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The construction of the dimension function for projections in the 
various types of factor, and the definition of the trace in a factor of 
type Hi first appeared in a classical paper of Murray and von Neu­
mann [7]. The proof of the additivity and weak continuity of the 
trace appeared in [8]. Subsequent authors [2], [5], [6] have demon­
strated the existence of traces on a larger class of von Neumann 
algebras, but all have employed some variant of the Murray-von 
Neumann method of proof. The purpose of the present paper is to 
provide a short and independent proof of the following theorem. 

THEOREM. Let (Si be a finite von Neumann algebra, with centre <B, 
and let 'U be the group of unitary elements of (R. 

(1) If h is an ultraweakly continuous linear form on <B, then there is 
a unique linear form g on (R such that 

(i) g is ultraweakly continuous, 
(ii) g(A)=*g(U*AU)forAE<Rand UE%, 
(iii) g(C)=h(C)forCee. 

Moreover 11 g| | = | WI > and if ft is positive then g is positive. 
(2) There is a unique linear mapping T: (R—»<B such that 
(i) T is ultraweakly continuous, 
(ii) T is positive, and T(J) = I, 
(iii) T(U*A U) = T(A) for AE& and UE%% 

(iv) T(CA) = C-T(A)forAe6landC<Ee. 

The terminology is that of [3 ], except that finite is used here in the 
sense that if E is any projection in (R that is equivalent to I then E 
= 1. A positive linear form g on (R satisfying (i) and (ii) of (1) is called 
a finite normal trace on (R. The mapping T in part (2) is the canonical 
centre-valued trace of (R. 

The "uniqueness" part of (1) and the deduction of (2) from (1) are 
straightforward. The "existence" part of (1) will be proved by the 
application of a fixed point theorem. We first require two lemmas. 
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LEMMA 1. Let E and F be projections in a finite von Neumann algebra 
(R and let (Ek) be a sequence of projections in (R such that sup Ek—E, 
and Ek^Ek+h Ek<Ffor all k. Then E<F. 

PROOF. Let E\~FiSF. Let jfe^l and suppose that projections 
F\ • • • FkÇzGi have been chosen so that FiFj = 0 for l^i<jèk, 
2 i - i Fi£F, and Ei+1-Ei~Fi+1 for lSi^k-1. Since Ek+i-<F and 
(R is finite, I—Ek+i>-I — F. Since also Ek~ ]C*=i Fi, it follows that 

/ - (Ek+i - Eh)>- I - ( F - È , FX Fk+i - Ek-<F - i t Fi, 

and we can choose Fk+i so that Ek+i—Ek~ Fk+iè F— X X i Fi. Thus 
there is a sequence of projections (Fk) such that F{Fj = 0 for i^j, 
]C^ i Fi ^ F, and Ek+i—Ek~Fk+i for all &. Hence 

E = Ex + S (E i + 1 - £«) ~ Ê ^ ^ ^ 

Let (R* denote the dual of (R for the ultraweak topology, and for 
each £ / £ % let Tu be the linear isometry of (R* onto itself such that 
(Tuf) (A) =f(U*A U) for all ƒ G (R* and ^ G(R. 

LEMMA 2. Le/ (R &e a finite von Neumann algebra, letfÇzGi*, and let Q 
be the closed convex hull in (R* of the set K= {Tuf* t /G 'U}. Then Q is 
weakly compact. 

PROOF. By [4, V.6.4] it is sufficient to show that K is weakly rela­
tively compact. If K is not weakly relatively compact, then by [l, 
Theorem 11.2(2)] there is a sequence (En) of mutually orthogonal 
projections in (R, a sequence (ƒ„) in K, and a real positive e, such that 
|/n(JSn)| ^ e for all n. Let UnE^ be such that fn = TuJ, and let 
Fn= UnEnUn, so that (Fn) is a sequence of projections in (R such that 
Fn~En and | f(Fn) | = | ƒ ( £/n*£n Un) | = | (JVJ) (£») | = | ƒ„(£„) | è e f or 
all n. Let P n = X)»ün Em, (?n = supmè„ Fmi so that Pn+i^Pn, (?n+i^(?n 
for all w, and let G = inf Qn. Let n now be fixed and for each k let 
2e* = s u p { / ? , < : n ^ * ^ n + * } . Suppose that k^l and P*_i-< X^n""1 E{. 
Now 

£* = Rk-i + (sup{^_ x , Fn+k} - Rk-i) 

and 

Slip{i?ifc_i, P n + * } - Rk-1 ~ F..+* — inf {i?*-l , -Fn+Jfc} ^ Pn+Jfc ~ En+k, 

by [3, III .1.1, Corollary l ] . Hence Rk-<JX% Ei9 and it follows that 
Rk-<J2i~Z Fi^Pn for all k, and by Lemma 1, that Qn = sup P*-<Pn. 
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Since (R is finite, I—Pn-<I--QnSI — G for all n, and again by Lemma 
1, 7 = sup(Z—Pn)-<I—G, whence G = 0. Hence (Fn) converges ultra-
weakly to 0, which contradicts j ƒ(Fn) | ^ e > 0 for large n. 

There is an obvious analogy between the above method of proof 
and the statement of [10, Theorem 8]. 

PROOF OF THEOREM. (1) Let ƒ G &* be chosen so that f(C) =h(Q 
for C£<5, let Q be the set defined in Lemma 2, and let S be the group 
{ TV: C/G'U} acting on Q. The set Q is weakly compact by Lemma 2, 
and S is obviously noncontracting in the sense of [ l l , Definition]. 
Hence, by the Ryll-Nardzewski fixed point theorem [ l l , Theorem 
3], [9], where we take the locally convex space E to be (ft* with the 
norm topology, there is an element g GO such that Tug—g for all 
C/G^, that is, g{U*AU)=g(A) for all AG®, and C/G^. If C G 6 , 
then, for all £76*11, U*CU=C, (Tuf)(C)=f(U*CU)=f(C) =h(C), 
k(C) =h(C) for any k<EQ, hence g(C) =h(C). 

Now let g be any linear form on (ft satisfying (i), (ii), (iii), and let 
g = | g | .y be the polar decomposition of g. Then for any Z/G^, 
Tug = (Tu\g\) '(UVU*) is the polar decomposition of Tug (=g)- By 
uniqueness of the polar decomposition, UVU*= V for all f /G^ , so 
that F G C a n d \\g\\ =g(F*) =h(V*) £\\h\\. Since obviously ||g|| ^\\h\\f 

we have ||g|| =||À||. An application of the preceding argument with 
h = 0 suffices to prove uniqueness. If h is positive, then g(l)=h(l) 
= \\h\\ =\\g\\, and so g is positive. 

(2) By part (1) we can define a linear isometry 7*:e*—>(ft* such 
that 

(a) (T*h)(U*AU) = (T*h)(A), 
(b) (r*/*)(C)=/KC), 

for AG<B*, A G (ft, U&'M and CE®. Let T:(ft-^C be the conjugate 
mapping. Since the ultraweak topology agrees with the weak* 
topology when (ft is identified with the dual of (ft*, (i) is immediate, 
(ii) and (iii) are easily verified ; (iv) and the uniqueness of T follow 
from the uniqueness proved in (1). 
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