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Gordon Thomas Whyburn was born at Lewisville, Texas on 
January 7, 1904, the son of Thomas and Eugenia Elizabeth Whyburn. 
After attending the public schools of Lewisville, he went to the Uni­
versity of Texas, where he obtained the A.B. (1925), M.A. (1926) 
and Ph.D. (1927). In 1925, he married Lucille Smith, also from Lewis­
ville and a mathematics student at Texas. His elder brother, William 
Marvin, was during the same years a mathematics student at Texas 
and on the way to his career in mathematics and administration. 
During the years 1927-1929, Whyburn was Adjunct Professor of 
Mathematics at Texas. He held a Guggenheim Fellowship in 1929-
1930 and spent the year in Vienna, with trips to such European cen­
ters as Warsaw. Upon his return to the USA, he became Associate in 
Mathematics at The Johns Hopkins University. In 1934, Whyburn 
accepted the chairmanship of the Department of Mathematics at 
the University of Virginia and became Professor of Mathematics 
there. He lived in Charlottesville for the rest of his life, except for 
frequent summers teaching at Stanford, University of California, 
UCLA and the University of Colorado, and the year 1952-1953 on 
leave at Stanford and 1956-1957 on leave in England and Switzer­
land. The Whyburn's only child, Kenneth Gordon, now on the 
faculty in mathematics a t the University of Washington, was born 
in 1944. Whyburn held the chairmanship until 1966, when he became 
the first member of the new Center for Advanced Studies in the 
Sciences at Virginia as well as retaining his position as Alumni Pro­
fessor of Mathematics. He suffered a heart attack in 1966, but re­
covered and resumed a full schedule of teaching and research until 
his death of a sudden heart attack on September 8, 1969. 

Whyburn was a very private man. He was quiet and shy, and 
remarkably gentle with students and family. But in moments of 
administrative crisis, he could be extremely tough when he had to be. 
A man of brilliance, with a remarkable speed in research, he never­
theless believed deeply in continuity and patience, and that it was 
the total record of accomplishment of a lifetime that mattered most. 

I. His CAREER AS A LEADER 

Whyburn was a brilliant scholar from the first. As a young chem-
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istry student he took calculus from R. L. Moore and continued to 
take Moore's courses and began to do research for Moore in the 
succeeding years. Moore kept steady pressure on him to switch to 
mathematics. After obtaining his Master's degree in chemistry, he 
did switch and obtained his Ph.D. in mathematics a year later. By 
that time he had already done a remarkable amount of research. 

A year as a Guggenheim Fellow in Europe, when Why burn was 25, 
was of particular importance to the development of his outlook on 
the mathematics world. He formed close ties with Kuratowski, 
Sierpinski and Hahn, and came to know Vietoris, Stoilow and nu­
merous other European topologists. These contacts, together with 
the view of the young and ambitious American mathematical world 
of that time, helped give him a broad picture of the mathematical 
community. 

In 1933, the University of Virginia began to interest Whyburn in 
a post as Chairman and Professor. The university was quite small 
and proud of its tradition as Jefferson's university. Its three profes­
sors of mathematics were retiring shortly. The university sought to 
use the opportunity to establish a first-rate research and graduate 
department. There were very few Ph.D. programs in the South, most 
of them were of token character, and only the programs at Texas and 
Rice were in any sense distinguished. Whyburn became excited about 
the prospects. For one thing, there were a few first-rate traditions in 
mathematics at Virginia—Sylvester had been a young faculty mem­
ber there (although not a very happy one), the Annals of Mathematics 
had been founded there. Moreover he was excited by the prospect of 
locating first rate graduate departments more widely about the coun­
try, and came to see Virginia as a place for him to do his part. 

The situation at Virginia inspired from Whyburn an ideal plan to 
fit the circumstances. One would get together a few young and con­
genial mathematicians of topflight accomplishments. Their fields 
should be differing but overlapping so that there would be beneficial 
contacts between them and so that the students would not be con­
fronted with choosing between absolutely unrelated areas. The plan 
worked beautifully. E. J. McShane joined the Department in 1935, 
and G. A. Hedlund in 1939. The three of them ran a program of charm 
and high standards. The faculty never numbered more than six, the 
library was minimal, the facilities were very imperfect. But these 
young, vigorous men of high accomplishments ran an extremely 
effective program nevertheless. 

In the years after World War II , the changes in American aca-
demia began to make their mark. Enrollments climbed, staffs grew, 
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research specialization increased. Whyburn seemed to feel deeply that 
if the department was not to be transient then steady and continuous 
leadership was required from him. Until 1966 he continued to serve 
as chairman. For all but a few years he had no assistant chairman, 
but simply did many of the necessary details himself. For establishing 
and nurturing a research department* Whyburn ranks very high in 
contributions to Southern mathematics. 

However, Whyburn's goal was not at all to serve Southern math­
ematics but to serve American mathematics as a whole. He must 
have come to know reasonably early his talent for organization— 
complete sympathy for first-rate research, a calm and dispassionate 
point of view, extreme quickness in getting to the core of an argu­
ment, willingness to handle dirty details. As the years passed, he 
contributed more and more of his talents to national organizations, 
most of all to the Society. 

We will begin here with one of his early big committee assignments, 
in 1938-1939 as a member of the committee to make recommenda­
tions to the Society on an abstracting journal. With German periodi­
cals perilously near being subject to Nazi orders, feelings were high 
that an American review journal was needed. On more permanent 
grounds as well, the argument was won and Mathematical Reviews 
came into being. 

As the war came on, Whyburn became very concerned that a 
generation of young mathematicians not be wiped out, as a generation 
of English mathematicians had been in World War I. He also became 
concerned that American universities be kept alive and, in some mini­
mal sense, functioning. In working to keep the University of Virginia 
open, he served as Director of the Premeteorological Training Pro­
gram conducted at the university for the Army Air Forces. Na­
tionally he became a member of the War Policy Committee, a joint 
committee of the AMS and the MAA. His interest was in getting 
mathematicians placed in universities or in wartime research; defi-
nitelv the infantry was not the proper place. Later on during the 
Korean war he was to serve on the Selective Service Advisory Com­
mittee on Specialized Personnel, and with the same point of view. 

His most concentrated period of service to the American Math­
ematical Society was no doubt the years 1950-1954. In the years 
1950-1952 he was a member of the Transactions Editorial Board, and 
in 1951-1952 was Managing Editor of the Transactions. In 1952 he 
was President Elect of the Society and in 1953-1954 served as Presi­
dent. The years were interesting ones—the publication problems were 
mounting in their inexorable way, federal support for research was 
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coming into being, the lingering political problems from the Mc­
Carthy era were working themselves out, the Society and the math­
ematical community were growing. After these years he continued to 
serve for several years as member of the Board of Trustees and to 
take a keen interest in the Society, but no doubt felt that he had 
finished his turn of concentrated work for the Society. 

He also spent a fair amount of time in Washington in the fifties. 
In 1952 he was on the NSF Graduate Fellowships selection panel, and 
in 1953-1955 was chairman of that panel. Thereafter he served on the 
post-doctoral panel. In the years 1956-1959, he was on the Math­
ematical, Physical and Engineering Sciences Divisional Committee 
of the NSF. Throughout he kept up a lively interest in the develop­
ment of the NSF. In an unusual way he was interested in the pre­
dominance of first-rate research, and at the same time for regional 
development. 

After the busy years of the fifties, he relaxed his interest in the 
flow of national mathematics somewhat, but in a typical way would 
always be willing to put in a good word for principles he considered 
paramount, such as quality or basic research. 

As was inevitable for one of such accomplishment in research as 
well as in administration and teaching, Whyburn received numerous 
awards and honors. In 1938 he received the Chauvenet Prize of the 
MAA for his expository paper [70], "On the structure of continua." 
In 1940, he was Colloquium Lecturer of the AMS; his book, Analytic 
topology [84], grew out of those lectures. He was awarded the Sc.D. 
degree by Washington and Lee University in 1949. In 1951 he became 
a member of the National Academy of Sciences. In 1968 he received 
the Thomas Jefferson Award, the top award of the University of 
Virginia. 

II. His RESEARCH 

Although Whyburn's total body of mathematical research has a 
considerable unity about it, it is nevertheless desirable to divide it 
into a few categories. Needless to say, the following concerns only a 
sampling of his work. 

1. Cyclic elements and the structure of continua. By a continuum 
we mean a compact connected metric space. Whyburn's early re­
search involved understanding the full details about the connections 
between a plane continuum, oftentimes assumed to be locally con­
nected, and the regions into which it divides the plane. In the course 
of this effort, he came upon a structure theory for locally connected 
plane continua. Within a very few years, this theory turned out to 
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hold for arbitrary locally connected continua. The applications for 
plane continua turned out to be just one facet of the theory. We first 
indicate the final result, cyclic element theory [35], [84]. 

Let X be a locally connected continuum. A point xE:X is a cut 
point if X—x fails to be connected; it is an end point if for each €>0 
there exists an open set U with xÇEU and diam U<e such that 
dU — U—U consists of a single point. Define X to be cyclic if any two 
points of X are contained in a simple closed curve of X. In the cyclic 
connectedness theorem [8], [47], Why burn proved that a locally con­
nected continuum is cyclic if and only if it has no cut points. The 
basic idea of cyclic element theory can be put this way: one can 
understand a locally connected continuum completely if one can 
understand the locally connected cyclic subcontinua which are maxi­
mal with respect to being cyclic. 

Define a true cyclic element of -ST to be a connected subset, consisting 
of more than one point, which is maximal with respect to having no 
cut points of itself. 

THEOREM. Let X be a locally connected continuum, and let xÇzX be 
neither a cut point nor an end point. Then x is contained in a unique true 
cyclic element. A true cyclic element is a locally connected cyclic con­
tinuum. X has at most a countable number of true cyclic elements, and 
their diameters tend to zero. Any two of them intersect in at most a point, 
and the point of intersection must be a cut point. 

Among the most basic of the papers of Whyburn which can be 
classified as contributing to cyclic element theory are [2], [4], [8], 
[9], [14], [15], [16], [30], [31], [32], [35], [47], [48], [59], [80]. 
And in addition to the broad scope of the theory, these papers are 
replete with lemmas and theorems which have found many uses else­
where, e.g., the cut point order theorem. 

An end point of a continuum X is of order 1 in X. A non-end point 
xÇzX is of order 2 in X if for each c>0 there exists an open set U 
with # £ £7 such that diam U < € and d U consists of exactly two points. 

THEOREM. All except possibly a countable number of the cut points of 
a continuum X are of order 2 in X. 

Whyburn generalized this theorem in at least two directions, to 
noncompact connected spaces in particular. 

At the same time as the basic cyclic element theory was developing, 
the applications were being made. Define a boundary curve to be a 
locally connected continuum each true cyclic element of which is a 
simple closed curve. If X is a locally connected continuum in the 
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2-sphere S2 which is the boundary of a connected open set, then X is a 
boundary curve [16]. Given a boundary curve X} there is a homeomorphic 
image X' of X which is the boundary of a connected open set (this is due 
to Ayres). Moreover, if X is a locally connected continuum in S2 

which does not separate 52 , then each true cyclic element is a two-cell 
[16]. Also, a locally connected continuum in S2 fails to separate S2 if 
and only if each true cyclic element fails to separate. This latter fact 
is the first property of a sort that was later called cyclicly extensible 
and reducible. 

A cactoid is a locally connected continuum each true cyclic element 
of which is a 2-sphere. A map ƒ of a locally connected continuum onto 
a Hausdorff space Y is monotone if each f~~l(y) is a continuum. The 
following theorem is largely due to R. L. Moore, with a later addition 
by Whyburn. 

THEOREM. Every monotone image of a cactoid is a cactoid. Every 
cactoid is the monotone image of a 2-sphere. 

While on the subject, note that in 1934, Whyburn gave the proper 
class of maps which did for boundary curves what monotone maps 
did for cactoids [60]. Let X and Y be locally connected continua. A 
map f:X—*Y is said to be nonalternating if whenever yÇîY then any 
f~"l(y') for y'^y is contained in a single component of X—f~~l(y). 

THEOREM. Every nonalternating image of a boundary curve is a 
boundary curve. Every boundary curve is the nonalternating image of a 
simple closed curve. 

An excellent summary of the subject, including not only Why-
burn's work but also the subsequent work, is the paper of B. L, 
McAllister, Amer. Math. Monthly 73 (1966), 337-350. Whyburn's 
book [84], Analytic topology, is the best source for a full treatment 
including proofs. 

2. Regular convergence and monotone maps. For a period around 
1933-1935, Whyburn became interested in homology theory and its 
possibilities for higher dimensional generalizations of structure the­
orems for continua and for maps. At least two of his contributions of 
this period have become of permanent interest. Recall that the space 
2X of closed subsets of a compact metric space has a natural topology, 
tha t of the Hausdorff metric. Convergence of closed subsets will mean 
convergence in this metric. The subset of 2X consisting of all continua 
is closed in 2X . But, for example, if X = 5 2 then sequences of arcs con­
verge to some very weird limits indeed. Whyburn defined convergence 
in a much more restricted fashion so that the limit would be much 
nicer. 
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A sequence (An) of closed subsets of a compact metric space -X" is 
said to converge regularly to the closed subset A [64] if (A n) converges 
to A and if given e > 0 there exists 5 > 0 and an integer N such that if 
n>N then any two points x, y of An with p(x> y) <ô are contained in 
a connected subset of A n of diameter <€. The definition for r-regular 
convergence is similar: for n>Ny any Vietoris cycle (over the integers 
mod 2) of dimensionSr of diameter < 5 bounds in a subset of An of 
diameter <€. Then 0-regular convergence = regular convergence. 
Moreover the sequence A, A, * > > , A, • • * converges r-regularly to 
A if and only if A is lcr (that is, is locally connected in dimensions ^ r 
in the sense of homology over the integers mod 2). 

In current language, the language can be easily put in terms of 
Cech cohomology over any coefficient group K. I t is required that 
(An) converge to A and that given xÇzX and a closed neighborhood 
U of x in X then there exist a closed neighborhood VQ U of x and an 
N such that for n>N, 

Ë^U^Ani K) -> BKV C\An]K) 

has trivial image for i = 0, 1, • • • , r. 
Whyburn's interest in the concept was for such theorems as the 

following [64]. 

THEOREM. Let the sequence Ai, A2, • • • of 2-spheres converge 
irregularly to the closed subset A of a compact metric space. Ifi~Ot then 
A is a cactoid. If i = l, then A is either a 2-sphere or a single point. 

A number of people have considered the concept over the years. 
For example, if (An) converges r-regularly to A, then 

B\An\ K) « W(A ;K), i = 0, 1, • • • , r, 

for n large. Moreover A is lcr. For a survey of some years ago, see 
Paul A. White, Bull. Amer. Math. Soc. 60 (1954), 431-443. 

Whyburn had also begun to encounter special instances of the 
following phenomenon. Given compact metric spaces X and F, there 
is the space Yx of continuous maps of X into F. There are also na­
tural subsets ÏPZQYX (for example, all monotone maps). In some 
instances, the subset of elements of 9ÏZ which map X onto F i s closed. 
More generally, if one puts restrictions on the fashion in which the 
images converge, the limit of a convergent sequence of elements of M 
may be in 9TC. 

He defined f:X—>F to be r-monotone if each f~l(y) is acyclic in 
dimensions ^ r (that is, has vanishing reduced Cech homology groups 
over the integers mod 2 in dimensions ^ r ) . Thus 0-monotone = mono­
tone. 
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THEOREM [65 ]. Let X and W be compact metric spaces and let (fn) 
be a sequence of r-monotone maps of X into W; let Yn =fn(X). Suppose 
the sequence (fn) converges uniformly to the map f of X onto Yd W. Then 
( Yn) converges r-regularly to Y if and only if Y is lcr and f is r-monotone. 

Note the corollary. If each fn is an r-monotone map of X onto the lcr 

space Y and if (fn) converges uniformly t o / , then ƒ is r-monotone. Let 
r = 0. If each fn is a monotone map of X onto the locally connected 
compact metric space F, and if (fn) converges uniformly to ƒ, then ƒ 
is monotone. 

As a corollary, if (fn) is a sequence of homeomorphisms of S2 onto 
S2 which converges uniformly to ƒ, then ƒ is monotone. J. W. T. 
Youngs later proved the converse: every monotone map of S2 onto 
S2 is a uniform limit of homeomorphisms. 

In later years, Why burn was considering noncompact domains and 
ranges, and considered questions for the noncompact case similar to 
the above. See [114], [115], [129]. 

3. Open maps. Around 1936, Whyburn began to consider the 
work of Stoilow. Call a map ƒ :X—> Y open if whenever U is open in X 
then ƒ( U) is open in Y. Calif light if each f~*(y) is totally disconnected. 

THEOREM (STOILOW). Let X be an orientable 2-manifold without 
boundary and letf:X—>S2 be a map. Then f is light and open if and only 
if there exist a Riemann surface R, a homeomorphism hof X onto R, and 
a nonconstant complex analytic map g : R--+S2 such that f = gh. 

By now Whyburn had encountered a number of instances (see §1) 
of the following: a narrow class S of spaces and a wide class 9TC of maps 
such that every 3TC-image of an element of S is also an element of S. 

He considered now S = 2-manifolds and 9fTC = light open maps and 
proved the following [76]. 

THEOREM. Let X be a 2-manifold (with or without boundary) and let 
f be a light open map of X onto a Hausdorff space Y. Then Y is a 
2-manifold. 

Moreover each f~l(y) is a discrete set. lîxÇzf^iy) is not a boundary 
point of X, there exist coordinate neighborhoods U of x and V of y 
such that ƒ ( t / ) ^ and 

(i) ƒ : U—*V is equivalent to the map / ' ( z )=z* of { z : | z | < l } onto 
itself (in case y is not on the boundary of Y), or 

(ii) f:U—>V is equivalent to ƒ"ƒ', where ff,(x+iy) =x+i\y\, in 
case y is on the boundary. 

If X is compact, then ƒ is simplicial in appropriate subdivisions of 
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X and F. If F is a closed orientable surface so also is X. His papers 
[74], [76], [77], [88], [102], [125] treat open maps on 2-manifolds 
and related questions. 

Off and on for the rest of his life, Whyburn was to spend consider­
able time on open maps, particularly on lines of research relating 
their topological properties to complex function theory. For example, 
consider the classical theorem that if a sequence {/n} of complex 
analytic functions converges uniformly on compact sets to a limit ƒ, 
then ƒ is complex analytic. However on the purely topological side 
the sets 9TZCFX of open maps, or light open maps, are not closed. 
For as we have seen, any monotone map of S2 onto S2 is the uniform 
limit of a sequence of homeomorphisms. He arrived at the notion 
"pseudo-open" as the correct limit concept [89], [97], [lOl], [112]. 
A map ƒ of a locally connected, locally compact separable metric 
space X into another F is pseudo-open if whenever U is an open set 
containing a compact component of some f~~l(y), then ƒ(U) contains 
y in its interior. 

THEOREM [112]. Suppose (fn) is a sequence of pseudo-open maps of 
X onto Y (X and Y as above) which converges uniformly on compact sets 
to ƒ :X—»F. Then f is pseudo-open. In particular if f is light then ƒ is 
also open. 

As Whyburn thought about the light open maps on 2-manifolds as 
the topological counterparts of the complex analytic functions, it 
annoyed him that analytic machinery was needed to prove the non-
constant complex analytic functions light and open. Ursell and 
Eggleston provided a proof using essentially no analytic machinery. 
It then seemed to Whyburn that one should go ahead and prove topo­
logical^, assuming only the existence of the derivative, that they 
had a second derivative, etc. He publicized the problem, in the first 
edition of his book, Topological analysis [117] and elsewhere [106]. 
Plunkett made considerable progress and in a few years Connell and 
Connell-Porcelli wiped out the problem completely. For a complete 
account, see the revised edition of his book [117] and see also [128]. 
In fact, the revised edition of his book may be used as a starting place 
for reading his work on open maps. 

4. Compact maps and quotient maps. In considering light open 
maps ƒ from one 2-manifold onto another, even if the map is finite-to-
one there is not necessarily a finite degree for the map. In examining 
such problems, Whyburn was led to the compact maps [lOl], maps 
f:X—>Y such that whenever K is compact in F then f~~l(K) is com-
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pact in X. I t turned out that Vainstein had already considered such 
maps in 1947, and had proved that closed maps with compact point 
inverses were compact. Whyburn was later to prove [133] that if F 
is a &-space then compact maps are also closed. 

In 1953, he proved [105], [136] that every map is the restriction 
of a compact map. Consider an arbitrary map ƒ :X—*Y where X and 
Y are 7Yspaces. Denote by Z = X + Y the disjoint union of X and Y. 
Define QC.Z to be open if 

(i) QC\X and QC\ Y are open, 
(ii) for any compact KQQ^Y, f-l(K)r\(X-Q) is compact. 
One can regard X as open in Z and Y as closed in Z. A retraction r 

of Z onto Y is defined by r =ƒ on X, r =id on F. The restriction r \ X 
i s / , and r is a compact map. 

Whyburn was interested in maps f\X—*Y with each f~l(y) com­
pact. When is ƒ a compact map? He proved [119] that every map ƒ 
of the line into the line with compact point inverses is compact. How­
ever with X~ Y = plane, this is false but one has instead [ l l9J : 

THEOREM. Every monotone map of the plane onto the plane is compact. 

He raised the question of generalizations to higher dimensions 
[127]. Among a number of interesting responses, Vaisala proved that 
every (» — 2)-monotone map of En onto En is compact. In the other 
direction, Bing in 1969 proved the existence of monotone maps of Ez 

onto Ez which are not compact. 
Whyburn was also interested in quotient maps (which he called 

quasi-compact maps). He observed that if ƒ is a quotient map of X 
onto F then it was not necessarily true that ƒ :f"1(A)-j>A was a quo­
tient map for any A C F . In fact, he proved that ƒ if"1 (A) —*A is a 
quotient map for all A C Y (and al l /) if and only if F is an accessibility 
space\ that is, given A in F with limit point p there is BQAUp with 
B closed and with p a limit point of B [109], [146]. For a first place 
to read about such theorems, see his last paper [149]. 

I I I . His TEACHING 

Some teachers are admired for their brilliant and inspiring lectures, 
others for their precise conciseness, and still others for their ability to 
dramatize the subject. Whyburn was none of these. His natural 
modesty precluded showiness, and he felt that understanding was 
more an internal than an external matter. He liked to give the stu­
dents something they could do. In this way, not only was understand­
ing achieved, but confidence and ability were strengthened as well. 

He did inspire his students, not in an instant, but more slowly and 
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over a longer period of time. Here again continuity was a principle— 
continuity of effort—continuity of interest in the individual student. 
He knew that confidence came slowly, for he had himself wondered 
as he committed himself to mathematics, if he would be able to think 
of new things to do. However it was, whether by example and per­
sonal devotion to research, or by understanding or encouragement, 
clear that he inspired and attracted students. Many were influenced 
by him and most of his own doctoral students developed successful 
research careers of their own. 

Ph.D. students of G. T. Whyburn. At The Johns Hopkins Univer­
sity: C. H. Harry (1932), Barbara Aitchison (1933), C. H. Wheeler 
(1933), G. E. Schweigart (1934), J. F. Wardwell (1935). At the Uni­
versity of Virginia: D. W. Hall (1938), A. D. Wallace (1939), J. L. 
Kelley (1940), P. A. White (1942), C. L. Clark (1944), E. E. Floyd 
(1948), M. K. Fort (1948), R. H. Kasriel (1953), R. L. Plunkett 
(1953), R. F. Williams (1954), W. E. Malbon (1955), R. W. Jollensten 
(1956), P. E. McDougle (1958), Edwin Duda (1961), G. K. Williams 
(1964), R. A. Duke (1965), R. F. Dickman (1966), E. A. Stone (1966), 
A. C. Garcia Maynez (1968), Evelyn McMillan (1968). 
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