CURVATURE AND DIFFERENTIABLE STRUCTURE ON SPHERES¹

BY ERNST A. RUH

Communicated by S. Sternberg, July 2, 1970

1. Introduction. The purpose of this note is to outline a proof of the following result: A simply connected, complete, riemannian manifold whose curvature tensor R is sufficiently close to the curvature tensor R_0 of the standard sphere S of the same dimension is diffeomorphic to S. Traditionally, the proximity of R and R_0 has been measured in terms of the sectional curvature as follows: A riemannian manifold is called δ -pinched if the sectional curvature K satisfies the condition $\delta < K \le 1$. Using this concept, Gromoll [4] and Calabi proved the following diffeomorphism theorem: There exists a sequence δ_n with $\lim \delta_n = 1$ as n increases such that a δ_n -pinched simply connected riemannian manifold M of dimension n is diffeomorphic to the sphere S^n .

In order to express the main condition of the diffeomorphism theorem independently of dimension, we introduce a different measurement for the proximity of the curvature tensors R and R_0 of the manifolds M and S^n respectively. To formulate this condition we think of the riemannian curvature tensor as a selfadjoint, linear map $R: V \wedge V \rightarrow V \wedge V$, where $V \wedge V$ denotes the exterior product of the tangent space with itself. A riemannian manifold is called *strongly* δ -pinched, if the eigenvalues λ of the above linear map at every point of M satisfy the condition $\delta < \lambda \le 1$.

2. Statement of result. In previous studies the pinching constant depended on the dimension of the manifold. However, the introduction of strong δ -pinching has the following advantage: The constant δ in the theorem below is independent of the dimension of the manifold.

THEOREM. There exists a constant $\delta \neq 1$ such that a complete, simply connected, strongly δ -pinched riemannian manifold is diffeomorphic to the standard sphere of the same dimension.

AMS 1969 subject classifications. Primary 5372.

Key words and phrases. Alexandrov-Rauch-Toponogoff comparison theorem, δ-pinching, Gauss map, Morse theory, strong δ-pinching.

¹ Research supported by NSF Grant No. GP 20628.

The main idea of the following proof is new. However, methods similar to those employed by Rauch [7], Berger [1], [2], Klingenberg [5], [6], Gromoll [4], and Cheeger [3] have been adapted to obtain the necessary estimates.

3. Outline of proof. We can suggest an idea of the proof by observing the Gauss map $g: M \to S^n$ that exists in case M is an n-dimensional manifold embedded in euclidian space E^{n+1} . Of course, the map g sending $x \in M$ into the unit normal vector at x translated to a fixed point x_0 is well defined because parallel translation in $E = M \times E^{n+1} = \tau(M) \oplus \nu(M)$, where $\tau(M)$ and $\nu(M)$ denote tangent and normal bundle respectively, is independent of the path. In addition, g is a local diffeomorphism as long as the derivative $D_X n$ of the unit normal vector field n in any direction $X \neq 0$ is nonzero.

In the general case the normal bundle is not available; however, we replace it by a trivial line bundle ϵ and define a flat connection ∇' on $E = \tau(M) \oplus \epsilon$. At this point a map $f: M \to S^n$ is defined by replacing the normal vector field by a section e of length one in ϵ ; i.e., the image f(x) is obtained by parallel translation of e(x) to the fibre E^{n+1} over a fixed point x_0 . Again, f is a local, and since M is simply connected, a global diffeomorphism as long as $\nabla'_X e \neq 0$. Therefore, the proof consists of defining a flat connection ∇' on $\tau(M) \oplus \epsilon$ and checking $\nabla'_X e \neq 0$.

The first step in the construction of ∇' is to define a connection ∇'' in E with small curvature as follows:

$$\nabla_X''e_i = \nabla_X e_i - \frac{1}{2}(1+\delta)\langle X, e_i \rangle e, \qquad \nabla_X''e = \frac{1}{2}(1+\delta)X,$$

where ∇ denotes the riemannian connection in the tangent bundle $\tau(M)$; e_i , $i=1, 2, \cdots, n$, denotes a moving orthonormal frame in $\tau(M)$; and e is a section of length one in ϵ . The curvature of ∇'' can be estimated in terms of δ . The idea for the definition of ∇'' originates from the following observation: In case M is the standard sphere embedded in E^{n+1} , the covariant derivative defined above is nothing but the ordinary derivative in E^{n+1} .

In the next step, ∇'' is used to construct a cross section u' in the principal bundle of n+1-frames associated to E. The results necessary for this construction are compiled in the first four chapters of [4]. The proofs are based on the Alexandrov-Rauch-Toponogoff comparison theorem and the Morse critical point theory. In particular, we use the representation of M as the union $M_0 \cup M_1$ of two balls representing upper and lower hemisphere. On M_0 we define a cross section u_0 by moving a fixed n+1-frame $u_0(q_0)$ chosen over the center q_0 of M_0 by parallel translation with respect to ∇'' along geodesic

150 E. A. RUH

rays to points in M_0 . On M_1 we define first $u_1(q_1)$ by parallel translation of $u_0(q_0)$ along a shortest geodesic to q_1 , the center of M_1 . Subsequently, u_1 is defined on M_1 by translation along geodesic rays. On $C = M_0 \cap M_1$ the sections u_0 and u_1 may not coincide, but the distance in the fibre can be estimated in terms of the pinching constant δ . Therefore, for δ close enough to 1, the sections u_0 and u_1 can be modified to yield a differentiable cross section u' on M. At this point, let ∇' denote the flat covariant derivative in $E = \tau(M) \oplus \epsilon$ corresponding to u'.

It remains to be shown that $\nabla'_X e \neq 0$. The result follows because for δ close to 1, the difference of ∇' and ∇'' is small and

$$\|\nabla_{X}^{"}e\| = \frac{1}{2}(1+\delta)\|X\| \sim \|X\|.$$

The details, as well as an estimate for the pinching constant δ , will be furnished in a subsequent paper.

BIBLIOGRAPHY

- 1. M. Berger, Les variétés riemanniennes dont la courbure satisfait certaines conditions, Proc. Internat. Congress Math. (Stockholm, 1962). Inst. Mittag-Leffler, Djursholm, 1963, pp. 447-456. MR 31 #695.
- 2. ——, Les variétés Riemanniennes (1/4)-pincées, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960), 161-170, MR 25 #3478.
- 3. J. Cheeger, Pinching theorems for a certain class of Riemannian manifolds, Amer. J. Math. 91 (1969), 807-834.
- 4. D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966), 353-371. MR 33 #4940.
- 5. W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. (2) 69 (1959), 654-666. MR 21 #4445.
- 6. —, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47-54. MR 25 #2559.
- 7. H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951), 38-55. MR 13, 159.

PURDUE UNIVERSITY, LAFAYETTE, INDIANA 47907