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In this note we apply results of [ó] to obtain some sufficient condi­
tions for a plane field of codimension one on a manifold to be homo-
topic to a foliation. This and related questions on foliations are dis­
cussed in E. Thomas' survey [5, §4] and, for open manifolds, by A. 
Haefliger [2], A. V. Phillips has shown [3] that any field of codimen­
sion one on an open manifold is homotopic to a foliation. 

Let i f be a compact riemannian manifold with boundary. I t is 
convenient to work with the normal line field which corresponds to 
any plane field of codimension one. A line field is defined by a bundle 
monomorphism ƒ iX^r where X is some line bundle over M and r is the 
tangent bundle; we say X embeds in r. A homotopy of plane fields 
corresponds to a homotopy of bundle monomorphisms. We require 
/(X| dM) to be normal to the boundary and homotopies to be relative 
to the boundary. In particular, X| dM is trivial. 

I t is unknown which line bundles over M embed as the normal 
fields of foliations. We can however prove a stable theorem. Let 
p:MXSl-+M be the projection map. 

THEOREM 1. For any line bundle X—>M, p*\ embeds as the normal 
field of a folidation of MX S1. 

This is in contrast to the situation in higher codimension. The nor­
mal bundle <r of a foliation must satisfy Bott 's condition that the ring 
generated by the rational Pontrjagin classes of a vanishes in dimen­
sion > 2 dimcr; and if a does not satisfy Bott 's condition neither does 
p*<r. For codimension 2 for example pi(cr)2:=Q. If X is the canonical 
line bundle over RPm, then p*y embeds as the normal field of a 
foliation of RPmXSx and w 1(^*7)m^0. This foliation is easily de­
scribed. There is a map from the solid torus BmXSx onto RPmXSl 

which is a diffeomorphism on int BmXSl and a double cover from 
S^XS1 to RPm~1XS1CRPmXS1. The Reeb foliation of B^^XS1 

passes to the desired foliation of RPmXS1. 
We will need the following known fact. 

LEMMA 1. Let X—>M be a line bundle, s a section transverse to the 
zero section, N = s~1 (zero section), and i:NC.M. Then wi(X)H[M] = 

A MS 1969 subject classifications. Primary 5736; Secondary 5730* 
Key words and phrases. Foliation, line field, homotopy of line fields. 

1107 



1108 J. W. WOOD [September 

i*[iV] and X| N = v (as bundles) where v is the normal bundle of N in 
M. If\\ dMis trivial we may take N(Z int M. 

PROOF OF THEOREM 1. Let s and N be as in the lemma with 
N C int M and let Û be M cut along N. The construction of [6 p. 
339] gives a foliation of MXS1 with a vector field normal to the 
foliation and inward normal on dMXS1. Gluing along NXS1 we ob­
tain a foliation of MXS1 and a section / of the normal line field 
transverse to the zero section and such that f""1 (zero section) = NXSX. 
Note that 5 gives a section of p*\ with the same properties. By the 
lemma (applied to MXS1) p*\ is equivalent to the normal line field of 
the foliation (since the line bundles are classified by W\ and hence by 
[NXS1]). 

The following two results for the case where the normal line field is 
trivial are essentially contained in [ó]. 

THEOREM 2. If f:e1CL>T(MXS1)t then f is homotopic to the normal 
field of a foliation. 

THEOREM 3. If dMz is a union of tori (or empty), thenf\éc^rMz is 
homotopic to the normal field of a foliation. 

Let v be a nonvanishing vector field in/(e1). If v is inward normal 
on all boundary components then these results are just Corollary 9.4 
and Proposition 10.3 of [ô]. Otherwise suppose v is outward normal 
along N C dMz. After a homotopy we may assume v — —d/dt on a 
collar NX [0, 2) of N in M. Since N has a nonvanishing vector field, 
v\ NX {1} is homotopic to +d/dt\ NX {1}. Thus after a homotopy 
—v is inward normal on NX [0, l ] , v is inward normal on M—N 
X[0, l ) , and we are reduced to the previous case. The case of MXS1 

differs only in notation. 
If X—>M is any line bundle, there is an embedding f{Kc^rM®e1. 

Identifying T ( M * X 5 1 ) = ^ * ( T M © 6 1 ) , ƒ corresponds to an embedding 
p*f\p*\<:i*T(MXS1). This is the type of embedding that occurs in 
Theorem 1. 

THEOREM 4. For any / t X ^ r M S e 1 , p*f is homotopic to the normal 
field of a foliation. 

LEMMA 2. If X1 and fxn are bundles over Xy there is a one-one corre­
spondence between bundle maps Xe»;* and bundle maps elc^\®jx (i.e. 
nonvanishing sections of\®ii) and also between homotopy classes. 

This is well known and follows by tensoring with X from the fact 
thatX®X = €1. 

PROOF OF THEOREM 4. Let N and v be as in Lemma 1 ; we regard v 
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as a line bundle on N with a fixed embedding V^TM\ N. As sub-
bundles of (TM®€1) I N"DTM\ N,\\N and v are homotopic by Lemma 

2. Hence £*(X| N) is homotopic to p*v in p*((rM0e1) | iV). Under the 
identification of p^(rM®e1) with r(MX5' 1) , £*? is identified with the 
normal bundle of NXS1 in MXS1. Hence £*X is homotopic to /x on 
MXS1 with ju| N X 5 1 normal to NXS1. Let M be M cut along # ; 
then/x is trivial on MXS1 so Theorem 2 implies the result. 

In particular, if fl}S-yrM then, after crossing with S1, p*f is homo-
topic to the normal field of a foliation. To study more general em-
beddings of p*\ in r(MXSl) we need the following result of ob­
struction theory. 

LEMMA 3. Let Mm be orientable, m odd, i'.NC'mt M, x ( ^ — A 0 = 0 , 
u[N]^0, and \->M a line bundle with WiÇK)r\[M]=i*[N]. Then X 
embeds in TM and for any embedding X| N is homotopic to the normal 
bundle of N in M. 

PROOF. Let M be M cut along N. x(M) =0 so M has a nonvanish-
ing vector field normal along the boundary. This vector field provides 
a line field on M which is an embedding of X (see the proof of The­
orem 1). There is a corresponding section f:elc->\®T. We claim that 
any section g*el\ iVc»(X®T)| N which extends over M is homotopic 
to ƒ | TV. Homotopy classes of sections of ( X ® T ) | J V are classified by 
elements d(f\ N, g)GHm~~l(N; e\ N) where 6 is the bundle of integer 
coefficients on M twisted by Wi(K®r) \TTI(M)—>AUt Z, [4, §37]. Since 
Wi(K®T)=mwiÇK)+Wi(r)) Wi((X®r)| N) =Wi(N) and <B\N is the 
orientation bundle of N. Hence Hm~l(N; e\N)=Z. Those classes 
which extend over M are in the image of i* in the sequence 

i* 
Hm~\M\ e ) -» Hm~l(N] e | N) - • Hm(M, N; C) -» H™(M\ C) -» 0. 

Hm(M, N; (3)=Z using a tubular neighborhood, excision, and the 
fact that X| M—N is trivial. 

Hm(M; e) = Z if wxÇK ® r) = 0 iff w^X) = 0, 

= Z2 if Wi(X ® r) ^ 0 iff ^(X) 5̂  0. 

Since n[N]^0, we see that i* = 0. Thus if g extends, then g^f\ N, 
which completes the proof. 

THEOREM 5. If Mm is orientable, m even, and \—>M is a line bundle, 
then any fip^^r^MXS1) is homotopic to a line field normal to a 
foliation. 

PROOF. We may assume X is nontrivial. Let N be as in Lemma 1 and 
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apply Lemma 3 to NXS^MXS1 to get f~g with g(p*Qi\N)) 
normal to NXS1 in M XSl. Then cut and use Theorem 2. 

THEOREM 6. Let Mz be an orientable 3-manifold with dMz a union of 
tori {or empty). Let i:N2Qint Mz {N2 not necessarily connected or 
orientable)t and x(-A0=0. If wiQs)f\[M]=*i*[N], then any f'.V^rM 
is homotopic to a field normal to a foliation. 

PROOF. Apply Lemma 3 and Theorem 3 as above. 
Any line bundle X on a closed 3-manifold M is classified by Wi(K) 

or by its Poincaré dual u^H2{Mz; Z2), and u is represented by 
some surface N. If N is connected and nonorientable, then N = RP2 

# • • • # R P 2 {h times) and X embeds in rM if and only if WiÇK)z5*0 
[6, 11.4] if and only if h is even [l, p. 88]. In general \C.TM if and 
only if the sum of the genera of the nonorientable components of N 
is even. If u is represented by an even number of disjoint embedded 
RP2's, then by surgery along arcs connecting them in pairs, u can 
be represented by disjoint Klein bottles. If u is represented by an 
embedded S2, then by adding a small handle u can be represented by 
SlXS1. This gives the following. 

COROLLARY 1. If any element of H2{MZ; Z2) can be represented by a 
disjoint set of embedded surfaces with Euler characteristics ^ 0 , then for 
any X—»Af, anyf'.ÏS^r is homotopic to the normal line field of a foliation. 

Notice that if M\ and M2 satisfy the hypothesis of Corollary 1 then 
so does Mi#M2. 

COROLLARY 2. The conclusion of Corollary 1 holds f or any connected 
sum of the following manifolds: SlXS2, RPz

t S1XSlXSl
) and the lens 

spaces L{4k, 2k — 1). 

See [ l ] for the fact that the Klein bottle embeds in L(4fe, 2& — 1) 
and also for the statements below. 

If M2 is orientable of genus g, then M2XSl has a line field corre­
sponding to the class represented by M2 X {*} and this class cannot 
be represented by an orientable surface of genus < g o r a nonorient­
able surface of genus < 2 g + 2 . The other line bundles on M2XSl 

can be embedded normal to a foliation by Theorem 5 or 6. 
Question 1. Can all line bundles on M2XS1, M2 orientable of 

genus è 2, be embedded as the normal fields of foliations? 
For the lens space L{p, q), if p is odd there are no non tri vial line 

bundles. If p = 4k+2 there are no nontrivial line fields. If £ = 4fe 
there are nontrivial line fields, but L{4k> 2k — 1) is the only space in 
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which the Klein bottle embeds. (The torus always bounds.) Thus 
we also leave unanswered 

Question 2. Does the nontrivial line bundle on 1(8, 1) occur as the 
normal field of a foliation? 
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