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0. In this note we shall outline the results about the cohomology of 
BSPL, where BSPL is the classifying space of the stable oriented PL 
micro bundles. In this paper p is always an odd prime number. The 
detailed version of these results will appear in [18]. 

THEOREM I. As a Hopf algebra over Zp, 
(i) iI*(BSPL:Zp)^Zp[b l f b2l • • • ]®Zp[a(xI)]®A(<r(xJ)); 
(ii) A(6y)= Si-o6<®iy-*,6o = l,deg&y = 4;; 
(iii) a(xi), <T(XJ) are primitive elements. 

THEOREM I I . As a Hopf algebra over Z [1/2], 
(i) H*(BSPL:Z[l/2])/Torsions = Z[l/2] [Rl9 R2, • - • ] ; 
(ii) ARy= XXo RiQRj, RQ = 1, degtfy = 4j ; 
(iii) In H* (BSPL: Q) =Q[pi, p2f • • • ], Rj are expressed as follows: 

Rj = 2^(22^'-1 - 1) Num(JBy/4j)#i + dec /or some aj G £. 

Let MSPL denote the spectrum defined by the Thorn complex of 
the universal PL micro bundles. Let A=AP denote the mod p Steenrod 
algebra. </>:A—>H*(MSPL:Zp) is defined by 4>(a)=a(u), where 
w£-^°(MSPL) is the Thorn class. The following is the conjecture of 
Peterson [12]. 

THEOREM I I I . The kernel of<p is A (Q0f Qi), the left ideal generated by 
Milnor's elements Q0 and Q\. 

1. The method to prove Theorem I is to compute the Serre spectral 
sequences associated to the fiberings, SPL—>SF—>F/PL—>BSPL 
—>BSF. The structures of H*(SF:ZP) and H*(BSF:ZP) were deter­
mined in [9], [l6] and [17]. The homotopy type of F / P L is the deep 
result of Sullivan [15]. The first step is to study the H space struc­
ture of F / P L and the inclusion map &:SF—->F/PL. The main tool in 
this step is the result of Sullivan [IS], and its extension that tells the 
existence of the KOp theory fundamental Thorn classes for oriented 
PL micro bundles, where KOp is 4 graded cohomology theory ob-
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tained from localizing the ordinary KO* theory at all odd primes P, 
cf. Sullivan [15]. 

PROPOSITION 1-1. For any oriented PL disk bundle T'.E—^X over a 
finite complex X of fiber dimension m, there exists the Thorn class u(w) 
£ K O m ( E , dE)p with the following properties: 

(i) Functorial, i.e. for f : F—»X, u(fir) =fu(7r). 
(ii) (p^phufr) =L(w)~1(EH*(X, Q), where <PH is the Thorn isomor­

phism, and L(ir) is the L polynomial of Hirzebruchfor irlE—^X. 
(iii) u(ir®l)=<ru(T) for <r:KO"(E, dE)P-*KO™+1((E1 dE)ASl)P, 

the suspension. 
(iv) Multiplicative mod torsions, i.e. ufa®^) — U(TT^) -U(TT<L) mod 

torsion elements. 

Let BO be the classifying space of the real vector bundles. This is a 
H space defined by Whitney sum of bundles. Let BO(8iV) be the 
space obtained from BO by killing the homotopy groups 7rt(BO), 
i<SN. Then by Bott periodicity tiSNBO(8N) = BOXZ, and BO and 
BOXO coincide as H spaces. On the other hand there are products, 
HM,N:BO(SM)XBO(8iV)-»BO(8(M+N)), obtained by tensor prod­
ucts of bundles. And we obtain the product n:ti2MBO(8M)X 
^^(8N) = (BOXZ)X(BOXZ)->ü^M+N^BO(8(M+N)) = BOXZ. Re­
stricting ix to the 1-component, we obtain a H space /x®:(BOXl) 
X(BOXl)—>BOXl, and we denote this H space by (BO®, /x®). Then 
there is the natural homotopy equivalence i:BO = BOX0—»BOXl 
= BO®. Let BOp and BO<g>p be the spaces obtained by localizing BO 
and BO® at all odd primes P. And CP denotes the class of abelian 
groups consisting of 2-torsion groups. Then Sullivan [l5] defined the 
Cp homotopy equivalence 

O - : F / P L - > B O P 

which is characterized by the formula, 

***(Mi + #*2 + ' ' ' ) = i ( i i + £ * + • • • ) £ #**(F/PL, Q). 

We define the map <r : F /PL—»BO®P by 

o- X8 iP 

â: F /PL -> B O P —> BOP -> B0®P. 

PROPOSITION 1-2. The Cp homotopy equivalence â is a H space map. 

Let fN'SBN—^BO(SN) be the representative of the canonical 
generator w 8N (BO (8 N))^Z. Then we obtain the map g:WNS8N-+B0 
XZ, and passing to the limit, g : QS°->BOXZ, where QS° = limti*NS8N. 
The 1-component QiS° of QS° becomes a H space by reduced join 
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product and this H space is equivalent to SF. So we obtain a H map 

& :SF->BO®. 

PROPOSITION 1-3. The maps ^1:SF—>BO(8)—>BO®P, and (rofc:SF 
—»F/PL—»BO®p coincide up to homotopy. 

COROLLARY 1-4. As a Hopf algebra over Zp, H*(F/PL:Zp) 
= Zp[alja2y • • • ].Aay= ]C*-oa»-®ay»t-, a0 = l .degay = 4;. 

Then Theorem I is obtained by tediously long calculations using 
Proposition 1-3, and results of [l7] about 2I*(SF) and i7*(BSF). 

2. The first step to prove Theorem II is to compute the 
Bockstein spectral sequence, with E* = fZ*(BSPL:Zp) and £ * 
= (iJ*(BSPL:Z)/(Torsions))®Zp . And then studying the map 

(#*(F/PL:Z)/Torsion) ® Zp 

= H*(F/FL:Zp) -» (#*(BSPL:Z)/Torsions) ® Zp, 

and 

(#*(BSO:Z)/Torsions) ® Zp ~» (JBT*(B S PL: Z) /Torsions) ® ZP) 

we obtain Theorem II . 

3. The essential part to prove Theorem III is the following proposi­
tion. 

PROPOSITION 3-1. There exists a oriented PL disk bundle TT'.E—^X 

for some X, with the following properties: 
Qj(u)T^^forj^l, where uÇiH*(E, dE:Zp) is the Thorn class and Qj 

are the Milnor elements. 

The construction of T:E—>X is the following. Let K be a CW com­
plex of the form, 

K = S^-1 U p &* \Jai e<*+»r \Jp «CiH-DH-i, r = 2(p - 1), 

and let/:i£—»BSPL be the map which represents ft in j of o i'.S2**"1 

—>K—>BSPL—»BSF. Then ƒ is represented by a PL disk bundle 
Tf:Ef—>K of fiber dimension N, N^>0. Let TP be the cyclic group of 
order p, and W{TTP) — W be the free irp acyclic complex. Then Pirf) : W 
X*p(Ef)*-*WXrp(K)* is a oriented PL disk bundle of fiber dim pN. 
This is the bundle we seek. 
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