intersections.

THEOREM 1. Let Z be a ring of subsets of a set S. u:Z—% is finitely
additive and s-bounded if and only if there exists a positive finitely addi-
tive bounded set function v defined on = such that

lim u(E) =0
v(E)—0

and

v(E) < sup{|[u(F)||:FS E,FEZ}, EEZ.

SKETCH OF THE PROOF. First assume 2 is an algebra. Let T be the
isometric isomorphism of ba(S, Z) onto ba(Si, Z;), where Z; is the
Stone algebra of all open-closed subsets of the compact totally dis-
connected Hausdorff space S; [4, IV.9]. U is the isometric isomor-
phism between ba(S1, Z1) and ca(Si, Z2), where Z,=0(Z1).

We prove that {(UT)(x*) :x*€S*} is uniformly countably addi-
tive on Z,. It suffices to show that {(UT)[(x*u)*]:x*ES*} is uni-
formly countably additive, where x*u = (x*u)*— (x*u)~ is the Jordan
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decomposition of x*u. Assume the contrary. There exist 4;E2,,
AN, €>0, xES* such that I)\;(A,-)I >¢ 1=1, 2, - - -, where
Ni=(UT) (x;u)*. Let 24 be a countable subalgebra of Z; such that
all the 4; belong to Zps=0(Zn). By a diagonal process, we may as-
sume that the N; converge pointwise on 2. Let N denote this limit.
By using the unconditional convergence property of s-bounded
measures [8, 2.3], the Orlicz-Pettis theorem, and a result of Procelli
[7], we can show that the sequence \; converges weakly to \ in
ba(S1, Zo1). By a result of Leader [5] this implies that the \; are uni-
formly absolutely continuous with respect to a positive finitely addi-
tive bounded set function ¢ defined on Z¢. The extensions of the \;
to g are uniformly absolutely continuous with respect to the ex-
tension of ¢ to Zg.. This yields a contradiction since the A4;&EZ.
Now since the {(UT) (x*u)*:x*ES*} are uniformly countably addi-
tive and uniformly bounded on Z,, the Bartle-Dunford-Schwartz
theorem yields a ¥/, defined on 2, that acts as a control measure for
the family { (UT) (x*u)t:x*&S* } .7 is obtained in a similar fashion.
1/2[(UT)-1(v, +v.)] yields the desired set function.

Now assume Z is aring. By analysing the structure of the algebraZ*
generated by 2, one can prove that u can be extended to 2* and that
the extension is s-bounded on 2*. This then reduces to the previous
case.

REMARK 1. By means of an example found in [3 ], one can show that
the conclusion of the theorem is false if the assumption of s-bounded-
ness is dropped.

In view of the above theorem and the results in [9], we have the
following:

COROLLARY. Let pu:Z—% be finitely additive, where 2 is a ring. u 1s
s-bounded if and only if the range of u is conditionally weakly compact.

THEOREM 2. Let pu:Z—% be countably additive, where Z is a ring.
Then there exists a countably additive bounded set function v defined on
2 which is a control measure for u if and only if  is s-bounded.

SKETCH OF PROOF. If y is s-bounded, then by Theorem 1 there
exists a bounded finitely additive control measure ». The conclusion
in Theorem 1 implies that »(E) <||u/|(E) =sup{||u(F)||: FCE}. One
can show that since u is countably additive, E;\\& implies that
||,uH(E,~)—aO; this in turn implies that » is countably additive.

REMARK 2. Due to a recent result of Rybakov, one can choose the
control measures appearing in Theorems 1 and 2 to be the total
variation function of the measure x*u, for some x*&X*.

REMARK 3. Using Zorn’s lemma, the control measures can be chosen
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to be dominated by ||u/| and also be maximal with respect to the usual
order defined on set functions.

REMARK 4. For the bounded case this answers the question posed
by Dinculeanu and Kluvanek [3, p. 505] concerning the existence of
control measures for vector measures defined on d-rings. If one re-
quires that » be only finite valued and not bounded, then S. Ohba
has shown [6] that » exists, without the requirement of s-boundedness
of u, when ¥ is separable. Examples show that without the separabil-
ity condition the result is false.

We say that a family T' of vector measures is uniformly s-bounded
if u(E;)—0 uniformly for u&ET', whenever {E;} is a disjoint sequence
of sets. This concept is equivalent to uniform countable additivity
when the measures are countably additive on a o-ring. The technique
in the proof of Theorem 1 is used to prove the following theorem.

THEOREM 3. Let Z* be the a-ring generated by the ring Z. If a uni-
formly bounded family of countably additive vector measures is uniformly
s-bounded on Z, then the family is uniformly countably additive on =*.

The following theorem contains a converse to the Nikodym the-
orem. The proof uses the above theorem and Lemma IV. 8.8 in [4].

THEOREM 4. Let { ,u,,} be a uniformly bounded sequence of countably
additive vector measures defined on o o-ring Z* generated by the ring =
such that for every E in 2 lim,, p.(E) exists. Then lim, u,(E*) exists for
every E* in Z* if and only if {p.} is uniformly s-bounded on .
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