
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 77, Number 1, January 1971 

CURVATURE AND DIFFERENTIABLE 
STRUCTURE ON SPHERES1 

BY ERNST A. RUH 

Communicated by S, Sternberg, July 2, 1970 

L Introduction. The purpose of this note is to outline a proof of the 
following result: A simply connected, complete, riemannian manifold 
whose curvature tensor R is sufficiently close to the curvature tensor 
Ro of the standard sphere 5 of the same dimension is diffeomorphic 
to S. Traditionally, the proximity of R and Ro has been measured in 
terms of the sectional curvature as follows: A riemannian manifold 
is called 8-pinched if the sectional curvature K satisfies the condition 
ô <K£1. Using this concept, Gromoll [4] and Calabi proved the 
following diffeomorphism theorem: There exists a sequence S» with 
lim ôn = l as n increases such that a 8n-pinched simply connected 
riemannian manifold M of dimension n is diffeomorphic to the sphere 

In order to express the main condition of the diffeomorphism 
theorem independently of dimension, we introduce a different mea­
surement for the proximity of the curvature tensors R and -Ro of the 
manifolds M and Sn respectively. To formulate this condition we 
think of the riemannian curvature tensor as a self ad joint, linear map 
J?: VAV-+VAV, where V/\V denotes the exterior product of the 
tangent space with itself. A riemannian manifold is called strongly 
ö-pinched, if the eigenvalues X of the above linear map at every point 
of M satisfy the condition S<X^1. 

2. Statement of result. In previous studies the pinching constant 
depended on the dimension of the manifold. However, the introduc­
tion of strong S-pinching has the following advantage: The constant 
Ô in the theorem below is independent of the dimension of the mani­
fold. 

THEOREM. There exists a constant S ?*1 such that a complete, simply 
connected, strongly ö-pinched riemannian manifold is diffeomorphic to 
the standard sphere of the same dimension. 
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The main idea of the following proof is new. However, methods 
similar to those employed by Rauch [7], Berger [ l ] , [2], Klingen-
berg [5], [6], Gromoll [4], and Cheeger [3] have been adapted to 
obtain the necessary estimates. 

3. Outline of proof. We can suggest an idea of the proof by ob­
serving the Gauss map g\M—*Sn that exists in case M is an w-dimen-
sional manifold embedded in euclidian space En+1. Of course, the 
map g sending xÇzM into the unit normal vector a t x translated to a 
fixed point x0 is well defined because parallel translation in 
E = MXEn+1=T(M)@v(M)y where T(M) and v(M) denote tangent 
and normal bundle respectively, is independent of the path. In addi­
tion, g is a local diffeomorphism as long as the derivative Dxn of the 
unit normal vector field n in any direction Z ^ O is nonzero. 

In the general case the normal bundle is not available; however, 
we replace it by a trivial line bundle e and define a flat connection V' 
on E =T(M) ©e. At this point a map/:M—>Sn is defined by replacing 
the normal vector field by a section e of length one in e; i.e., the image 
f(x) is obtained by parallel translation of e(x) to the fibre En+l over 
a fixed point x0. Again, ƒ is a local, and since M is simply connected, 
a global diffeomorphism as long as V x ^ O . Therefore, the proof 
consists of defining a flat connection V' on T(M)@€ and checking 

The first step in the construction of V' is to define a connection V" 
in E with small curvature as follows: 

Vxd - Vxei - J ( l + 6)(X, eue, Vxe « §(1 + 8)X, 

where V denotes the riemannian connection in the tangent bundle 
T(M); e», i = l , 2, • • • , w, denotes a moving orthonormal frame in 
T(M); and e is a section of length one in e. The curvature of V" can 
be estimated in terms of S. The idea for the definition of V" origi­
nates from the following observation: In case M is the standard 
sphere embedded in £ n + 1 , the covariant derivative defined above is 
nothing but the ordinary derivative in £ n + 1 . 

In the next step, V" is used to construct a cross section uf in the 
principal bundle of w+1-frames associated to £ . The results neces­
sary for this construction are compiled in the first four chapters of 
[4]. The proofs are based on the Alexandrov-Rauch-Toponogoff 
comparison theorem and the Morse critical point theory. In particu­
lar, we use the representation of M as the union M^JM\ of two balls 
representing upper and lower hemisphere. On Mo we define a cross 
section uQ by moving a fixed w+1-frame u0(qo) chosen over the cen­
ter qo of M0 by parallel translation with respect to V" along geodesic 



150 E. A. RUH 

rays to points in Mo> On Mi we define first Ui(qi) by parallel transla­
tion of #o(<Zo) along a shortest geodesic to qu the center of M\. Sub­
sequently, Ui is defined on Mi by translation along geodesic rays. On 
C=M0{~\Mi the sections w0 and «i may not coincide, but the dis­
tance in the fibre can be estimated in terms of the pinching constant 
6. Therefore, for 5 close enough to 1, the sections u0 and ui can be 
modified to yield a differentiable cross section u1 on M. At this 
point, let V' denote the flat covariant derivative in £ = r(ilf)©€ 
corresponding to u'. 

It remains to be shown that Vx^O. The result follows because 
for S close to 1, the difference of V' and V" is small and 

||v£a||-*<i + i)||x||HW|. 
The details, as well as an estimate for the pinching constant 8, will 
be furnished in a subsequent paper. 
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