HOMOTOPY THEORY OF RINGS AND ALGEBRAIC K-THEORY

S. M. GERSTEN

Communicated by P. E. Thomas, July 29, 1970

ABSTRACT. Algebraic K-theory is interpreted in terms of standard homotopy notions applied to the category of rings. Representability of the functors K^{-i} is discussed.

The object of this announcement is to indicate how the algebraic K-theory of [1] and [2] can be explained as homotopy theory in a precise sense. Some terminology of homotopy theory was used in both these articles, but the analogy turns out to be very far reaching. We work in the category $\mathfrak B$ of Banach rings complete in their quasinorm [2]; morphisms are bounded homomorphisms. The terminology of [2] will be assumed. From $\mathfrak B$ one constructs the category Hot- $\mathfrak B$ whose objects are those of $\mathfrak B$ and morphisms are homotopy classes of bounded maps (some care must be observed in defining Hot- $\mathfrak B$ since homotopy is per se neither transitive nor symmetric but does behave well with respect to compositions). Denote Hot- $\mathfrak B(A,B)$ by [A,B].

DEFINITION 1. If X and $A \xrightarrow{f} B$ are in \mathfrak{B} , one says that f is an X-fibration if for each $n \ge 1$, $E^n f$ induces a surjection $\mathfrak{B}(X, E^n A) \to \mathfrak{B}(X, E^n B)$.

LEMMA 1. For all X in \mathfrak{B} , $A\{x\{\rightarrow A \text{ and } EA \rightarrow A \text{ given by "}x\rightarrow 1" \text{ are } X\text{-fibrations.}$

DEFINITION 2.1 The mapping cone C(g) of $g:B\to C$ is the fibre product in the diagram

$$C(g) \longrightarrow EB$$

$$\downarrow g_1 \qquad \downarrow$$

$$A \stackrel{g}{\longrightarrow} B$$

LEMMA 2. For any X there is an exact sequence of pointed sets

$$[X, C(g)] \rightarrow [X, A] \rightarrow [X, B].$$

AMS 1970 subject classifications. Primary 13D15, 16A54, 18F25.

Key words and phrases. Algebraic K-theory, homotopy in rings, Puppe sequences, representable functor, pro-rings.

¹ I believe a more appropriate terminology for EA and ΩA would have been the cone and suspension of A respectively.

One may iterate the construction C(g) to get the diagram

$$\cdots \to C(g_n) \xrightarrow{g_{n+1}} C(g_{n-1}) \to \cdots \to C(g) \xrightarrow{g_1} A \xrightarrow{g} B$$

and the corresponding exact Puppe sequence of homotopy sets

$$\rightarrow [X, C(g_n)] \rightarrow [X, C(g_{n-1})] \rightarrow \cdots \rightarrow [X, A] \rightarrow [X, B].$$

Assume now that X is a cogroup in $\mathfrak B$. That is, there is a morphism $X \to X \perp \!\!\!\perp X$ in $\mathfrak B$ such that $(1_X \perp \!\!\!\perp 0) \cdot \Delta = 1_X$, $(0 \perp \!\!\!\perp 1_X) \circ \Delta = 1_X$ and $(\Delta \perp \!\!\!\perp 1_X) \circ \Delta = (1_X \perp \!\!\!\perp \Delta) \circ \Delta$. Then $\mathfrak B(X, A)$ is a group for all A.

PROPOSITION 1. If X is a cogroup in \mathfrak{B} , then the functor $\overline{X} = \mathfrak{B}(X, \cdot)$: $\mathfrak{B} \rightarrow Groups$ is a Mayer-Vietoris Functor in the sense of [1]. In addition $[X, A] = \kappa_1^{\overline{x}}(A)$, where in the terminology of [1] (using the appropriate path ring $EA = xA\{x\}$) $\kappa_1^{\overline{X}}(A)$ is defined by the exact sequence

$$\overline{X}(EA) \to \overline{X}(A) \to \kappa_1^{\overline{X}}(A) \to 1.$$

THEOREM 1. Assume again that X is a cogroup in $\mathfrak B$ and the diagram

$$A \xrightarrow{f} B \xrightarrow{g} C$$

is a short exact sequence in & with g an X-fibration. Then the exact Puppe sequence above is precisely the exact K-theory sequence of [1]

$$\cdots \to \overset{\vec{X}}{\kappa_{n+1}}(A) \to \overset{\vec{X}}{\kappa_{n+1}}(B) \to \overset{\vec{X}}{\kappa_{n+1}}(C) \to \overset{\vec{X}}{\kappa_n}(A) \to \cdots.$$

(Again, EA must be suitably interpreted in [1] for nondiscrete rings.) We may apply these notions to the functors Gl_n and Gl.

PROPOSITION 2. Gl_n is representable by gl_n in \mathfrak{B} . Gl is pro-representable in \mathfrak{B} by gl. Both gl_n and gl are cogroups, the latter in pro- \mathfrak{B} .

COROLLARY. For any A in \mathfrak{B} we have canonical isomorphisms $\kappa_1^{\mathrm{Gl}_n}(A) \cong [\mathrm{gl}_n, A]$ and $K^{-1}(A) = \kappa(_{\mathrm{Gl}}A) = [\mathrm{gl}, A]$, where the last equation is interpreted in the pro-homotopy category. Furthermore, the exact Puppe sequence for $X = \mathrm{gl}$ in Theorem 1 is precisely the exact sequence of [2] of the functors K^{-n} .

We can also consider the representability of the functors K^{-n} of [2].

LEMMA 3. The loop ring functor $A \rightarrow \Omega A$ has an adjoint Σ in pro- \mathfrak{B} . One has pro- \mathfrak{B} $(\Sigma A, B) \cong \mathfrak{B}(A, \Omega B)$ and $[\Sigma A, B] = [A, \Omega B]$.

As a word of caution it should be noted that Σ is not the suspen-

sion functor S of [2]. From Lemma 3 one deduces

PROPOSITION 3. The functor K^{-n} $(n>0): \oplus Ab$ is pro-represented by $\Sigma^{n-1}gl$.

We show in addition that κ_i^G is pro-representable in \mathfrak{B} , where G is a Mayer-Vietoris functor which is an algebraic group. (The definition of κ_i^G in [1] is modified as in Proposition 1 above in the nondiscrete case.)

REFERENCES

- 1. S. M. Gersten, On Mayer-Vietoris functors and algebraic K-theory, J. Algebra (to appear).
- 2. M. Karoubi and O. Villamayor, Foncteurs Kⁿ en algèbre et en topologie, C. R. Acad. Sci. Paris 269 (1969), 416-419.

RICE UNIVERSITY, HOUSTON, TEXAS 77001