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PREFACE 

Machines can write theorems and proofs, and read them. The 
purpose of mathematical exposition for people is to communicate 
ideas, not theorems and proofs. Experience shows that almost always 
the best way to communicate a mathematical idea is to talk about 
concrete examples and unsolved problems. In what follows I try to 
communicate some of the basic ideas of Hilbert space theory by dis­
cussing a few of its problems. 

Nobody, except topologists, is interested in problems about Hil­
bert space; the people who work in Hilbert space are interested in 
problems about operators. The problems below are about operators. 
I do not know the solution of any of them. I guess, however, that 
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they vary a lot in depth. Some have been around for many years and 
are known to be both difficult and important; others are untested 
and may turn out to be trivial. 

The problems are formulated as yes-or-no questions. That, I 
believe, is the only clear way to formulate any problem. What a 
mathematician usually wants to do is something vague, like study, 
determine, or characterize a class of objects, but until he can ask a 
clear-cut test question, the chances are he does not understand the 
problem, let alone the solution. The purpose of formulating the yes-
or-no question, however, is not only to elicit the answer; its main 
purpose is to point to an interesting area of ignorance. 

A discussion of unsolved problems is more ephemeral than an expo­
sition of known facts. Deciding to make a virtue out of necessity, I 
chose to focus on a narrow segment of the present, rather than on a 
broad view of history. As often as possible the references are to recent 
publications, and the proofs presented in detail are more from cur­
rent folklore than from standard texts. Consequently some results 
(with appropriate credit lines to their discoverers) are published 
here for the first time. Most of the results and proofs with no assigned 
credit are "well known"; only a small number are mine. If a result 
is attributed to someone but is not accompanied by a reference to the 
bibliography, that means I learned it through personal communica­
tion, and, as far as I could determine, it is not available in print. 

The chief prerequisite for understanding the exposition is a 
knowledge of the standard theory of operators on Hubert spaces. In 
some cases that means that not even the spectral theorem is needed, 
and in other cases every available ounce of multiplicity theory would 
help to understand things clearly. In any case, the presentation is 
not cumulative; some readers who find §1 obscure may find §10 
obvious. 

As an expository experiment I have put some exercises into each 
section. This is unusual in papers (as opposed to books). The reason 
I did it is that originally each section was a lecture, and lectures (as 
opposed to papers) can stand every bit of elasticity that anyone can 
think of to put in. The audience is trapped and cannot impatiently 
riffle the pages forward and back, and the lecturer can use something 
that is easily omitted or inserted without disturbing the continuity. 

As for terminology: Hubert space means a complete, complex, 
inner-product space; subspace means a closed linear manifold; 
operator means a bounded linear transformation. The Hubert spaces 
of principal interest are the ones that are neither too large nor too 
small, i.e., they are separable but infinite-dimensional. The problems 
are stated without any such explicit size restrictions, but in some 
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cases they become trivial for either the large spaces, or the small 
ones, or both. 

I thank Peter Fillmore, Pratibha Gajendragadkar, and Eric 
Nordgren for reading the first written version of these lectures and 
for making many helpful suggestions. 

1. CONVERGENT 

Problem L Does the set of cyclic operators have a non-empty interior? 

A vector ƒ in a Hilbert space H is cyclic for an operator A on H in 
case the smallest subspace of H that contains ƒ and is invariant under 
A is H itself. An operator is cyclic in case it has a cyclic vector. 

In the finite-dimensional case, A is cyclic if and only if its minimal 
polynomial is equal to its characteristic polynomial. (Equivalently: 
each eigenvalue occurs in only one Jordan block, or the space of 
eigenvectors corresponding to each eigenvalue has dimension 1 [24, p. 
69 et seq]; cf. also [33].) I t follows easily that in the finite-dimen­
sional case the set 6 of cyclic operators is open. If the dimension is n, 
then the operators with n distinct eigenvalues constitute a dense set; 
it follows that 6 is dense. (Consequence: C is not closed; for instance, 
diag(l, l + lA*>-*diag(l, 1).) 

There is only one reasonable topology for the operators on a 
finite-dimensional space; in the infinite-dimensional case there are 
several. Problem 1 refers to the norm (or uniform) topology, the one 
according to which An-*A in case \\An—A\\—»0. 

If ƒ is a cyclic vector for A, then the countable set {ƒ, Af> A2f, • • •} 
spans H ; it follows that in the non-separable case C is empty. 

In the separable infinite-dimensional case what little is known 
is negative. The set e is surely not open; the cyclic operator 
diag(l , i , i , • • • ) is the limit of the non-cyclic operators 
diag(l, J, • • • , l/n> 0, 0, 0, • • • ). I t is, of course, possible that the 
interior of G is non-empty; that is what Problem 1 is about. A reason­
able candidate for an operator in the interior of 6 is the unilateral 
shift U. (According to the most easily accessible definition U is the 
operator on I2 that sends (£0, £i, £2, • • • ) onto (0, £0, £1, £2, • • • ).) 
That candidate happens to fail (J. G. Stampfli). The set 6 is also 
not dense; in face if V is the direct sum of two copies of U and 
|| F—^4|| < 1 , then A is not cyclic. Indeed: 

| | l - A*V\\ = | |7*7 - A*V\\ â | |F* - A*\\ < 1, 

so that A* V is invertible; it follows that V*A is inverti ble and hence 
that ran A C\ ker F * = 0 . Since, thus, ran A is disjoint from the 2-
dimensional space ker V*t the co-dimension of ran A must be at least 
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2. (The proof so far was needed to get this inequality only. An alter­
native way to get it is to note that it is a special case of a small part of 
the theory of Fredholm operators [35].) Now it is clear that A cannot 
be cyclic ; for each ƒ, the span of {ƒ, Af, A 2f, • • •} has co-dimension at 
least 1. 

The point of the preceding discussion is to call attention to the 
existence of topological problems of analytic importance in operator 
theory. There are many; Problem 1 is just a sample. Other examples 
are Problems 7 and 8, about the closures of certain sets of operators, 
or, in other words, about approximation theory. Here is a well known 
example of the same kind: is the set of all invertible operators dense? 
The answer is yes for finite-dimensional spaces, and furnishes an 
occasionally useful proof technique; to prove something for all 
matrices, prove it for the non-singular ones first and then approxi­
mate. For infinite-dimensional spaces the answer is no [20, Probl em 
109]. I t is slightly less well known that the answer remains no even 
for a somewhat larger set, the set of kernel-free operators. (If A is 
invertible, then A is kernel-free, i.e., ker 4 = 0 , but the converse is not 
true.) In other words, there exists a non-empty open set every 
element of which has a non-trivial kernel. Indeed, the open ball 
{A :|| [/*— A\\ < 1 } is such a set (where U is, as before, the unilateral 
shift). For the proof, apply the (Fredholm) argument that disproved 
the density of the cyclic operators to infer that, for each A in that 
ball, ran A* has positive co-dimension, and then conclude that 
ker A ?*0. 

Here is a classically important question: is the set of invertible 
operators connected? The answer is yes [20, Problem HO]; the proof 
is an application of the polar decomposition of operators. A much less 
important question that takes most people a few seconds longer to 
answer than it should is this (Exercise 1) : is the set of non-scalar 
normal operators connected? 

All the questions so far concerned the norm topology; questions 
about the other operator topologies are likely to be (a) easier and (b) 
more pathological. The pathology of topology can be fun, however, 
and, although the ground has been pretty well worked over, new and 
even useful facts do turn up from time to time. 

The strong operator topology is the one according to which An—>A 
in case ||'-4„f—-4/||—»0 for each vector / . (The indices, here and else­
where, need not and should not be restricted to integers; any directed 
set will do.) A famous and sometimes bothersome misbehavior of the 
strong topology is the discontinuity of the adjoint. Indeed, if Ak = U* 
(the unilateral shift again), & = 1, 2, 3, • • -, then Ak—>0 strongly, but 
{At} is not strongly convergent to anything [20, Problem 90 ]. This 
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negative result is old; the following interesting positive observation 
of Kadison's is quite recent [26]: the restriction of the adjoint to the 
set of normal operators is strongly continuous. (That is: if An—*A 
strongly, where A and each An is normal, then A*—>A* strongly.) 
The proof is a trick, but a simple trick: 

\\(At-A*)f\\2 = \\Anf\\
2-\\Af\\%(f,(A-An)A*f) + ((A-An)A*f,f) 

^\\(A-An)f\\(\\Af\\+Unf\\)+2\\(A-An)A*fl\\f\\-

Approximation techniques that rely on the strong topology do not 
seem to have been used much, although there are some interesting 
questions whose known and surprising answers might turn out to be 
useful. Example: what is the strong closure of the set of normal 
operators? Answer: the set of subnormal operators [4]. The proof is 
not trivial. Another example (Exercise 2) : what is the strong closure 
of the set of unitary operators? 

The weak operator topology is the one according to which An-*A 
in case (Anf, g)—>(Af, g) for each ƒ and g. A useful recent result is that 
rank (dimension of the closure of the range) is weakly lower semicon-
tinuous; that is, if An-*A weakly, then lim inf « rank A „ ^ rank A 
[2l] . The proof is not immediately obvious, but it is certainly not 
deep. Warning: the possible values of rank in this context are the 
nonnegative integers, together with 00 ; no distinction must be made 
among different infinite cardinals. Were such a distinction to be 
made, the result would become false. Suppose indeed that the under­
lying Hubert space has an uncountable orthonormal basis { e / . j G / } . 
Let D be the set of all countable subsets of / , ordered by inclusion; 
for each n in P , write An for the projection onto the span of {ejljÇHn}. 
Since for each vector ƒ there exists an n0 in D such that f±.ej when­
ever,; is not in n§, it follows that An—*\ (not only weakly, but, in fact, 
strongly). Since rank^4w = K0 and rank 1>^ 0 » the cardinal version 
of semicontinuity is false. 

What is the weak closure of the set of normal operators? Answer: in 
the finite-dimensional case it is the set of normal operators [21 ]; in 
the infinite-dimensional case it is the set of all operators [18]. What 
is the weak closure of the set of projections? Answer: in the finite-
dimensional case it is the set of projections; in the infinite-dimen­
sional case it is the set of Hermitian operators A with 0 SA ^ 1 [18]. 
The proofs of the infinite-dimensional statements are not difficult, 
but they depend on a little dilation theory. The results show why 
weak approximation theory is not likely to be fruitful; it is too good 
to be any good. Exercise 3: what is the weak closure of the set of 
scalars? 
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A simple example that illustrates many of the curious properties of 
the weak operator topology can be described in terms of matrices. 
Let An be the infinite matrix (or, by a slight abuse of language, the 
operator) whose entries a t the positions (1, 1), (1, n), {n, 1), and {n, n) 
are J, and whose remaining entries are all 0 (n = 2, 3, 4, • • • ). I t is easy 
to verify that An is idempotent, and it is plausible (and true, and 
easy to verify) that if A is the matrix whose (1 ,1 ) entry is \ and 
whose remaining entries are all 0, then An-*A weakly. The example 
shows how projections can converge to a non-projection, it proves that 
multiplication (in fact squaring) is not weakly continuous, and, 
incidentally, it implies that the strong and the weak topologies are 
distinct. (Here is an unimportant but unsolved teaser: does squaring 
have any points of weak continuity?) 

ANSWERS TO THE EXERCISES. (1) The non-scalar Hermitian oper­
ators form a (norm) connected set. For a 1-dimensional space this is 
trivial. In any other case, the set of Hermitian operators is a real 
vector space of dimension 3 or more. If, therefore, A and B are non-
scalar Hermitian operators, then there always exists a non-scalar 
Hermitian C such that tA + ( 1 — t)C and tB + (l —t) C axe non-scalar 
Hermitian operators whenever Q^t^l. The normal case can be 
joined to the Hermitian one. Indeed, if A +iB (with A and B Her­
mitian) is a non-scalar normal operator, then assume, with no loss of 
generality, that A is not a scalar, and consider A+itB, O ^ / ^ l . 
(This solution is due to J. J. Schâffer.) 

(2) The strong closure of the set of unitary operators is the set of 
isometries. Since the set of isometries is easily seen to be strongly 
closed, and since every isometry is a direct sum of a unitary operator 
and a number of copies of the unilateral shift [20, Problem 118], it is 
sufficient to prove that U, the unilateral shift, is a strong limit of 
unitary operators. Tha t is easy: If 

Un(%Q, £ l , & , • • ' ) = (£n, £o, ?1, ' * ' • £n- l» £n+l» £n+2, * * * ) 

for n = 1, 2, 3, . . . , then each Un is unitary and Z7n—>!7 strongly. 
(3) The set of scalars is weakly closed. Indeed, if Xn(jf, g)—>(Sf, g) 

for each ƒ and g, then {Xn} is a Cauchy net of complex numbers, and 
therefore Xn—»X for some complex number X; it follows that Xn(f, g) 
—>X(f, g) and hence that Sf=Xf for each/. 

2. WEIGHTED 

Problem 2. Is every part of a weighted shift similar to a weighted 
shift? 

If U is the unilateral shift and if en is the sequence (£o, £i, £2, • • • ) 
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with £n = l and £ t = 0 when^Vw, then {e0, ei, e2l • • • } is an orthonor­
mal basis for I2 and Uen — en+i> n = 0, 1, 2, • • • . If («0, «i, «2, • • • ) is a 
bounded sequence of positive numbers, then the equations Aen 

=anen+i, tt = 0, 1, 2, • • • , unambiguously define an operator A. Such 
operators are called weighted shifts ; they are of interest because they 
can be used to construct examples of many different kinds of opera-
torial behavior. (To eliminate easy but dull case distinctions, the 
number 0 is not allowed as a weight.) 

For any operator A on any Hubert space H, a part of A is, by 
definition, the restriction of A to a subspace of H invariant under A. 
One of the main reasons for the success of the Beurling treatment of 
the unilateral shift is that every non-trivial part of U is unitarily 
equivalent to U [20, Problem 123]. Here "non-trivial" excludes the 
most trivial case only, the restriction to the subspace 0. Tha t should, 
of course, be excluded in the formulation of Problem 2 also, and in all 
related contexts; that exclusion is hereby made, retroactively and 
forward to eternity. 

What sense does it make to say that a certain operator "is" a 
weighted shift? If shifts are defined on the concrete Hubert space I2 

(as above), then the best that can be hoped about a part of one is that 
it is "abstractly identical" with or "isomorphic" to another; the cor­
rect technical phrase is "unitarily equivalent". If shifts are defined 
with respect to arbitrary orthonormal bases {e0, ei, eif • • • } in 
arbitrary separable infinite-dimensional Hubert spaces (the best 
way), then "is" means "is". There is a third interpretation, which may 
seem artificial but has some merit; it is obtained by demanding iso­
morphism with respect to the linear and the topological structures, 
but ignoring the metric structure. The correct technical word is 
"similar"; two operators A and B, on Hubert spaces H and if, are 
similar in case there is a bounded linear transformation 5 from H onto 
K, with a bounded inverse, such that A = S^BS. 

There are two reasons for the insistence on positive weights in the 
definition of weighted shifts: (a) it seems more natural, and (b) 
nothing is gained by allowing arbitrary complex weights. The proof 
of (b) is the following assertion (Exercise 1) : if A and B are weighted 
shifts, with complex weight sequences (an) and (/3W), then a necessary 
and sufficient condition that A and B be unitarily equivalent is that 
\otn\ = I j8»| for n — 0, 1, 2, • • • . Consequence: if A is a weighted shift 
and if X is a complex number of modulus 1, then A is unitarily equi­
valent to \A. This kind of "circular symmetry" is an unusual but use­
ful property for an operator to have. More along the same lines can­
not be asked; modulus 1 is in the nature of things. Tha t is (Exercise 
2) : if a non-nilpotent operator A is similar to X.4, then |X| = 1 . 
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The unitary equivalence theory of weighted shifts is easy; their 
similarity theory is slightly more complicated, but still near the sur­
face. In the notation of the preceding paragraph, A is similar to B if 
and only if the sequence of quotients 

\ ao ' ' • an \ 

I 0o * * • P. I 
is bounded away from 0 and from oo [20, Problem 76]. I t is thus easy 
to tell when two weighted shifts are similar, but the circle of ideas 
centered at Problem 2 includes a question of a much more difficult 
type: when is an operator obtained by certain non-transparent con­
structions similar to a weighted shift? The formation of a part of a 
weighted shift is such a construction; there are others. Consider, for 
instance, the (Cesaro) operator C0 on I2 defined by 

C0(£o, £i, £2, • • • } = (170, Vh m, • • ' ), 

where 

1 n 

Vn = — — Z) &• 
» + 1 <-o 

The known spectral properties of C0 [7] suggest the question: is 1 — C0 

similar to a weighted shift? The answer is not known. Another inter­
esting operator (Volterra) is defined on L2(0, 1) by Vf(x) =Jlf(y)dy\ 
i.e., Vf is, for each/ , the indefinite integral of/. (Exercise 3) : is V sim­
ilar to a weighted shift? 

What are weighted shifts good for ?The answer is that they can be 
used for examples and counterexamples to illustrate many properties 
of operators. Among such properties are the existence of square roots, 
spectral behavior, irreducibility, the structure of invariant subspaces, 
and subnormality. 

Assertion: no weighted shift has a square root. Suppose, indeed, 
that A is a weighted shift, and suppose that B2 = A*. (The adjoint is 
easier to treat, and the result obviously comes to the same thing.) 
Since kerB C ker A *, and smeekere * 5̂  0, it follows that ker B = ker A *. 
Since ker ^4*C ran -4*, it follows that ker A*(Z ran B. Hence if e 
is in ker A*, e^O, then there exists a vector ƒ such that Bf = e> and it 
is easy to deduce (from ker B= ker ^4*) that e and ƒ are linearly 
independent. Conclusion: the dimension of ker B2 ( = ker^4*) must be 
at least 2, which is absurd [29], [20, Problem 114]. 

A weighted shift provides the easiest example of a kernel-free 
operator whose spectrum consists of 0 only [20, Problem 80 ], and the 
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more delicate spectral behavior of weighted shifts has also received 
quite a bit of attention [ ló] , [29], [34], [41 ]. 

Weighted shifts are irreducible. Tha t is, if A is a weighted shift and 
if M is a subspace that reduces A, then M is either 0 or the entire 
space; equivalently, if P is a projection that commutes with A, then 
P = 0 or P = 1. To prove this, all that is needed is that the kernel of 
A* is spanned by a single (non-zero) vector e which happens to be 
cyclic for A. Indeed: A*Pe = PA*e = 0 implies (since e spans ker A*) 
that Pe = Xe, and hence (since P is a projection) that either Pe = 0 or 
Pe = e. If Pe = 0, then ^4n^ =^4n(l —P)e = (1 —P)Ane, which belongs to 
ker P for all n, and therefore (since e is cyclic for A) P = 0; if Pe = e, 
then ^4ne==^4nP£=iMn£, which belongs to ran P for all n, and there­
fore P = 1. (This proof is due to K. J. Harrison.) A somewhat stronger 
result is known: every operator similar to a weighted shift is irre­
ducible [29], [51]. 

To what extent can the structure of the invariant subspaces of an 
operator be prescribed? Is it, for instance, possible that an operator 
has exactly one invariant subspace of each dimension between 0 and 
fc$o inclusive? The answer is yes, and the standard example (due to 
Donoghue) is given by the adjoint of a suitably weighted shift [20, 
Problem 151 ]. (The unilateral shift itself, unweighted, won't do.) 

There are many generalizations of the concept of normality; two 
important ones, in decreasing order of generality and increasing 
order of importance, are hyponormality and subnormality. An 
operator A is hyponormal in case A*A—AA*^0; an operator is 
subnormal in case it is part of a normal operator. (The verificaton 
that every subnormal operator is hyponormal is the easiest part of 
this otherwise tricky subject.) Which weighted shifts are normal, 
which are hyponormal, and which are subnormal? The first question 
is settled just by looking at kernels; there is no weight sequence that 
can make a weighted shift normal. The answer to the second question 
is also easy [20, Problem 160]: the weight sequence must be mono­
tone increasing. The answer to the third question is not easy. One 
formulation was offered by Stampfli [49]; the hitherto unpublished 
formulation below (due to C. Berger) is very different. Berger's condi­
tion is elegant and easy to state: a weighted shift is subnormal if and 
only if the squares of the partial products of the weights constitute 
the moment sequence of a probability measure in the unit interval. 

For the proof, suppose first that A is a subnormal weighted shift, 
and assume, with no loss of generality, that |J^4]| = 1 . Let B (on a 
Hilbert space K) be the minimal normal extension of A ; then | | 5 | | = 1. 
Since e0 is "bicyclic" for B (i.e., by minimality, there is no proper sub-
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space of K that contains eo and reduces B), the spectral theorem im­
plies that B is unitarily equivalent to the position operator (f(z) 
—*zf(z)) on L2 of the closed unit disc D with respect to some proba­
bility measure p» The standard unitary equivalence, moreover, 
carries the vector e0 onto the constant function 1. Identify B with its 
unitarily equivalent transform on L2QJL), and, correspondingly, 
identify A with the restriction of B to the span of (the images of) the 
vectors e0 ei, e* ' ' • • 

Let v be the "marginal" measure induced by p. in the closed unit 
interval I . Tha t is: if S:D—>I is the mapping defined by Sz = \z\, 
then v{E) =fx(S~1E) for each Borel subset E of 2". I t follows [17, p. 
163] that Jifdv—Ji) fS-dp whenever either side of the equation 
makes sense. If, in particular, ƒ(p) =p2 n , n = 0, 1, 2, • • • , then 

f p2ndv(p) = f \z\2ndp(z) = f \zn-l\2dp(z) 

= l l ^ o l l 2 = |M"e0||2. 
The last term is easy to compute: if po = l and p„+i —OLnpn) then 
Aneo = pneni and therefore 

ƒ, 
2n 2 

p dv{p) = pn, n = 0, 1, 2, 
J 

The proof of the necessity of Berger's condition is complete; p2
n is the 

nth. moment of dv(\/p). 
To prove sufficiency, start with a probability measure v in J, and 

write Jip2ndv(p) —pn> If X is normalized Lebesgue measure in the 
perimeter C of the unit circle, then *>XA in I X C induces (it is tempt­
ing to say "is") a measure p, in D. That is: if T: IXC—>D is the 
mapping defined by (p, u)-*pu, then p(E) =(^XX)(r _ 1 E) for each 
Borel subset E of D. Let B be the position operator on L2{p)y and let 
A be the restriction of B to the subspace i?2(ju) spanned by {/0, / i , 
/2, . . . } , where fn(z) =zw, n = 0, 1, 2, . . . . Since B is normal, it follows 
that A is subnormal. 

A straightforward computation shows that 

(fn,fm) = f pn+mdv(p) • f un~md\(u), n, m = 0, 1, 2, • • . . 

If » ^ m , the last factor vanishes, i.e., t h e / ' s are pairwise orthogonal» 
If n = mf the last factor is 1, and therefore 

ii/»ir = #», » = 0 , 1 , 2 , . • •. 
If, therefore, en=fn/pn, n==0, 1, 2, • • • , then the e's form an ortho-
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normal basis for H2(p). Since, finally, 

/ 1 \ 1 pn+l 
Aen = A [ —ƒ„ ) = — / n + i = en+i, n = 0, 1, 2, • • • , 

\pn / Pn pn 
it follows that A is (unitarily equivalent to) the weighted shift whose 
weight sequence has exactly the p's for its partial products. The proof 
of Berger's theorem is complete. 

The preceding report on weighted shifts is a representative but not 
exhaustive summary of what is known. There is much that remains to 
be done, and, in particular, there are at least three directions of 
generalization that promise to be fruitful. 

(a) Two-way shifts (en—>anen+i for all integers ny not the non-
negative ones only) have many properties in common with the one­
way kind, but not all. (Sample question with a known but not com­
pletely trivial answer: is the Vol terra operator similar to a two-way 
weighted shift?) 

(b) If the shift n—>n + l on the integers is replaced by a measure-
preserving transformation on a more interesting measure space, the 
theory of weighted shifts becomes the theory of "weighted transla­
tions" ; although a few things about them are known [36], their theory 
is still largely undeveloped. 

(c) The space I2 is the direct sum of copies of a 1-dimensional Hu­
bert space; a generalization in the direction of higher multiplicities is 
obtained via the formation of direct sums of more general Hubert 
spaces. In that case the role of the numerical weights is played by 
operator weights. This is essentially virgin territory; the idea has been 
used to construct counterexamples [20, Problem 164], but a general 
theory does not yet exist. 

ANSWERS TO THE EXERCISES. (1) Given the a 's and the jS's, put 
5o = l and determine Sw recursively from anôw=j3w§n+i, n = 0f 1, 2, . . .; 
if always | a n | = | j 3 « j , then always |S»| = 1 , and the "diagonal 
operator" determined by the S's transforms A onto B. This proves 
sufficiency. To prove necessity, suppose that A = W*BW, where W is 
unitary, so that An = W*BnW, and also A* = W*B*W. I t follows 
that W* carries e0 (in the kernel of B*) onto a unit vector in the 
kernel of A*; assume with no loss of generality that W*eo — eo. I t 
follows that W*Bne0 = Aneo, and hence (form norms and use induc­
tion) that |j3w| =\an\ forw = 0, 1, 2, . . . [20, Problem 75; 28]. 

(2) Since 
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it follows that 115-^*511 ̂ / M " ! ! 1 7 " - * ! . « S-lAS=\A, then this 
implies that |X| = 1 [28]. Note that if A is nilpotent, it is quite pos­
sible to have A be similar to \A for every non-zero complex number X; 
an example is A = (£ J). 

(3) The Volterra operator is not similar to a weighted shift. Rea­
son : if F is similar to A, then F* is similar to A * ; if A is a weighted 
shift, then ker -4*5^0, but an easy calculation shows that ker V* = 0. 
(This proof is due to J. G. Stampfli.) 

3. INVARIANT 

Problem 3. If an intransitive operator has an inverse, is its inverse 
also intransitive? 

An operator is called intransitive if it leaves invariant some sub-
space other than 0 or the whole space; in the contrary case it is 
transitive. The hope that non-trivial invariant subspaces always exist 
(i.e., that, except on a 1-dimensional space, every operator is in­
transitive) is perhaps still alive in the hearts of some. Tha t existence 
theorem would be the first step toward a detailed structure theory for 
operators (possibly a generalization of the theory of the Jordan form 
in the finite-dimensional case). Repeated failure has convinced most 
of those who tried that the truth lies in the other direction, but the 
proof of that is, so far, just as elusive. 

There are many special classes of operators that have been proved 
intransitive. Problem 3 (due to R. G. Douglas) seems to be the simpl­
est problem of its kind (derive the intransitivity of something from 
that of something else). For the strong kind of invariance (that is, for 
reduction) the problem is easy: if a reducible operator has an in­
verse, then the inverse is also reducible. Indeed, more is true: if a 
subspace M reduces an invertible operator A, then the same M 
reduces A"1. (Proof: if a projection commutes with A, then it com­
mutes with A~l.) For plain invariance the more is false; the invari­
ance of a subspace under an invertible operator A does not imply its 
invariance under A~x. (Consider the bilateral shift.) 

A related question concerns square roots instead of inverses. 
Squaring preserves invariance (and reduction); what about the 
formation of square roots? If A2 is reducible, is A reducible? The 
answer is no (consider weighted shifts). If A2 is intransitive, is A 
intransitive? The answer is not known. Equally unknown is the 
answer to a mixed question (proposed by C. Pearcy): if A2 is re­
ducible, is A a t least intransitive? The only thing along these lines 
that can be said has an undesirably special hypothesis (Exercise 1) : if 
A2 is normal, then A is intransitive. 
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If even the relatively elementary algebraic questions are un­
answered, there is no immediate hope for the much deeper questions 
of perturbation (in imitation of the theory of spectral perturbation), 
but they deserve to be put on record. What is known is that if A and 
B are Hermitian and B has rank 1, then A+iB is intransitive. The 
presently hoped-for generalization is obtained by replacing "rank 1" 
by "compact". Although large classes of compact operators are 
admissible here [47], not all are known to be. The mildest unproved 
perturbation statement appears to be this: if A is normal and B has 
rank 1, then A +B is intransitive. The generalization of this perturba­
tion problem to arbitrary intransitive operators in place of normal 
ones is not going to be easy to settle. Indeed: if A is an arbitrary 
operator, and if P is a projection of rank 1, then A =AP+A (1 —P) ; 
the first summand has rank 1, and the second has a non-trivial kernel. 

For normal operators the spectral theorem yields many invariant 
subspaces. The step from normal to subnormal is, however, large: it 
is not known whether every subnormal operator is intransitive. 

Replacement of the algebraic condition of normality by the analytic 
condition of compactness yields a famous and useful intransitivity 
theorem: every compact operator (on a space of dimension greater 
than 1, of course) has a non-trivial invariant subspace [2]. Do two 
commutative compact operators always have a non-trivial invariant 
subspace in common? The answer is not known. 

Two more invariant subspace theorems deserve mention; they are 
elementary, but they are sufficiently different from the preceding 
ones and from each other that they might suggest a new idea to some­
one. 

(i) The strictly algebraic version of the invariant subspace problem 
has a positive solution (Exercise 2) : every linear transformation (on a 
vector space of dimension greater than 1) has a non-trivial invariant 
linear manifold [46]. 

(ii) For every operator A there exists a hyperplane M (subspace of 
co-dimension 1) such that the compression of A to M has an eigen­
vector. (The compression of A to M is the operator B on M defined as 
follows: if P is the projection with range M, then Bf = PAf for each ƒ 
in M.) In fact more is true: for each non-zero vector/ , there exists a 
hyperplane M containing/ such that the compression of A to M has ƒ 
as an eigenvector. Proof: if ƒ is an eigenvector for A, the assertion is 
trivial. If ƒ is not an eigenvector for A, then ƒ and Af span a 2-dimen-
sional space; let g be a non-zero vector in that space orthogonal t o / , 
and let M be the orthogonal complement of g. Clearly ƒ belongs to the 
hyperplane M. Since Af is a linear combination o f / and g, the projec­
tion of Af into Af is a scalar multiple of/. This proof is due to L. J. 



900 P. R. HALMOS [September 

Wallen. The result was suggested by the following theorem of C. 
Apostol's: if A is an operator such that 0 is in the spectrum of A but 
ker A = ker A* = 0 , then there exists an infinite-dimensional subspace 
M such that the compression of A to M is compact. 

All the results reported on so far concern intransitivity ; they assert 
that under certain conditions certain subspaces are invariant. The 
last two results to be mentioned in this context go in the direction of 
transitivity: certain subspaces are not invariant. 

(iii) Exercise 3: for each countable set of non-trivial subspaces, 
there exists an operator that leaves none of them invariant. 

(iv) There exists a linear transformation on a Hubert space H that 
leaves no non-trivial subspace of H invariant. Warning: this does not 
pretend to be a solution of the invariant subspace problem. "Sub-
space" here means closed linear manifold, as always, but "linear 
transformation" does not mean operator, i.e., the linear transforma­
tion whose existence is asserted is not necessarily bounded. (There is, 
however, no fudging about domains: the assertion is about linear 
transformations that act on the entire space H.) The result is due to 
A. L. Shields [48] ; the proof goes as follows. 

Let $ be the smallest ordinal number with cardinal number c 
(continuum). If H is a separable infinite-dimensional Hubert space, 
then the set of all infinite-dimensional proper subspaces has cardinal 
number c, and is therefore in one-to-one correspondence a—>Ma with 
the predecessors of ^ . 

Let ƒ o be a non-zero vector in itf0, and let g0 be a vector not in M"0. 
Suppose that fp and gp have been defined whenever ]8<aj<^ SO that 
fp is in Mp, gp is not in Mp, and the set of all ƒ s and g's is linearly 
independent. The linear (not necessarily closed) manifold Va spanned 
by the ƒ s and g's cannot include Ma (because the cardinal number of a 
Hamel basis of Ma is c} and the cardinal number of the predecessors of 
a is less than c). Let ƒ« be a vector in Ma that is not in Va. The linear 
manifold Wa spanned by Va and fa is not H (same argument), and, 
therefore, it cannot include a non-empty open set (such as the set-
theoretic complement of Ma). I t follows that there exists a vector ga 

that belongs to neither Ma nor Wa. The inductive process so de­
scribed defines a linearly independent set E = {ƒ«, ga'cx<\l/}. Extend 
E to a Hamel basis for H; i.e., let F be a set disjoint from E such that 
E\JF is a Hamel basis. 

Let A be the transformation on E defined by Afa = ga and Aga 

=/ a + i . If F is empty, stop here; if F is not empty but finite, F 
= {h, • • -, hn}} write Ahi~hi+i, i = l, • • •, n — 1, and Ahn^fo; and 
if, finally, F is infinite, let A on F be any permutation of F that has no 
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finite orbits. In all cases, A is a transformation on the Hamel basis 
E^JF, and, therefore, A has a unique extension to a linear trans­
formation on H. 

The linear transformation A can have no invariant infinite-dimen­
sional proper subspace (because Af« is never in M a) , and it can have 
no eigenvector (because it maps each finite linear combination of the 
vectors in the basis E\JF onto a linear combination that involves at 
least one new vector). 

ANSWERS TO THE EXERCISES. (1) Since A commutes with A2 it 
follows that A commutes with all the spectral projections of A2. The 
only way this comment can fail to yield an invariant (in fact reducing) 
subspace for A is if A2 is a scalar. Tha t case has to be examined separ­
ately; the examination is straightforward and the desired result 
follows easily. 

(2) Assume that the linear transformation A is such that, for some 
vector / , the set {ƒ, Af, A2f, • • • } is a linear basis; in all other cases 
the conclusion is obvious. Since every vector is a (finitely non-zero) 
linear combination of the lormYln-o<XnAnf1 the mapping ]Cn«oûVlw/ 
"->j£2n-o &n is a linear functional ; the kernel of that linear functional is 
an invariant linear manifold. 

(3) If M is a non-trivial subspace, then so is Af-1, and, therefore, 
both M and Afx are nowhere dense sets. I t follows that the set-
theoretic union of a countable set of non-trivial subspaces and their 
orthogonal complements is a set of the first category (meager set), 
and that, consequently, there exists a vector that does not belong to 
that union. The projection onto the 1-dimensional space spanned by 
that vector cannot leave invariant any of the originally given sub-
spaces. 

4. TRIANGULAR 

Problem 4. Is every normal operator the sum of a diagonal operator 
and a compact one? 

An operator i o n a Hilbert space H is diagonal if H has an ortho-
normal basis each element of which is an eigenvector of A. On a 
finite-dimensional space the answer to Problem 4 is trivially yes, be­
cause every operator is compact. Exercise 1: on a non-separable 
space the answer is no, even for Hermitian operators. 

I t is a remarkable theorem of H. Weyl [S3] that every Hermitian 
operator on a separable space is the sum of a diagonal operator and a 
compact one. What follows is first the description of a context within 
which it is possible to give a proof of Weyl's theorem (different from 
the classical one), and then a natural generalization that has already 
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been found useful in other parts of operator theory; it is reasonable to 
hope that this circle of ideas will have further applications. 

On a separable space (the only kind to be considered in this section 
from now on) if an operator A is diagonal, then there exists an in­
creasing sequence {Ew} of projections of finite rank such that En-*1 
strongly and AEn=EnA for each w = l, 2, 3, • • • . (The converse is 
not true. What the condition implies is that A is "block-diagonal". 
Tha t is: the space is the direct sum of finite-dimensional reducing 
subspaces, which, however, need not be 1-dimensional.) A sur­
prisingly rich class of operators is obtained if commutativity is re­
placed by asymptotic commutativity. Call an operator A quasi-
diagonal in case there exists an increasing sequence {£„} of projec­
tions of finite rank such that Ew~»l strongly and ||.4En —En^4||—»0. 

There are three kinds of basic results about quasidiagonal oper­
ators: characterization, closure, and inclusion. Characterization 
theorems are equivalences ; they replace the definition by something 
else that is sometimes easier to apply. Closure theorems assert that 
certain operations on quasidiagonal operators lead to other operators 
of the same kind. Inclusion theorems assert that certain other, more 
familiar, classes of operators are included among the quasidiagonal 
ones. 

The most elegant characterization theorem replaces the unnatural 
existence requirement in the definition of quasidiagonality by a 
simple equation. To describe that equation, note first that the set of 
all projections of finite rank is partially ordered by range inclusion, 
and, endowed with that order, it becomes a directed set. If 0 is a real 
net (i.e., a real-valued function) on that directed set, then the con­
vergence of 0 to a limit a, denoted by 

0(E) —» a or lim 0(E) = a, 

means that for every positive number e there exists a projection E 0 

(of finite rank, of course) such that \<f>(E)— a\ <e whenever E o ^ E . 
Similarly, the assertion that 

lim inf 0(E) = a, 
#~>i 

means that a is the smallest number such that for every positive 
number € and for every E 0 there exists a projection E with E0^E and 
10(E) — a | <€. Theorem: an operator A is quasidiagonal if and only if 
lim in f^ i | |i4-E-J2-41|=0. 

As for closure theorems, there are several. The most important one 
takes the word "closure" seriously: the set of quasidiagonal operators 
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is (norm) closed. There are also algebraic closure theorems; e.g., 
every polynomial in a quasidiagonal operator, the adjoint of a 
quasidiagonal operator, and countable direct sums of quasidiagonal 
operators are again quasidiagonal. 

The most trivial inclusion theorem is that diagonal operators are 
quasidiagonal ; together with norm closure (and the spectral theorem) 
this yields the valuable inclusion theorem that normal operators are 
quasidiagonal. Another trivial inclusion theorem is that operators of 
finite rank are quasidiagonal; together with the characterization of 
compact operators as the limits of operators of finite rank [20, 
Problem 137] this yields the result that compact operators are 
quasidiagonal. The latter result can be strengthened; in fact, if A is 
compact, then 

l i m | | i l E - EA\\ = 0. 

(That is: lim inf can be replaced by lim.) This, in turn, implies that a 
compact operator will never interfere with the lim inf that establishes 
the quasidiagonality of some other operator; precisely, if A is quasi-
diagonal and C is compact, then A +C is quasidiagonal. Noteworthy 
special case: the sum of a normal operator and a compact one is 
always quasidiagonal. Is the converse true? Tha t is (Exercise 2): 
is every quasidiagonal operator the sum of a normal operator and a 
compact one? 

One of the facts that make quasidiagonal operators interesting is 
that every quasidiagonal operator is the sum of a block diagonal 
operator and a compact one. A slightly stronger statement is true: 
every quasidiagonal operator has a matrix such that, for a suitable 
way of dividing it into finite blocks, the result of replacing the blocks 
on the diagonal by O's is compact. To prove this, suppose that {En} is 
an increasing sequence of projections of finite rank such that En—>1 
strongly and ||-4JS»—JS»^l||—>0. Choose a subsequence, if necessary, to 
justify the assumption that 53„||i4£n—E„i4|| < oo. Write D for the 
matrix formed of the diagonal blocks (£»—En„i)A(En—En_i) 
(where -Eo = 0) and write C — A— D. I t is not obvious by inspection 
that D and C are operators, and it is even less obvious that C is com­
pact, but that is what the proof is about to show. Indeed: put 

Cn = En+i(AEn — EnA)En •— En{AEn •— EnA)En+i* 

Clearly \\Cn\\ S2\\AEn-EnA\\, and therefore ]£ n C n converges in the 
norm to a compact operator; an obvious computation shows that that 
operator is equal to C. 
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Weyl's theorem (the affirmative answer to Problem 4 for Hermitian 
operators) is an immediate consequence. Reason: if A is Hermitian, 
then so is each diagonal block in any matrix of A ; it follows that the 
block diagonal summand that the preceding result yields is, in fact, 
diagonal. The proof shows also what blocks the proof in the normal 
case; a diagonal block in a normal matrix may fail to be normal. For 
unitary operators J. A. Dyer (simplifying and generalizing an argu­
ment of I. D. Berg) proved that Weyl's theorem remains true; the 
trick is to represent a unitary operator as eiA, with A Hermitian, and 
apply the Hermitian result to A. 

Quasidiagonal operators are a special case of a concept that has 
received some attention in the literature [lO], [12], [22]; the more 
general operators are called quasitriangular. By definition an operator 
A is quasitriangular in case there exists an increasing sequence {En} 
of projections of finite rank such that En—>1 strongly and such that 
||./4£w—En.4Ew||--K). (Motivation: replace asymptotic reduction by 
asymptotic invariance. Note that the appropriate definition of a 
triangular operator requires the existence of a sequence {En} of pro­
jections of finite rank such that AEn ~EnAEn.) 

Most of the characterization, closure, and inclusion theorems 
stated above for quasidiagonal operators are true for quasitriangular 
operators also [22]; the proofs for quasidiagonal operators are 
easy adaptations of the proofs in [22]. A case in point is the 
characterization theorem: A is quasitriangular if and only if 
lim imV*i||i4.E— E 4 E | | = 0 . A notable exception is the closure the­
orem : the class of quasidiagonal operators is closed under the forma­
tion of adjoints. For quasitriangular operators that is not true. In 
order to support the latter (negative) statement, it is, of course, 
necessary to have a technique for proving that something is not 
quasitriangular. The tool in [22 ] is the assertion that if A *A = 1 and 
ker A* 5*0, then A is not quasitriangular. A slightly sharper version 
of this is true [12]: if ^4*^4 ^ 1 and ker ^4*^0, then A is not quasi­
triangular. Suppose, indeed, that e^O and A*e = 0; let E 0 be the pro­
jection onto the (1-dimensional) span of e. If E is a projection of 
finite rank with E o ^ E , then the restriction of E A* E to ran E has e 
in its kernel; the finite-dimensionality of ran E implies the existence 
of a unit vector ƒ in ran E such that EAEf = 0. I t follows that 

\\(AE-EAE)f\\=\\AEf\\=\\Af\\^ \\f\\, 

whence | |^4JS—E.4E||èl; this proves that A cannot be quasitri­
angular. Very small consequence: since the adjoint of the unilateral 



i97o] TEN PROBLEMS IN HILBERT SPACE 905 

shift is quasi triangular (in fact, triangular), the adjoint of a quasi tri­
angular operator can fail to be one. 

For all that has been said so far it could be true that, for every 
operator A, either A or A * is quasi triangular. A natural candidate for 
a counterexample is U® U* (where U, of course, is the unilateral 
shift), but the candidate fails; U®U* is, in fact, quasidiagonal. 
(Proof: it differs from the bilateral shift, which is normal, by an 
operator of rank 1.) Exercise 3: is there an operator A such that 
neither A nor A * is quasitriangular ? 

The sum theorem for quasidiagonal operators (block diagonal 
plus compact) is not the specialization of a theorem in [22], but it 
might as well be; a slight complication of the proof serves to show 
that every quasitriangular operator is the sum of a triangular operator 
and a compact one. 

Two further facts deserve at least brief mention, (i) Douglas and 
Pearcy [12] have proved that every operator with a finite spectrum is 
quasitriangular, and they conjectured that the same is true for 
operators with a countable spectrum, (ii) What happens if the lim inf 
in the definition of quasi triangularity is replaced by lim? Answer: a 
necessary and sufficient condition that lim^^i||-4£—Ei4£|| =0 is that 
A be the sum of a compact operator and a scalar [ l l ] . 

ANSWERS TO THE EXERCISES. (1) For every compact operator C 
there exists a separable reducing subspace whose orthogonal com­
plement is included in ker C. This fact is usually stated for compact 
normal operators only [20, Problem 133]; the general case follows by 
applying the usual statement to C*C and forming the smallest sub-
space that reduces C and includes the separable part. Another ap­
plication of the same technique shows that if A = D + C, where C is 
compact, then there exists a separable subspace that reduces both D 
and C and whose orthogonal complement is included in ker C. If the 
space is non-separable and D is diagonal, then it follows that A has 
many eigenvectors. If, therefore, A has no point spectrum, then A 
admits no sum representation of the required kind. 

(2) The operators of the form "normal plus compact" do not ex­
haust all quasidiagonal operators. For an example, consider the 
direct sum A of infinitely many copies of the operator on C2 with 
matrix (? S); since A is block diagonal, it is quasidiagonal. Then 
commutator A* A—A A* is the direct sum of infinitely many copies 
of (J _?), which is about as far as possible from being compact; if, on 
the other hand, N is normal and C is compact, then (N+C)*(N-jrC) 
-(N+C)(N+C)* is compact. 

(3) If U is the unilateral shift and A =(£/-*) 0 (£/*+*), the 
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neither A nor A* is quasi triangular. For the proof, consider A+i 
= U®(U*+2i) and note that it is bounded from below by 1 but its 
adjoint has a non-zero kernel. This answer to a question in [22] ap­
pears in [12]. 

5. DILATED 

Problem 5. Is every subnormal Toeplitz operator either analytic or 
nor mall 

Toeplitz operators are the best known and analytically most im­
portant examples of compressions; they are compressions of the 
simplest "continuous" generalizations of diagonal matrices. If C is 
the unit circle ({sr: 12;| = l } ) in the complex plane, endowed with 
normalized Lebesgue measure, then the functions en, defined by 
en(z)=zn, n = 0y ± 1 , ± 2 , • • • , form an orthonormal basis for L2 

( — L2(C)) ; let H2 be the subspace of L2 spanned by {e0, e\, e2, • • • }. 
If <j> is a bounded measurable function on C, then the Toeplitz operator 
T<f> induced by <f> is the compression to H2 of the multiplication 
operator induced by <t> on L2. Explicitly, if P is the projection with 
domain L2 and range H2, then 7 V = .P(<£ • ƒ) for each ƒ in H2. The 
Toeplitz operator T+ is analytic in case <j> itself belongs to H2. For the 
basic facts about Toeplitz operators see [ó]. 

One of the first things noticed about Toeplitz operators was that 
their matrices (with respect to the basis {e0, 0i, e2, • • • }) have an 
exceptionally simple form. Indeed, i H , j = 0 , 1 , 2, • • • , then 

(T+ej,€i) = (P(4>-ej)9ei) = (*•«/,*<); 

since the multiplication operator induced by e\ is the unilateral shift 
U, and hence isometric, it follows that 

(T+e^eù = (17(*-«y), Uet) = (0• «y+ii «*+0 

= (P(<t>-ej+1)yei+i) = (2>y+i, ei+i). 

The conclusion is that the diagonals of the matrix of T<t> are constants; 
the entries in row number 0 and column number 0 determine all 
others. Those entries are, in fact, the Fourier coefficients of </> (the 
ones with non-positive and non-negative indices respectively). From 
this observation it is easy to prove that not only does every Toeplitz 
operator have a Toeplitz matrix (i.e., one with constant diagonals), 
but the converse is true also; for each (bounded) Toeplitz matrix, 
the <t> that induces it is given by the Fourier series whose coefficients 
appear in row 0 and column 0. (An algebraic way of expressing the 
same conclusion is this: an operator A on H2 is a Toeplitz operator 
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if and only if U*AU = A.) 
If a Toeplitz operator T4 is analytic (which, by the way, happens 

if and only if its matrix is lower triangular), then 0 • ƒ is in H2 when­
ever ƒ is in H2; the projection P is not needed. Consequence: if T4, is 
analytic, then it is a part of the multiplication operator induced by <j> 
on L2, and hence it is subnormal. 

An easy way to get a normal Toeplitz operator is to take a Hermi-
tian one (i.e., to take <j> real). I t is somewhat surprising but true [ó] 
that every normal Toeplitz operator has the form a+(3T<i>, where <j> is 
real. 

These two trivial ways of getting subnormal Toeplitz operators 
(analytic and normal) are the only ones known; Problem 5 asks if 
they are the only ones that exist. There are many other problems 
about Toeplitz operators, big and small, solved and unsolved; here 
are two small ones, one old, one new. Exercise 1: is there a nonzero 
compact Toeplitz operator? Exercise 2: is every operator the sum 
of a Toeplitz operator and a compact one? 

The opposite of compression is dilation. If, that is, A and B are 
operators on Hubert spaces H and K respectively, where HQK, if 
P is the projection from K onto Hy and if Af = PBf for each ƒ in H, 
then A is the compression of B to H, and B is a dilation of A to K. 
One reason for the analytic importance of Toeplitz operators is that 
they have easily treatable dilations. 

Compressions and dilations can be usefully described in terms of 
matrices. If K is decomposed into H and HL, and, correspondingly, 
operators on K are written as two-by-two matrices (whose entries 
are operators on Ht operators on Hx, and transformations between 
the two), then a necessary and sufficient condition that B be a dila­
tion of A is tha t the matrix of B have the form (y f ) . 

The purpose of dilation theory in general is to get information 
about difficult operators by finding their easy dilations. The pro­
gram has been spectacularly successful. Unitary operators are among 
the easiest to deal with, and it turns out that, except for an easily 
adjusted normalization, every operator has a unitary dilation. Some 
normalization is clearly necessary: if B is unitary, then ||l3/|| = | | / | | 
for every vector / , and it follows that ||-4/|| ^ | | / | | for every vec tor / ; 
in other words, if A has a unitary dilation, then A must be a con­
traction. Tha t much normalization is sufficient: every contraction has 
a unitary dilation. The proof is explicit; given A on H, let B on H@H 
be defined by the matrix 

(r -A)' 
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where S and Tare the positive square roots ofL —A A* and I—A*A 
respectively. The verification that B is unitary is trivial but not 
obvious [20, Problem 177]. 

Projections, tha t is to say perpendicular projections, or projec­
tions onto a subspace along its orthogonal complement, are the right 
things to look at in Hubert space, but, from a geometrical point of 
view, skew projections are just as good. In algebraic language skew 
projections are idempotent operators; perpendicular projections are 
the ones among them that happen to have unit norm. I t is this 
normalization that forces every compression of a unitary operator 
to be a contraction; what happens if skew projections are allowed? 
Exercise 3: is it true that for every operator A on a Hubert space 
H there exists a unitary operator B on a larger Hilbert space K and 
a skew projection P from K onto H such that Af=PBf for each ƒ in 
H? 

What makes the theory of unitary dilations useful is Nagy's 
theorem [20, Problem 178] on power dilations. The assertion is that 
for every contraction A on H there exists a unitary operator B on a 
larger K such that Bn is a dilation of An simultaneously for every 
positive integer n. 

One of the most spectacular applications of unitary dilation theory 
is the proof of von Neumann's beautiful and powerful analytic 
theorem about contractions [20, Problem 180]. The assertion is that 
if j m i ^ l and if p is a polynomial such that \p(z)\ ^ 1 whenever 
| zI = 1 , then ||jf)(i4)||^l. For the proof, let B be a unitary power 
dilation of A to, say, 2£, let P be the (perpendicular) projection from 
K onto H, and note that, for each ƒ in H, 

\\P(A)A\-\\PP(U)A\* \\P(U)\\ -ll/NII/ll. 
The crucial inequality, the second one, is an elementary consequence 
of the functional calculus for normal operators; all that is needed is 
the observation that, since U is unitary, the spectrum of U is on the 
unit circle, where \p\ is, by assumption, bounded by 1. 

The success of this "one-variable" theory made it tempting to 
look for possible "several-variable" extensions. The first step was 
taken by Andô [ l ] ; he proved that if Ai and A2 are commutative 
contractions on H, then there exist commutative unitary operators 
Bi and B% on a larger K such that B™B\ is a dilation of A™A% for 
every pair of positive integers m and n. 

Much to everyone's surprise, Ando's theorem turned out to be a 
characterization of the integer 2; Parrott [37] proved that for three 
or more contractions the corresponding statement is false. In fact 
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even something much weaker is false: there exist three commuta­
tive contractions A0f A\y A% such that if B0, Bi, B2 respectively are 
isometric dilations (not necessarily unitary and not necessarily 
power dilations), then the set {B0t Bi, B2} cannot be commutative. 
The following presentation of Parrott 's idea is due to Chandler Davis. 

Suppose that C0, Ci, C2 are isometries on some Hilbert space; write 

/ 0 0\ 

I t is clear that the ^4's are contractions, and, since the product of 
any two of them is 0, it is clear that they commute. If B0, Bi, and B% 
are dilations of A0, Au and A2 respectively, to the same enlarged 
space, then they can be written in the form 

(0 0 *] 

Bi= Id 0 * , 

[Di Ei *J 

where the entries indicated by * need not be known. If each Bi is 
an isometry, so that 

II*<<ƒ, 0, 0>|| » = || <ƒ, 0,0>||» 

for all ƒ, then it follows that 

IM« + M'-IWI' 
for a l l / ; since C» is an isometry, it follows that Di must be 0. A similar 
glance at (0, / , 0) shows that E» must be an isometry. 

I t is to be proved that the Cs can be chosen so that the .B's do 
not commute. Assertion: if C0 = l and G and C2 do not commute (so 
that the Hilbert space they act on has dimension at least 2), then the 
desired result is achieved. Suppose, on the contrary, that the B's 
do commute. Since the entry in row 3 and column 1 of the product 
BiBj is EiCj, it follows that 

E1C2 = E2C1, EQCI = Ei, and EQC% = E%. 

This implies that 

E0C1C2 = E1C2 ̂  E2C1 = E0C2C1, 

and therefore, since Eo is an isometry, that CiCi — CiCi) the con­
tradiction has arrived and the proof is complete. 

ANSWERS TO THE EXERCISES. (1) The only compact Toeplitz 
operator is 0. Indeed, if <j> is a bounded measurable function on C, and 
if n and n+k are non-negative integers, then (#, 0*) = (T<t>en, e»+*). If 



910 P. R. HALMOS [September 

T4, is compact, then ||2V»||—»0 (since en—>0 weakly); it follows that 
(<£, eu) = 0 for all k (positive, negative, or zero), and hence t h a t $ = 0. 

(2) If A = r + C , where T is a Toeplitz operator and C is compact, 
then U*A U~T+U*CU, where U is the unilateral shift, and there­
fore U^AU^A+Kj where K is compact. This implies that not 
every A has the form T+C. For an example, let A be the projection 
onto the span of {e0, e2, e^ • • • }, so that Aen = en when n is even and 
Aen = 0 when n is odd. If n is even, then U*A Uen = 0; if n is odd, then 
U*A Uen = en. Conclusion: A — U*A U is not compact. 

(3) If skew projections are allowed, then every operator has a 
unitary dilation. Indeed, given A on H, write K=H@H, identify 
H, as usual, with H@0, let B on K be given by (? J), and let P 
the skew projection (J 0) from K onto if. Since PB has the matrix 
(0 o)> the result follows. A generalization of this technique can be 
used to produce, for each positive integer n, a unitary operator B 
such that Bk is a skew dilation of Ak for each k = 1, • • • , n. For the 
typical case » = 2, write X = - f f © H e i î , 

£ = 

'0 0 
1 0 

,0 1 

1] 
0 
0, 

and P = 

1 i l ^ 2 

0 0 0 

0 0 0 

These results are due to L. J. Wallen and J. S. Johnson. 

6. SIMILAR 

Problem 6. Is every polynomially bounded operator similar to a 
contraction! 

There is a sense in which questions of similarity are not "natural" 
in Hubert space, but the few elegant results and interesting examples 
already known make it hard to resist the temptation to continue 
looking for an adequate general theory. 

As is often true, the easiest operators to begin with are the unitary 
ones. If U is unitary and A =5~1Z75', then, of course, An = S~1UnS, 
and therefore m n | | Sc for every positive integer n (where c 
= | |5~1 | | • ||5J|); in other words, each operator similar to a unitary 
operator is power bounded. Since A is invertible, the inequality makes 
sense and is true for negative exponents also. One of the earliest 
non-trivial results about similarity is Nagy's converse [31 ] : if A is 
invertible and both A and A~l are power bounded, then A is similar 
to a unitary operator. (Caution: small diagonal matrices show that 
the inverse of a power bounded invertible operator may fail to be 
power bounded.) This is a satisfactory state of affairs; for similarity 
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to a unitary operator there is a simple and usable necessary and 
sufficient condition. 

Exercise 1: is every idempotent operator similar to a projection? 
What happens if the invertibility part of Nagy's condition is 

dropped? In other words: is there a simply describable class of 
operators such that power boundedness is a necessary and sufficient 
condition for being similar to one of them? Superficially it might 
seem that the class of isometries is the answer (drop the invertibility 
condition from the definition of unitary operators), but that is not 
right. (A quick way to see that it is not right is to recall that on 
finite-dimensional spaces all isometries are unitary.) A reasonable 
second guess might lead to the question: is every power bounded 
operator similar to a contraction? For some classes of operators the 
answer is yes. I t is, for instance, an easy exercise in analysis to prove 
that every power bounded weighted shift is similar to a contraction. 

I t is clear that every eigenvalue of a power bounded operator must 
have modulus less than or equal to 1. A finite Jordan block with 
eigenvalue of modulus 1 (and size greater than 1) is not power 
bounded; if the eigenvalue has modulus less than 1, then the block is 
power bounded and it is easily seen to be similar to a contraction. 
These considerations imply that in the finite-dimensional case every 
power bounded operator is similar to a contraction, and it follows, 
of course, that the same is true for operators of finite rank on spaces 
of arbitrary dimension. Nagy [32] extended the result to compact 
operators. For not necessarily compact operators the answer is no; 
a counterexample was constructed by Foguel [IS], [19], Exercise 
2 : every power bounded subnormal operator is similar to a contrac­
tion. 

At this point it is reasonable to begin to think that the whole 
approach is wrong. The preceding two paragraphs encouraged a 
search for a class of operators whose conjugates (i.e., transforms by 
similarities) were characterized by a prescribed condition (power 
boundedness). I t might be better to prescribe an interesting class of 
operators (e.g., contractions) and search for a characterization of 
their conjugates. 

With hindsight it might be said that two-sided power boundedness 
is a natural characterization of the conjugates of unitary operators 
in that it is a condition on the group of invertible operators. To 
characterize the conjugates of contractions (which may, of course, 
fail to be invertible) it seems reasonable to put a condition on opera­
tors considered as elements of an algebra. To find a good candidate 
for a characteristic condition, invert the problem: what can be said 
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about the elements of the algebra generated by an operator similar 
to a contraction? In other words: if C is a contraction, A =5_1C»S', 
and p is a polynomial, what can be said about p(A)? Since p(A) 
— S~lp(C)S, and since (by the von Neumann theorem mentioned in 
§5) ||/>(Ol| ^ | | ^ |U ( = sup{ \p(z)\ : \z\ ^ 1 } ) , one answer is the in­
equality | [ ^ ) | | ^ | | £ | U (where c = | | 5 - 1 | | • | |S| |). Operators satis­
fying this condition for all p are called polynomially bounded] Prob­
lem 6 asks whether they are exactly the conjugates of contractions. 

Foguel's work provides an operator that is power bounded but 
not similar to a contraction; if that operator were polynomially 
bounded also, Problem 6 would be solved (in the negative). Lebow 
[30 ] examined Foguel's operator and proved that it is not poly­
nomially bounded; Problem 6 is still unsolved. 

Some interesting special cases of Problem 6 are solved. 
(i) If r(A)<l (r is the spectral radius), then A is similar to a 

contraction. The result is due to Rota [20, Problem 122]. I t takes 
more than a casual glance to see that it is a special case of Problem 6. 
The easiest proof uses the result itself. That is: if r(A) < 1 , then A is 
polynomially bounded because it is similar to a contraction. There 
is an elegant quantitative version of Rota's theorem; it asserts that 
r(A) is always equal to the infimum of the norms of all conjugates of 
A. 

(ii) If A2 is a contraction, then A is similar to a contraction. (This 
was proved in collaboration by A. L. Shields, L. J. Wallen, and my­
self; simultaneously and independently it was proved by J. P. 
Williams.) For the proof, define a new inner product by ((ƒ, g)) 
- ( ƒ . i)+W, Ag). Since (ƒ, ƒ) S((ƒ,ƒ)) ^ ( 1 + | M | | 2 ) ( / , ƒ), the new 
inner product is equivalent to the old one. The assumption that A2 

is a contraction with respect to the old inner product implies that 
((Af, Af)) ^j((jf, ƒ)). This means that A is a contraction with respect 
to the new inner product, and hence that A was similar to a con­
traction in the first place. For an alternative approach to essentially 
the same proof, let S be the positive square root of 1+^4*^4 and 
verify that SAS"1 is a contraction. Generalization: if A2 is similar 
to a contraction, then so is A. Proof: if A2 = S~~1CS, where C is a 
contraction, then write B = SAS~K Since B2 = SA2S~l = C7 the result 
just proved implies that B is similar to a contraction and hence so is 
A. Both the result and the generalization extend automatically to 
An in place of A2. 

What does (ii) have to do with Problem 6? Answer: if A2 is a con­
traction, then A is polynomially bounded. For the proof, given a 
polynomial p, express it in terms of its even and odd parts, i.e., let 
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q+ and q~ be the polynomials defined by 

q+(z*)=±-(p(z) + p(~z)) and gr(*«) = 1 (f(*) - ƒ ( - « ) ) , 
Z Z2 

so that £(s) = g+(;s2) +££-(s2). Since A2 is a contraction, the von Neu­
mann theorem on contractions applies and proves that 

hHA>)\\ = \\q±\\„ 
Consequence: 

||XA)||s ML + Mil -llrll- = (i + IMIDIWU 
(The last inequality follows from the definitions of g+ and (p.) What 
the argument really proves is that if A2 is polynomially bounded, 
then so is A. The extension to Aw is routine. 

A final small comment about (ii) must be made before the subject 
can be abandoned: it is not the general case. Tha t is: there exists a 
polynomially bounded operator A such that no power of A is a 
contraction. Example (A. L. Shields) : a unilateral weighted shift with 
weights 1 + 1/2", n = 0, 1,2, • - • . The norm of ,4n is ftt-o (1 + 1/2*), 
which is always strictly greater than 1 ; to prove that A is polynomially 
bounded, apply the general theory of similarity for weighted shifts 
[20, Problem 76] and infer that A is similar to the (unweighted) 
unilateral shift. 

(iii) Exercise 3: every polynomially bounded operator is the 
limit (in the norm) of operators that are similar to contractions. 
Tha t is: granted that equality is not yet attainable, a t least asympto­
tic equality can be achieved. 

Unitary operators are too special and contractions are too general, 
there are several interesting classes between. What, for instance, can 
be said about the conjugates of isometries? Answer: A is similar to 
an isometry if and only if the powers of A are uniformly bounded 
from both above and below. To say that the powers of A are uni­
formly bounded from above means, of course, that the supremum 
of the set of numbers 

{\\Af\\ :» = 0 , 1 , 2, . - . , | | / | | = 1} 

is finite (i.e., that A is power bounded) ; the corresponding condition 
from below is that the infimum of the same set of numbers is (strictly) 
positive. The proof of the assertion is a routine imitation of Nagy's 
proof for the unitary case. 

Although this characterization of the conjugates of isometries 
looks as if it might be awkward to apply, it does have some pleasant 
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consequences. These consequences are minor, and each one can be 
proved directly, but it is more efficient to derive them from a com­
mon source. Sample: every square root of an isometry is similar to 
an isometry. (Isometries can have non-isometric square roots. A 
trivial example is (J_î); a non-trivial infinite-dimensional ex­
ample is a unilateral weighted shift with alternating weights 2 and 
| . ) For the proof, observe that if A2 is an isometry, then A has a left 
inverse and, consequently, A is bounded from below; since An is 
alternately an isometry and A times an isometry, the desired result 
follows. The extension to higher powers is obvious. 

Another sample: if a normal operator A is similar to an isometry, 
then A is an isometry (and hence A is unitary). Proof: use the power 
characterization of the conjugates of isometries and the spectral 
theorem. Here is a small surprise: for subnormal operators the con­
clusion is false; a counterexample was constructed by Sarason [20, 
Problem 156]. 

The problem of characterizing the conjugates of partial isometries 
has apparently not been studied. 

ANSWERS TO THE EXERCISES. (1) If £ 2 = E, form A =2E — 1, note 
that An — l or A according as n is even or odd, and conclude that A 
is similar to a unitary operator U. Since Z72 = l (because A2 = l), it 
follows that U is Hermitian, and hence so is J (£7+1). Conclusion: 
| ( £ / + 1 ) is a projection similar to E ( = §(^4+1)). This is an elegant 
application of Nagy's similarity theorem, but it has a flaw; the 
trouble is that the result is easier to prove directly. Indeed: decom­
pose the space into ranE (=ker ( l—E)) and its orthogonal comple­
ment; the matrix corresponding to E then takes the form (J £). 
If S= (o f), then 5 is invertible and 5~1E5 = (J g). No harm done: the 
conclusion is worth mentioning in any discussion of similarity. The 
second proof is due to J. G. Stampfli. 

(2) Suppose that A is subnormal and power bounded, and let B 
be its minimal normal extension. If A denotes spectrum, then A(Bn) 
= (A(jB))n (spectral mapping theorem) C(A(^4))W (spectral inclusion 
theorem for subnormal operators) =A(An). If r denotes spectral 
radius, then it follows that 

||S»|| = f(J5») ^ f(4n) g H^ l l . 

Consequence: B is power bounded. Since the only power bounded 
complex numbers are the ones of modulus less than or equal to 1, 
the spectral theorem implies that B must be a contraction, and it 
follows that so is A, Conclusion: a power bounded subnormal opera­
tor is not only similar to a contraction, but actually is one. 
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(3) Every operator A with r(A) ^ 1 is the limit of operators similar 
to contractions. (Note that if A is polynomially bounded, then it is 
power bounded, and therefore r(A)^l.) Indeed: if ^4n = (l — l/n)A, 
then r(An)<l, so that Rota's theorem (i) applies, and, clearly, 
An-*A. Since there are easy examples of operators A with r(A) g l 
that are not polynomially bounded (a hard example is the Foguel 
operator), this shows incidentally that the set of polynomially 
bounded operators is not closed. 

7. NILPOTENT 

Problem 7. Is every quasinilpotent operator the norm limit of nil-
potent ones? 

The similarity theory of linear transformations on finite-dimen­
sional spaces reduces to that of nilpotent ones, and the theory of 
nilpotent transformations turns out to be algebraically tractable. 
In the infinite-dimensional case nilpotence no longer plays the same 
central role, and the theory of the appropriately generalized concept 
is both algebraically and topologically refractory. 

If A is nilpotent, say An = 0, then, by the spectral mapping the­
orem, the spectrum of A consists of 0 alone. In the finite-dimensional 
case the converse is true; in the infinite-dimensional case it is not. 
The standard example [20, Problem 80 ] is any unilateral weighted 
shift whose weights tend to 0. If A is such a shift, then A is not nil-
potent (in fact if Anf = 0 for some positive integer n, then ƒ = 0). The 
operator A is, however, quasinilpotent in the sense that ||.4n||1/n—*0. 
Since l im n m n | | 1 / n is always equal to the spectral radius of A [20, 
Problem 74], the spectrum of a quasinilpotent operator is the single­
ton {o}. 

Problem 7 is important because it calls for the discovery of new 
techniques; the question itself is "wrong". What is wrong is that the 
condition whose necessity is in question is already known to be not 
sufficient; a limit of nilpotent operators may fail to be quasinilpotent. 
The basic example is due to Kakutani [20, Problem 87]. I t is a uni­
lateral weighted shift A whose weight sequence {ao, cei, a^ • • • } 
is obtained as follows: every second a is equal to 1, (i.e., <xo = l> ot% 
= 1,^4 = 1, • • • ) ; every second one of the remaining a1 s is equal to 
| (cei = | , a5 = | , «9 = è> • • • )î every second one of the remaining a's 
is J, etc., etc. If An is the "weighted shift" obtained from A by re­
placing 1/2W by 0, then An is nilpotent of index 2W+1 and An-*A. 
The spectral radius of A can be obtained by a mildly onerous com­
putation; the result is that r(A) ==1. Problem 7 is specific but mis-
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directed. The more honest formulation has to be more vague; it 
should be something like "what is the closure of the set of nilpotent 
operators?". As long as the subject has been raised: what is the 
closure of the set of quasinilpotent operators? 

There is an elegant partial solution of Problem 7 due to R. G. 
Douglas: every compact quasinilpotent operator is the limit of nil-
potent ones. The main tool in the proof is the upper semicontinuity 
of the spectrum [20, Problem 86]. According to that result if A is 
quasinilpotent, then corresponding to each positive integer n there 
exists a positive number en such that every operator within ew of A has 
a spectrum smaller than 1/n. Assume, with no loss of generality, that 
€»—-K). If now A is compact (as well as quasinilpotent), then for each 
n there exists an operator Bn of finite rank such that ||̂ 4 — 5»|| <en . 
Since all the eigenvalues of Bn are less than 1/n in modulus, it 
follows (triangular form) that Bn has the form Cn+Dny where Cn 

is nilpotent and Dn is diagonal, with \\Dn\\ <l/n. Conclusion: Cn-^A. 
Exercise 1: is every quasinilpotent operator either nilpotent or 

compact? (It is clear from the context that the answer must be no; 
otherwise Problem 7 would be solved in the affirmative.) 

The general structure of quasinilpotent operators is not known at 
all. There are some large questions, and there are a few fragmentary 
theorems. Two questions have to do with the invariant subspace 
problem, (i) Does every quasinilpotent operator have nontrivial 
invariant subspaces? What makes the question interesting is not 
only that the answer is not known, but also that, possibly, it is 
equivalent to the general invariant subspace problem. No convincing 
reduction is known, but meditation on the finite-dimensional case, 
and on the connectedness of the spectrum of a transitive operator, 
has led some people sometimes to hope that one exists, (ii) An opera­
tor is called unicellular in case all its invariant subspaces are com­
parable (i.e., if M and N are invariant subspaces, then MQN or 
NC.M). The terminology comes from the finite-dimensional case: 
there the phenomenon occurs if and only if the Jordan form has just 
one block (cell). Since one block has just one eigenvalue, it is natural 
to raise the general question [44 ] : is every unicellular operator equal 
to the sum of a quasinilpotent operator and a scalar? For compact 
operators the answer is yes. 

What follows is a discussion of some of the fragmentary theorems 
about quasinilpotence that are known. The first two are more frag­
mentary than the rest; their discussion is left to the reader. 

Exercise 2: An analytic quasinilpotent operator is nilpotent. 
(Here A is called "analytic" in case there exists a function ƒ analytic 
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in a neighborhood of 0 such that f (A) = 0.) 
Exercise 3: If U is the unilateral shift and A is quasinilpotent, 

then | | £ 7 - i l | | â l . 
Perhaps the most important place where quasinilpotent operators 

enter functional analysis is in Dunford's theory of spectral operators 
[13]. The concept belongs to Banach spaces, but in Hubert spaces, 
by virtue of an elegant theorem of Wermer [52], it has an especially 
simple characterization. An operator A (on a Hubert space) is 
spectral if and only if it can be represented as a sum, A =S+Q, where 
S is similar to a normal operator, Q is quasinilpotent, and S and Q 
commute; the representation is unique. The theory of the classical 
Jordan form shows that on a finite-dimensional Hilbert space every 
operator is spectral. 

A basic result about spectral operators is that if A~S+Q, as 
above, then the spectra of A and S are the same. To prove this, ob­
serve first that if T is an operator that commutes with Q, then QT is 
quasinilpotent (because | | (Qr) n | | = | | ö n r w | | ) , and it follows that if, 
moreover, T is invertible, then T+Q is invertible (because T+Q 
= T(1 + T~XQ)). Suppose now that X is not in the spectrum of 5 and 
write T = S—X; by what was just said, T+Q is invertible, so that X 
is not in the spectrum of S + Q . Since 5 and S+Q play symmetric 
roles, it follows that, indeed, their spectra are the same. This the­
orem has an ingenious generalization due to Colojoarà and Foiaç 
[8]. They define two operators (which might as well be called A and 
S) to be quasinilpotent equivalent in case 

I n /n\ II1/n 

Z(-i)*( M*sH ->o 
I fc-0 \k/ II 

and in case the same is true with A and S interchanged. The point 
is that if A and 5 happen to commute (which happens exactly when 
A—S and S commute), then the sum inside the norm is equal to 
(A— S)n. In the commutative case quasinilpotent equivalence re­
duces to having a quasinilpotent difference; the non-commutative 
case is a proper generalization. The Colojoarâ-Foiaç theorem is that 
any two operators that are quasinilpotent equivalent have equal 
spectra. 

If the imaginary part of a quasinilpotent operator is compact, 
does it follow that the operator itself is compact? The answer is yes, 
and the result plays an important role in the theory of invariant 
subspaces. The fact was discovered almost simultaneously by Ring-
rose [42] and Schwartz [47]. Schwartz's proof is sophisticated but 
short; it goes as follows. Consider the algebra <B of all operators, the 



918 P. R. HALMOS [September 

ideal 6 of compact operators, the quotient algebra (B/6, and the 
canonical homomorphism TT from (B to (B/C. If Q is quasinilpotent 
(in (B), then TT(Q) is quasinilpotent (in (B/e); if lm Q ( = (l/2i) 
((? — (?*)) is compact, then Im 7r(<2) =0 . Since (B/e is representable 
as an operator algebra, and since the image of Q in such a representa­
tion has now been proved to be quasinilpotent and Hermitian, it 
follows that 7r(<2) =0 , so that Q is compact. 

A nilpotent operator is locally nilpotent also; that is, if An = 0, then 
Anf = 0 for each ƒ. The converse is true: if for each ƒ there is an n 
( = ^ ( / ) ) such that Anf = 0, then there is an n (independent of/) such 
that An = 0. Indeed, if A is locally nilpotent, then the space is the 
union of the subspaces ken4n , # = 1, 2, 3, • • • . The Baire category 
theorem implies that ken4n has a non-empty interior for a t least one 
nt and a subspace with a non-empty interior equals the whole space. 
Note: local nilpotence on a dense set is not enough to guarantee 
nilpotence. 

The preceding paragraph extends elegantly to quasinilpotence, 
as follows. A quasinilpotent operator is locally quasinilpotent also; 
that is, if ||i4n||1/n—>0, then (|^4n/||1/n—>0 for each/ . To prove the con­
verse, observe that if ||-4W/|| <en whenever n is sufficiently large (for 
each fixed ƒ and each fixed positive number e), then {||i4w//€n||:n 
= 1, 2, 3, • • • } is bounded. The principle of uniform boundedness 
[20, Problem 40] implies that {||i4n/€n|| :n==1» 2» 3» * ' * } is bounded, 
so that there exists a constant c such that ||-4W|| Sctn for all n and all 
e. Conclusion: ||^4n||1/n—>0, as promised. This smooth proof is due to 
Colojoarà and Foias [9]. Local quasinilpotence on a dense set is not 
enough to guarantee quasinilpotence. Indeed, if U is the unilateral 
shift, and if ƒ is a polynomial (i.e., a finite linear combination of the 
basis vectors being shifted), then U*nf = 0 for n sufficiently large; 
£/*, however, is obviously not quasinilpotent. 

ANSWERS TO THE EXERCISES. (1) Begin with a quasinilpotent 
operator A with k e n 4 = 0 , and put J3 = (?o)« I t follows that kerJ3 
= 0, and hence that B is not nilpotent. Since J52 = (OA)> it follows 
that B2 is quasinilpotent, and therefore so is B. A simple special 
case is a unilateral weighted shift with every other weight equal to 1 
and the in-between ones tending to 0. For another example, start 
with an operator that is quasinilpotent and not nilpotent, but possi­
bly compact, and form the direct sum of infinitely many copies of it. 

(2) Write ƒ(z) =zng(z)1 where g is analytic in a neighborhood of 0 
and g (0 )^0 . The function g has an analytic reciprocal; i.e., there 
exists a function h analytic in a neighborhood of 0 such that g(z)h(z) 
= 1. I t follows that 0=f(A) =f(A)h(A) =Ang(A)h(A) =A\ (This 
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proof is due to D. E. Sarason.) 
(3) If || U-A\\<1, then | | l - U*A\\ < 1 , so that U*A is invertible, 

and therefore A is left invertible. But if BA = 1, then BnAn = l (dis­
card BA's from the middle), and therefore 1 g | |5 n | | 1 / n m w | | 1 / n for all n. 
I t follows that 1 ^r(B)r(A), which cannot happen when A is quasinil-
potent. Corollary: the set of quasinilpotent operators is not dense. As 
far as the corollary is concerned, however, Exercise 3 is not needed. 
For that purpose it is enough to note that if A is quasinilpotent, then 
|| 1— ̂ 41| è l , and that is obvious: a quasinilpotent operator surely 
cannot be invertible. The corollary should be contrasted with the 
result that the set of all nilpotent operators of index 2 is strongly 
dense [20, Problem 91]. The statement of Exercise 3 is due to R. A. 
Hirschfeld. 

8. REDUCIBLE 

Problem 8. Is every operator the norm limit of reducible ones? 

Recall that a subspace ikf of a Hubert space H reduces an operator A 
on H in case both M and ML are invariant under A ; equivalent!y, M 
reduces A in case the projection with range M commutes with A. 
The operator A is reducible in case it has a non-trivial reducing sub-
space. 

On a finite-dimensional Hubert space the answer to the question is 
no: the set (R of reducible operators is closed. Suppose, indeed, that 
An is reducible and An-^A, and, for each nf let Pn be a non-trivial pro­
jection that commutes with An. Finite-dimensionality implies the 
compactness of the unit ball in the space of operators. There is, 
therefore, no loss of generality in assuming that Pn—*P, where, of 
course, P is a projection, and, clearly, AP—PA. If dim H = K, then 
1 S trace Pn ^k — 1 ; since trace is continuous, it follows that P^ 0, 1. 
This proves that (R is closed; since not every operator is reducible 
(witness (? S))> it follows that (R cannot be dense. 

Exercise 1: on a non-separable Hubert space every operator is 
reducible. 

In view of the preceding comments, the solution of Problem 8 is 
negative for small spaces and trivially affirmative for large ones. The 
scope of the problem has been reduced to medium-sized Hubert 
spaces (infinite-dimensional but separable), and there it is unsolved. 
Irreducible operators on such spaces certainly do exist; the unilateral 
shift is one of them. The unilateral shift, however, does not yield a 
negative solution of Problem 8; it can be approximated by reducible 
operators. 
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Another pertinent comment concerns bilateral weighted shifts. 
Such a shift is reducible if and only if its weight sequence is periodic 
[20, Problem 129]. If the weight sequence is not periodic but is the 
uniform limit of periodic ones, then, of course, the corresponding 
shift is the norm limit of reducible ones. If, however, the weight 
sequence is not the uniform limit of periodic ones (if, for instance, all 
the weights are 1 except the one with index 0, which is 2), then it does 
not follow that the shift is not reducibly approximate ; all that 
follows is that the obvious approximation breaks down. The facts are 
not known. 

Irreducible operators not only exist, they exist in profusion: the set 
3 of irreducible operators (on a separable Hubert space) is dense. To 
prove this, consider an arbitrary operator A and write A—B+iC 
with B and C Hermitian. Represent B as a multiplication on L2 over a 
finite measure space. (This is one place where separability comes in.) 
The (real) multiplier can be uniformly approximated by (real) 
simple functions. Multiplication by a real simple function is the 
direct sum of a finite set of real scalars, and consequently it is a 
diagonal operator; a Hermitian diagonal operator can obviously be 
approximated by one with no repeated eigenvalues. Call such an 
approximant B0, and consider the matrix of C with respect to a basis 
formed by the eigenvectors of B0. Tha t matrix might have some en­
tries equal to 0, but in any event it can be approximated by a (Hermi­
tian) matrix with all non-zero entries; let C0 be the operator corre­
sponding to such a matrix. The operator Ao—Bo+iCo approximates 
A ; it remains to prove that A 0 is irreducible. If a subspace M reduces 
A ot then M is invariant under both B0 and C0. A subspace invariant 
under B0 is spanned by the subset of the eigenvectors of Bo that it 
contains ; this is a consequence of the distinctness of the eigenvalues of 
Bo and is proved by a standard and elementary computation. Such a 
subspace, however, cannot be invariant under Co, unless it is either 0 
or the whole space ; this is a consequence of the non-zeroness of the 
matrix entries of Co. Conclusion: Ao is irreducible, and the proof of 
the density of 3 is complete. The first appearance of the theorem is in 
[2 l ] ; the proof here presented is due to Radjavi and Rosenthal [39]. 

The proof works for all separable spaces, and, in particular, for 
the finite-dimensional ones. Since in the finite-dimensional case 3 is 
open (because its complement (ft is closed), and since the complement 
of a dense open set is nowhere dense, it follows that in the finite-
dimensional case (R is, in the sense of topological size, very small 
indeed. I t is of interest to note that for separable spaces (ft is always 
topologically small (meager, set of the first category). Explicitly: if 
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the space is separable, then (R is an Fff [21 ]. 
The proof that <R is an Fff is tricky. Let (P be the set of all those 

Hermitian operators P for which O ^ P ^ l . Recall that (P is exactly 
the weak closure of the set of projections. Let (P0 be the subset of 
those elements of (P that are not scalars. Since (P is a weakly closed 
subset of the unit ball, it is weakly compact, and hence the weak 
topology for (P is metrizable. Since the set of scalars is weakly closed, 
it follows that (Po is weakly locally compact. Since the weak topology 
for (P has a countable base, the same is true for (P0, and therefore <P0 

is weakly <r-compact. Let (Pi, (P*, • • • be weakly compact subsets of 
(Po whose union is (Po, and, for each w, let (?n be the set of all those 
operators A that commute with some element of (P». The spectral 
theorem implies that ^C-i<Pn ^ & • 

The proof can be completed by showing that each (Pn is norm closed. 
Suppose therefore that Ak is in (Pn and that ||-4*—-4||—>0. For each k, 
find Pk in (Pn so that it commutes with Ak. Since (Pw is weakly compact 
and metrizable, there is no loss of generality in assuming that the 
sequence {Pk} is weakly convergent to P , say. (This is the point 
where it is advantageous to consider all the operators in (P, and not 
just the projections; there is no guarantee that P is a projection even 
if the Pjfc's are. Note that P is in (Pn, so that, in particular, P is not a 
scalar.) 

Since Ak-^A (norm) and Pk-^P (weak), it follows that AhPh-^AP 
and PkAk—>PA (weak). (The proof of this continuity assertion is 
elementary; all that it needs is that the sequence {P*} is bounded.) 
Conclusion : A commutes with P , so that A is in &». 

Category arguments are sometimes used for existence proofs. Tha t 
is certainly not the point here; the assertion that 3 is not empty was 
obvious long before the proof that 3 is a dense Gs. Consider, however, 
invariance instead of reducibility. Tha t is, let 5 be the set of transi­
tive operators; one way to try to prove that 3 is not empty might be 
to prove that it is (or includes) a dense G«. As it stands, this is doomed 
to failure; since every transitive operator is cyclic, 3 cannot be dense 
(cf.§D. 

How far is 3 from being topologically large? Could it be that it is so 
small tha t its complement is (or includes) a dense Gsf The answer is 
not known, but the evidence is toward the affirmative: the comple­
ment of 3 is a t least dense. A much stronger statement is true 
(Exercise 2) : the set of all operators with an eigenvalue is dense. 

There is not much more to the theory of irreducible operators, but 
there is a little; it would be good to have more. Here, in conclusion 
for now, are two known results, (i) The set (Ri of all operators (on a 
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separable infinite-dimensional Hilbert space) that have a reducing 
subspace of dimension 1 is not dense, but (Exercise 3): its closure 
contains every isometry. (ii) Every operator (on a separable Hilbert 
space) is the sum of two irreducible ones [14], [38]. 

ANSWERS TO THE EXERCISES. (1) If A is an operator on H and ƒ is a 
non-zero vector in H, then the smallest subspace of H that contains ƒ 
and reduces A is spanned by ƒ together with the set of all vectors of 
the form A\ • • • Anf> where n is an arbitrary positive integer and each 
Aj is either A or A*. I t follows that that (non-zero) subspace is 
separable; if H is not separable, then the construction has yielded a 
non-trivial subspace that reduces A. 

(2) Given A, find an approximate eigenvector for A, use it as the 
first element of a basis, form the matrix of A, and then find an ap-
proximant by replacing by 0 all but the first entry in the first column. 
Conclusion: every operator can be approximated by operators with 
eigenvalues. 

(3) I t is to be proved that if U is an isometry, then U can be 
approximated by operators with reducing eigenvectors. The proof is 
similar to the one in (2). Let X be an approximate eigenvalue of U 
with modulus 1. I t follows, by definition, that corresponding to each 
positive number e there exists a unit vector e such that || Ue— \e\\ <e, 
and hence such that || U*e-\*e\\ = | | -\*U*(Ue-\e)\\ <e. Usee as the 
first element of a basis, form the matrix of U, and then find an ap-
proximant by replacing by 0 all but the first entry in both the first 
row and the first column. 

9. REFLEXIVE 

Problem 9. Is every complete Boolean algebra reflexivet 

The invariant subspace problem asks whether the set of all 
invariant subspaces of an operator can consist of the two extremes 
only, but what people would really like to know is what the set of all 
invariant subspaces of an operator, or, for that matter, of any set of 
operators can look like. A few necessary conditions are easy to ob­
tain. If, for instance, & is a set of operators (on H) and <£ is the set of 
all those subspaces (of H) that are invariant under every operator in 
®, then it is clear that <£ is a lattice (i.e., that £ is closed under the 
formation of intersections and spans), and it is even clearer that £ 
contains 0 and H. In addition to these algebraic conditions, £ 
satisfies a somewhat less obvious topological condition, namely that 
it is strongly closed. (Explanation: the set of all projections whose 
ranges are in £ is strongly closed. Proof: if A is in Ct and {P„} is a net 
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of projections strongly convergent to P and satisfying APn~PnAPn 

for each n, then, because multiplication is jointly continuous on 
bounded sets, AP=PAP.) The topological condition has algebraic 
reverberations. Exercise 1: a strongly closed lattice is complete. 
(Caution: the converse is false. Example: discard a 1-dimensional 
space from the lattice of all subspaces of a 2-dimensional space; the 
remainder is a complete but non-closed lattice.) I t is easy to show that 
the necessary conditions listed so far are nowhere near sufficient; the 
characterization problem for the set of all invariant subspaces of a set 
of operators is still open. 

There is a kind of Galois theory connecting sets of operators and 
sets of subspaces. Half of it was just described: to each set Cfc of 
operators there corresponds the set of those subspaces that are in­
variant under the elements of Q; call that set Lat®. The other half 
goes backwards : to each set £ of subspaces there corresponds the set 
Alg£ of those operators that leave invariant each element of £. I t is 
clear that Alg<£ is always an algebra (closed under the formation of 
sums, products, and scalar multiples); it is even clearer that AlgJB 
contains 1 ; and the one-sided weak continuity of multiplication im­
plies that Alg<£ is weakly closed. 

The basic properties of Alg and Lat are easy; their proofs belong to 
universal algebra. The facts are that both Alg and Lat are order-
reversing, and that if <£ is any set of subspaces and Q is any set of 
operators, then 

£ C Lat Alg£ and a C Alg L a t a . 

(Exercise 2 : Alg £ = Alg Lat Alg £ and Lat a = Lat Alg Lat CL Anal­
ogy with linear algebra (when is an object equal to its own second 
dual?) suggests that if <£=Lat Alg<£, then the lattice £ be called 
reflexive; the same word is used for an algebra & such that Ct = 
Alg Lat Q. Word-saving convention: every lattice contains 0 and 
H and is strongly closed, every algebra contains 1 and is weakly 
closed. 

The theory of reflexive algebras is relatively new and, judging from 
the analytic techniques it has been using, quite deep. A typical result 
is Sarason's [45]: a commutative algebra of normal operators is 
reflexive. Example: the set of all matrices of the form (S°). In a 
different direction, Radjavi and Rosenthal [40] generalized a 
theorem of Arveson's [3] as follows: if d includes a maximal abelian 
self-adjoint algebra and if LatCt is a chain (totally ordered), then Ct 
is reflexive. Example: the set of all matrices of the form (£°). A 
typical example of a non-reflexive algebra is the set of all matrices of 
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the form (J 2). A complete characterization of reflexive algebras is 
unknown even for finite-dimensional spaces. 

To ask about invariant subspace lattices of sets of operators is the 
same as to ask about reflexive lattices. Here are two trivial but illu­
minating examples. 

(i) If H is 2-dimensional and «£ consists of 0, H, and two distinct 
1-dimensional subspaces of H} then <£ is reflexive. To say of an opera­
tor that it leaves invariant each subspace in £ is to say just that it has 
two prescribed eigenvectors, and hence that its matrix with respect 
to the basis they form is diagonal. Since the only subspaces simul­
taneously invariant under all such diagonal operators are the ones in 
£, the lattice £ is reflexive, (ii) Suppose again that H is 2-dimen­
sional, and let £ consist of 0, H, and three distinct 1-dimensional 
subspaces. I t is very hard for an operator on H to have three distinct 
eigenvectors; the only operators that can do it are the scalars. 
Scalars, on the other hand, leave invariant every subspace of H; the 
lattice £ is not reflexive. 

The first non-trivial theorem about reflexive lattices is a sharpening 
of some related work of Kadison and Singer [27]; the statement, 
proved in complete generality by Ringrose [43], is that every com­
plete chain is reflexive. Here again "chain" means a lattice whose 
order (in general partial) is in fact total. No topological assumption is 
needed: it is easy to prove that a complete chain of subspaces is 
necessarily strongly closed. 

The smallest lattice that is not a chain is a 4-element Boolean 
algebra, i.e., a lattice of the form <£ = {0, M, N, H}, where the sub-
spaces M and iVare such that ikffW==0 and M\/N = H. I t is true but 
not obvious that each such £ is reflexive. To prove this it is sufficient 
(and necessary) to exhibit a set Œ of operators such that Lat Q, = £. 
Let P and Q be the projections onto M and N respectively and let (X 
be the set of all operators that are either of the form PA (1 — Q) or else 
of the form QA(l— P). Since PA(1— Q) annihilates N and maps 
everything into M, and, similarly, QA(\—P) annihilates M and 
maps everything into N, it follows that £ C La tö . I t remains to prove 
the reverse inclusion. 

A useful lemma is that if K is in LatCt and K(£.M, then KZ)N. 
(Similarly, of course, if K is in LatCt and K(£N, then S D M . ) For 
the proof, take a vector ƒ in K but not in M, and take an arbitrary 
vector g in N. Since ƒ is not in M, it follows that (1— P ) / T ^ 0 , and 
hence that there exists an operator A such that A ( l — P ) / = g. Since 
QA(1-P)f is in K (because K is in La ta ) and QA(1-P)f=g (be­
cause g is in N), it follows that g is in K; this proves the lemma. 
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Suppose now that K is in Lat &, K^Q, M, N; it is to be proved 
that K~H. The subspace K cannot be included in both M and N 
(because X ^ O ) . If, say, K(^M1 then, by the lemma, K'DN. Since, 
however, Kj^N, it is not the case that K<ZN\ the lemma applies 
again and yields KZ^M. The conclusion follows from the assumption 
that MVN = H. 

The result just proved is contained in a much more general 
theorem: every complete atomic Boolean algebra is reflexive. The 
complementation implicit in the phrase "Boolean algebraw is not, of 
course, assumed to be orthogonal; compare the £ just treated. To say 
of a Boolean algebra of subspaces that it is atomic means that every 
subspace in the algebra is the span of all the atoms it includes; an 
atom is a non-zero subspace in the algebra that includes no subspace 
in the algebra other than 0 and itself. Problem 9 asks whether the 
assumption of atomicity can be omitted. The atomic special case was 
first announced in [23 ]. 

There are a t least two ways of making new reflexive lattices out of 
old ones: direct sums and ordinal sums. The latter is more useful. A 
lattice £ of subspaces of a Hubert space H is the ordinal sum of two 
lattices in case it contains a comparable element H0. Tha t means 
that, for each M in <£, either M<ZH0 or H0C.M. If that is the case, 
then there are, indeed, two other lattices associated with £\ (i) the 
lattice £~ of all those subspaces of H0 that happen to be in <£, and 
(ii) the lattice <£+ of all those subspaces of HQ that are of the form 
MC\HQ- for some M in £. (This ad hoc definition is not elegant, but it 
avoids a long digression, and suggests the correct picture.) Theorem: 
if both £~~ and £+ axe reflexive, then so is £. Sample application: if 
dim H = S and £ (the "pendulum") consists of 0, two 1-dimensional 
spaces, their span, and H, then £ is reflexive. This is of interest be­
cause (Exercise 3) £ is not the Lat of any single operator. 

The theorems and techniques mentioned so far yield many re­
flexive lattices and a few non-reflexive ones, and they are sufficient to 
decide the status of all sufficiently small lattices. The following com­
ments exhaust all that is known, and show therefore how much re­
mains to be done. 

If a lattice has four elements, or fewer, then it is reflexive. There 
are five isomorphism types of lattices with five elements: the chain, 
the pendulum, the pendulum upside down, the non-modular pentagon, 
and the double triangle. Every lattice of subspaces that belongs to one 
of the first three types is reflexive. The pentagon ( = {0, L, M> N, H}, 
with MCN, LnM = Lr\N = 0 and L\/M = L\/N=H) is not realiz­
able as a lattice of subspaces of a finite-dimensional space. If dim H is 
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infinite, the pentagon can occur, and in the one manifestation that 
has been studied it turns out to be reflexive. (Can it have a non-
reflexive occurrence? The answer is not known.) As for the double 
triangle ( = {0, L, Af, N, H], with LC\M = Lr\N = M(^N = 0 and 
L\/M — L\/N = M\/N = H)i all its known manifestations are non-
reflexive. The known manifestations include all possible finite-
dimensional ones; the unknown cases are all infinite-dimensional. 
The finite-dimensional facts are covered by a theorem of R. E. 
Johnson [25]: a finite lattice of subspaces of a finite-dimensional 
space is reflexive if and only if it is distributive. The "if" remains true 
for infinite-dimensional spaces (K. J. Harrison); the reflexive r e a d ­
ability of the pentagon shows that the "only if" is false for them. 

ANSWERS TO THE EXERCISES. (1) Suppose that <£ is a strongly closed 
lattice and that £o is a subset of «C. Consider the directed set of all 
finite subsets of <£o ordered by inclusion. If n is such a finite subset, let 
Mn be the intersection of the subspaces in n. Since n—>Mn is a de­
creasing net of subspaces, the corresponding net of projections is 
strongly convergent to the projection whose range is n<£0; this 
proves that C\£o is in «£. The proof for spans is similar. 

(2) Apply Lat to the relation CbCAlg La ta , and apply the relation 
JCCLat Alg<£ to Latö, in place of £. This proves that Lat G, = Lat Alg 
Lat &; the equation Alg<£ = Alg Lat Alg«£ is proved dually. Corollary: 
every lattice that is the Lat of something is the Lat of its own Alg. 

(3) If dim H< oo, and if £ = Lat A for some operator A on H, then 
<£ is self-dual, in the sense that <£ is isomorphic to a lattice in which all 
the order relations of £ are reversed. Proof: the formation of or­
thogonal complements proves that Lat A is anti-isomorphic to Lat A * ; 
since every matrix is similar to its transpose, and similar operators 
have isomorphic lattices, the proof can be completed by recalling 
that the matrix of A* is the conjugate transpose of that of A [S]. 

10. TRANSITIVE 

Problem 10. Is every non-trivial strongly closed transitive atomic 
lattice either medial or self-conjugated 

This is the most awkward of the ten problems here proposed; the 
reason is that it points to the darkest area of ignorance. 

The crucial word is "transitive". A set & of operators is called 
transitive in case Lat(£ = <£min ( = the smallest lattice, the one con­
sisting of 0 and H only) ; a set £ of subspaces is transitive in case 
Alg£ = C£min ( = the smallest algebra, the one consisting of scalars 
only). 
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If a set Ofc of operators is transitive, then so is every subset of 6, that 
generates the same weakly closed algebra. I t follows that the search 
for transitive sets might as well be restricted to weakly closed 
algebras. (Word-saving convention: every algebra contains 1, every 
lattice contains 0 and H.) Problem 10 has a dual, a problem for 
algebras, that is easier to state: is every weakly closed transitive 
algebra equal to Œmax ( = the largest algebra, the one consisting of all 
operators)? I t is implicit in the question that Œmax itself is transitive; 
if a subspace M of H is invariant under every operator on H, then 
M = 0 or M = H. Conjecture: the solution of this dual of Problem 10 is 
negative. In fact, there probably exists a commutative transitive 
algebra. This conjecture, in turn, is a special case of one already on 
record (in §3) : if a transitive operator exists (in present language an 
operator A is transitive in case Lat A = <£min) » then the weakly closed 
algebra it generates is a transitive algebra. All these conjectures seem 
to be out of reach at present. If H is small (finite-dimensional), then 
Burnside's classical theorem applies [24, p. 276] and says that the 
only transitive algebra is Cfcmax- If H is very large (non-separable), 
then an easy cardinality argument shows that no countably gen­
erated algebra can be transitive. The cases between these two ex­
tremes remain shrouded in mystery. 

The corresponding questions for lattices are newer, and, although 
the principal characterization problem is still unsolved, they promise 
to be somewhat more accessible. 

The first thing to settle is that the definition is not vacuous: are 
there any transitive lattices? Since a lattice larger than a transitive 
one is also transitive, the question reduces to a known projective 
geometric fact (Exercise 1): if £ = £m&x ( = the largest lattice, the 
one consisting of all subspaces), then £ is transitive. 

Once that 's settled, it is natural to regard £m&x as a trivial example 
and to ask whether there exist any non-trivial strongly closed transi­
tive lattices. The answer is yes (J. E. McLaughlin), but that 's not 
obvious. To get an interesting class of examples, consider an arbitrary 
conjugation Z o n a Hubert space H. (A conjugation is an involutory 
semilinear isometry, i.e., a mapping J oî H into itself such that 
J 2 = l, J(af+pg) =a*Jf+P*Jg, and | | / / | | = | | / | | . If H is an L2 space, 
then an example of a conjugation can be obtained by writing /ƒ=ƒ*, 
and, conversely, every conjugation can be represented in this way. 
For a detailed discussion see [50, p. 357].) Call a subspace M oî H 
self-conjugate (with respect to / ) in case Jf is in M whenever ƒ is in 
Jlf, and let £ ( = <£./) be the set of all self-con jugate subspaces. I t is 
easy to verify that £ is a strongly closed transitive lattice. (The proof 
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of transitivity uses the same technique as is needed to prove the 
transitivity of cCmax.) Call every £ obtained in this way a self-con-
jugate lattice; there are as many of them as there are J ' s . 

Once that 's settled, it is again natural to ask whether every transi­
tive lattice has been found by now. In other words, do there exist 
non-trivial strongly closed transitive lattices other than the self-con­
jugate ones? The answer is yes again, but that 's even less obvious 
than anything that led up to it. 

To construct an example, let K be a Hilbert space, write H = K®K, 
and let £ be the 7-element lattice of subspaces of H consisting of 
0, H, the two axes (K00 and Q@K), the diagonal (the set of all 
(ƒ, / / s with ƒ in K), and the graphs of two operators S and T on K. 
Assertion : for suitable choice of S and T} the lattice «£ is transitive. 

Since H is given as a direct sum of two copies of K, every operator 
on i î is a two-by-two matrix of operators on K. The assumption that 
£ contains the two axes implies that every operator in Alg<£ has the 
form (S y) ; the assumption that £ contains the diagonal implies that 

The operators S and T are to be chosen so that their graphs are 
disjoint from one another and from the other non-tri vial elements of £ 
(i.e., from the axes and the diagonal). When can (ƒ, Sf) be equal to 
(g» Tg)ï Answer: exactly when f=g and (S— r ) / = 0 . Consequence: 
graph £ n graph T = 0 if and only if ker (S—T) =0 . Since the hori­
zontal axis (K@Q) and the diagonal are graphs, and since every 
graph is disjoint from the vertical axis, it follows that the five non-
trivial elements of £ are pairwise disjoint if and only if 

ker S = ker T = ker(l - S) = ker(l - T) = ker(5 - T) = 0. 

The consideration of the orthogonal complements of graphs shows 
that the five non-trivial elements of £ pairwise span H if and only if 
their adjoints satisfy the vanishing kernel conditions just found. (If 
K is finite-dimensional, the resulting conditions are equivalent to the 
original ones; in the infinite-dimensional case they are not. Note that 
the orthogonal complement of the graph of, say, 5 is the "co-graph " 
consisting of all vectors of the form ( — 5*/, ƒ).) 

When does (J x) leave invariant the graph of 5? An obvious com­
putation shows that a necessary and sufficient condition is that 
SX — XS. Consequence: £ is transitive if and only if 

ComSPi ComT = GW, 

where "Com" means commutant. 
The problem of finding a transitive lattice of the kind promised 



i97o] TEN PROBLEMS IN HILBERT SPACE 929 

above comes down to this: find two operators 5 and T satisfying the 
commutant condition just stated and such that both they and their 
adjoints satisfy the vanishing kernel condition. Tha t is not difficult, 
but it does seem to lead to some matrix computation. One example 
(with dim K< oo) is obtained by letting S be the sum of a nilpotent 
Jordan block and a scalar, say, 2 (what is important about 2 is that it 
is neither 0 nor 1), and letting T be a diagonal matrix none of whose 
eigenvalues is 0, 1, or 2. The only condition whose verification is not 
obvious is the one involving ker (5— T). To prove it, compute T^S 
and note that it is a lower triangular matrix with all diagonal entries 
distinct from 1; it follows that 7*~lS— 1 is invertible, and hence so is 
S-T. 

A similar example can be constructed on infinite-dimensional 
spaces. Suppose, for instance, that K is L2 of the circle, let 5 be the 
bilateral shift (Sen~en+i for all n), and let T be a diagonal operator 
(Ten =X»en for all n). If the Vs are bounded, if none of them is 0 or 1, 
and if they are such that 

00 00 

E I lAi • • • Xft|
2 < «) and E l lA-i * • • M * < °°t 

n»l » - l 

then 5 and T satisfy all the requirements. The proof is straightfor­
ward. 

The lattices £> just constructed have the property that any two of 
their non-trivial elements are complements. Since in the lattice 
diagram of such an £ all the non-trivial elements occur on the same 
level, halfway between 0 and £T, the word medial might serve as an 
adequate description. P. Rosenthal reports that in an infinite-di­
mensional space a transitive medial lattice can be constructed with 
only four non-trivial elements. The construction uses, as above, the 
two axes and the diagonal, but only one graph, namely the graph of 
a suitably chosen unbounded transformation. I t is not known 
whether three non-tri vial elements can do the job. In finite-dimen­
sional spaces (of dimension greater than 2) a medial lattice with 
four (or fewer) non-trivial elements can never be transitive; the 
proof proceeds by observing that any such lattice can be repre­
sented, as above, by two axes and two (or fewer) graphs, and then 
proving that there are too many degrees of freedom to make transi­
tivity possible. Exercise 2 : is every medial lattice with five (or more) 
non-trivial elements transitive? 

Each new construction brings with it the question whether it's the 
last. Do there exist non-trivial strongly closed transitive lattices 
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other than the medial or the self-conjugate ones? Once again the 
answer is yes, but that yes is at the boundary of what is known today. 
K. J. Harrison has constructed a transitive lattice of 16 non-trivial 
elements (the dimension of the space is at least 8), of which 5 are 
atoms, 5 are co-atoms, and 6 are in the middle. I t seems hard to 
describe a general class of which Harrison's example is an instance 
and which, together with the classes described before, has a chance of 
catching all transitive lattices. A reasonable guess is that atoms play 
a crucial role. Recall that a lattice is called atomic in case every ele­
ment is the span of all the atoms it includes. (Exercise 3: if 2 ̂ d i m H 
< oo and if a lattice <£ of subspaces of H has exactly one atom, then £ 
is not transitive.) The trouble with Harrison's 18-element lattice is 
that it is not atomic. A fussy examination of low-dimensional cases 
indicates that transitive lattices want to be atomic. In the infinite-
dimensional case atomicity still makes sense but it may be too special 
to play an important role. In any event, since no intelligent guess at 
the structure of all (strongly closed) transitive lattices is at hand, the 
best that can be done is to grasp at the atomic straw; that is what 
Problem 10 does. 

ANSWERS TO THE EXERCISES. (1) I t is to be proved that if an 
operator A on H leaves invariant every subspace of H, then A is a 
scalar. The assumption implies that to every non-zero vector ƒ there 
corresponds a unique scalar X(f) such that Af=\(f)f. Since A(f+g) 
= Af+Ag, it follows that (X(/)-X(f+g))/+(X(g)- \( f+g))g = 0; this 
implies that if ƒ and g are linearly independent, then X(f) =X(g) 
(=X(f+g)) . If, on the other hand, f=ag (with ce^O), then Af = aAg 
and therefore, again, X(f) =X(g), i.e., the function X is a constant. 

(2) There exist intransitive medial lattices with exactly five non-
trivial elements. For a simple example in H — K@K (where K is 
separable and dim K ^ 2 ) , let £ consist of the two axes, the diagonal, 
and the graphs of two operators S and T. If, for instance, both S and 
T are diagonal matrices, such that the set of all diagonal entries in 
both of them together is a set of distinct numbers all distinct from 0 
and 1, then the vanishing kernel conditions are satisfied. I t follows 
that £ is indeed a medial lattice. Since both Com 5 and Com T 
consist of all diagonal matrices, it follows that Alg«£ consists of all 
(**)* where X is diagonal; since dim K^2, this implies that Alg£ 

(3) If £ has exactly one atom Af0, then, since finite-dimensionality 
implies that every element of £ includes at least one atom, it follows 
that every element of £ includes M0. If M0 = H, then £ is not transi­
tive (because dim ff^2). If M^H^ then there exists a non-scalar 
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operator A on H with range M0. Such an A leaves invariant every M 
in£;indeedAMCAH=MoCM. 
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NOTE ADDED IN PROOF. One of the consequences of the preprint 
system of scientific communication is that some part of almost 
everything that is printed is superseded by the time it is published. 
The present paper is no exception apparently. Solutions have been 
reported to two of the ten problems above: Problem 1, negative, 
J. G. Stampfli; Problem 4, affirmative, I. D. Berg. 


