ON BOUNDARY CONDITIONS FOR SYMMETRIC SUBMARKOVIAN RESOLVENTS

BY JOANNE ELLIOTT AND MARTIN R. SILVERSTEIN

Communicated by H. P. McKean, February 26, 1970

1. Introduction. In a recent paper [4], M. Fukushima has established a one-to-one correspondence between symmetric markovian semigroups which satisfy the heat equation on a bounded domain D in Euclidean n-space and certain Dirichlet spaces on the Martin boundary of that domain. In this note we give an extension of his result to a much more general context.

Fukushima considers semigroups with resolvent kernels of the form

$$G_{\alpha}(x, y) = G_{\alpha}^{0}(x, y) + R_{\alpha}(x, y)$$

where G_{α}^{0} is the "absorbing barrier" or minimal resolvent for Brownian motion on D and $R_{\alpha}(x, y)$, defined for x and y in D, is a nonnegative, symmetric " α -harmonic" term, i.e. R_{α} satisfies the equation $\alpha R_{\alpha} - (1/2)\Delta R_{\alpha} = 0$ in D as a function of x for fixed y. Also, it is assumed that $\alpha G_{\alpha} = 1$ in D. We start with a given nonnegative symmetric resolvent G_{α}^{0} which is submarkovian, i.e. $\alpha G_{\alpha}^{0} = 1$, and then consider resolvents $G_{\alpha} \geq G_{\alpha}^{0}$ which are symmetric and submarkovian. The Laplacian operator which plays a central role in Fukushima's work is here replaced by a much more general type of operator A which may not even be a local operator. The main results will be found in Theorems 1–3. Our method of proof is different from that of Fukushima. The details will be published elsewhere.

- 2. Preliminaries. Let (X, dx) be a sigma finite measure space and let $(,)_X$ or $(,)_{dx,X}$ denote the standard inner product on $L^2(X)$, the Hilbert space of real-valued square integrable functions on X.
- 2.1. DEFINITION. A symmetric submarkovian resolvent on $L^2(X)$ is a family $\{G_{\alpha}, \alpha > 0\}$ of bounded linear operators on $L^2(X)$ such that
 - 2.1.1. $G_{\alpha}f \geq 0$ a.e. whenever $f \geq 0$ a.e. and $\alpha G_{\alpha}1 \leq 1$ a.e.
 - 2.1.2. $G_{\alpha}-G_{\beta}=(\beta-\alpha)G_{\alpha}G_{\beta}$.
- 2.2. DEFINITION. The measurable function g is a normalized contraction of the measurable function f if $|g(x)| \le |f(x)|$ and $|g(x)-g(y)| \le |f(x)-f(y)|$ for all x, y in X.
- 2.3. DEFINITION. A Dirichlet space relative to $L^2(X)$ is a pair (F, \mathcal{E}) where

AMS Subject Classifications. Primary 4615; Secondary 6060.

Key Words and Phrases. Submarkovian resolvents, boundary conditions, Dirichlet spaces, stochastic processes.

- 2.3.1. F is a linear (but not necessarily closed) subset of $L^2(X)$ and \mathcal{E} is a positive semidefinite symmetric bilinear form on F.
- 2.3.2. For each $\alpha > 0$ the linear space F is a Hilbert space relative to the inner product

$$\mathcal{E}_{\alpha}(f, g) = \mathcal{E}(f, g) + \alpha(f, g)_{X}.$$

2.3.3. If $f \in F$ and if g is a normalized contraction of f, then $g \in F$ and $\mathcal{E}(g, g) \leq \mathcal{E}(f, f)$.

The connection between Dirichlet spaces and resolvents may be summed up as follows. Condition 2.1.2 guarantees that the G_{α} form a commuting family of bounded, symmetric operators in $L^2(X)$ and so the spectral theory can be applied to establish the existence of a negative definite operator A, the so-called generator of the resolvent family $\{G_{\alpha}, \alpha > 0\}$, which is selfadjoint as an operator in the Hilbert space \overline{R} , the closure of the common range R of the G_{α} . Also $(\alpha - A)G_{\alpha}f$ = f for $f \in \overline{R}$, and $G_{\alpha}(\alpha - A)f = f$ for $f \in R$. Then F is just the domain of the unique positive square root $\sqrt{(-A)}$ of A and $8(f, f) = (\sqrt{(-A)f}, \sqrt{(-A)f})_X$ for $f \in F$. It follows easily that

(2.1)
$$\xi(f,f) = \operatorname{Lim} \alpha(f - \alpha G_{\alpha}f, f)_{X} \quad (\alpha \uparrow \infty).$$

The submarkovian property of the operators G_{α} is equivalent to the contraction property for the Dirichlet space (F, \mathcal{E}) .

3. The general set-up. Let (D, dx) and $(M, d\zeta)$ be sigma finite measure spaces with the possibility that $d\zeta$ vanishes identically. Let $\Omega = D \cup M$. We suppose given once and for all a symmetric submarkovian resolvent $\{G_{\alpha}^0: \alpha > 0\}$ on $L^2(D)$ which has been regularized in the following sense. Measures $G_{\alpha}^0(x, d\cdot)$ on D have been selected so that a representative for $G_{\alpha}^0 f$ is defined by the action of these measures, viz.

$$G_{\alpha}^{0}f(x) = \int_{D} G_{\alpha}^{0}(x, dy)f(y)$$

and so with this choice of a representative the conditions 2.1.1 and 2.1.2 hold identically on D whenever they make sense. We assume further that 1 is excessive (that is, $\alpha G_{\alpha}^{0}1$ increases to 1 identically as α increases to ∞), and we define h_a , the active part of 1, and h_p , the passive part of 1, by

$$h_p = \lim_{\alpha \downarrow 0} \alpha G_{\alpha}^0 1$$
 $h_a = 1 - h_p.$

(See [3, §7] where the significance of h_a and h_p is discussed.) Our basic hypothesis is that h_a can be represented as

(3.1)
$$h_a(x) = \int_{\mathcal{M}} K(x, \xi) d\mu(\xi)$$

where $d\mu$ is a bounded measure on M such that $d\zeta$ is absolutely continuous with respect to $d\mu$ and where $K(x, \xi)$ is a positive kernel defined and jointly measurable on $D \times M$ and satisfying:

- 3.4.1. For each ξ in M the function $K(\cdot, \xi)$ is excessive relative to the G^0_{α} .
- 3.4.2. For each x in D the function $K(x, \cdot)$ is bounded and bounded away from 0 on M.
- 3.4.3. If $\phi \in L^1(d\mu)$ and if both $\int_M K(\cdot, \xi)\phi(\xi)d\mu(\xi) = 0$ (a.e. dx) on D and $\phi = 0$ (a.e. $d\xi$) on M, then $\phi = 0$ (a.e. $d\mu$).

In addition we assume

3.4.4. There exists a nonzero excessive function r belonging to $L^2(D)$. (Since 1 is excessive, this assumption is superfluous when D has finite dx measure.)

For $\alpha > 0$ the auxiliary kernel $K_{\alpha}(x, \xi)$ on $D \times M$ is defined by

$$K_{\alpha}(x,\,\xi)\,=\,K(x,\,\xi)\,-\,\alpha\,\int_{D}G_{\alpha}^{0}(x,\,dy)K(y,\,\xi).$$

For $\alpha \ge 0$ and for ϕ in $L^1(d\mu)$, the function $H_{\alpha}\phi$ on Ω is defined by

(3.2)
$$H_{\alpha}\phi(x) = \int_{M} K_{\alpha}(x, \xi)\phi(\xi)d\mu(\xi) \qquad x \in D,$$
$$= \phi(x) \qquad x \in M.$$

For $\alpha \ge 0$ and for f on Ω we define

$$\hat{H}_{\alpha}f(\xi) = \int_{D} f(x)K_{\alpha}(x,\xi)dx + \frac{d\zeta}{d\mu}(\xi)f(\xi) \qquad (\xi \in M).$$

For ξ , $\eta \in M$, for ϕ , ψ defined on M, and for $0 \le \beta \le \alpha$ we introduce

$$\begin{split} U^0_{\beta,\alpha}(\xi,\eta) &= (\alpha - \beta) \int_D dx K_\alpha(x,\xi) K_\alpha(x,\eta), \\ U_{\beta,\alpha}\phi(\xi) &= \int_M U^0_{\beta,\alpha}(\xi,\eta)\phi(\eta) d\mu(\eta) + (\alpha - \beta) \frac{d\zeta}{d\mu}(\xi)\phi(\xi), \\ U^0_{\beta,\alpha}\langle\phi,\psi\rangle &= \int_M d\mu(\eta) \int_M d\mu(\xi) \left\{\phi(\xi) - \phi(\eta)\right\} \left\{\psi(\xi) - \psi(\eta)\right\} U^0_{\beta,\alpha}(\xi,\eta), \\ U_{\beta,\alpha}(\phi,\psi) &= \int_M d\mu(\xi)\phi(\xi) U_{\beta,\alpha}\psi(\xi), \\ p(\xi) &= \hat{H}_1 h_p(\xi). \end{split}$$

It is easy to check that

$$U_{\beta,\gamma}(\phi,\psi) = U_{\beta,\alpha}(\phi,\psi) + U_{\alpha,\gamma}(\phi,\psi), \qquad 0 \le \beta < \alpha < \gamma,$$

$$U_{\beta,\gamma}^{0}(\phi,\psi) = U_{\beta,\alpha}^{0}(\phi,\psi) + U_{\alpha,\gamma}^{0}(\phi,\psi), \qquad 0 \le \beta < \alpha < \gamma.$$

The last two relations permit us to introduce

$$U^{0}_{\beta,\infty}(\xi,\eta) = \operatorname{Lim} \ U^{0}_{\beta,\alpha}(\xi,\eta) \qquad (\alpha \uparrow \infty),$$

$$U^{0}_{\beta,\infty}\langle \phi, \psi \rangle = \operatorname{Lim} \ U^{0}_{\beta,\alpha}\langle \phi, \psi \rangle \qquad (\alpha \uparrow \infty).$$

Finally, we introduce the measure $d\mu^1(\xi) = \hat{H}_1 h_a(\xi) d\mu(\xi)$ on M and the pair $(H^R, \, \xi^R)$ viz.

$$\begin{split} H^R &= \big\{ \phi \in L^2(d\mu^1) \colon & \mathbb{E}^R(\phi, \phi) < \infty \big\}, \\ \mathbb{E}^R(\phi, \psi) &= \frac{1}{2} U_{0,\infty}^0 \langle \phi, \psi \rangle + \int_M d\mu(\xi) p(\xi) \phi(\xi) \psi(\xi). \end{split}$$

It is easily checked that $(H^R, \, 8^R)$ is a Dirichlet space relative to $L^2(d\mu^1, \, M)$. (The significance of the superscript R will be explained after Theorem 2 in §4.)

- 4. The main result. A submarkovian resolvent $\{G_{\alpha}: \alpha > 0\}$, symmetric relative to $dx + d\zeta$ on Ω , will be called admissible if
- 4.1.1. For $f \ge 0$ on Ω , a version for $G_{\alpha}f$ has been selected which is defined identically on D and (a.e. $d\mu$) on M and such that 2.1.1 and 2.1.2 are valid identically on D and (a.e. $d\mu$) on M.
 - 4.1.2. $G_{\alpha}f = G_{\alpha}^{0} + H_{\alpha}G_{\alpha}f$ identically on D for $\alpha > 0$.
- 4.2 Convention. The resolvent $\{G_{\alpha}^{0}:\alpha>0\}$ is regarded as acting on functions on Ω in the obvious way: $G_{\alpha}^{0}f=0$ on M and $G_{\alpha}^{0}f=G_{\alpha}^{0}f'$ on D where f' is the restriction of f to D. Then G_{α}^{0} is an admissible resolvent, and 4.1.2 is now true not only on D but on all of Ω .

Given any admissible resolvent $\{G_{\alpha}: \alpha > 0\}$ we denote the associated generator by A and the associated Dirichlet space norms by \mathcal{E} and \mathcal{E}_{α} .

THEOREM 1. If $\{G_{\alpha}: \alpha>0\}$ is an admissible resolvent on Ω , then there is a unique pair (H^{M}, \mathcal{E}^{M}) where

- (i) $H^{\mathbf{M}}$ is a linear subset of $H^{\mathbf{R}}$ which is stable with respect to normalized contractions.
- (ii) \mathcal{E}^{M} is a bilinear form on H^{M} which dominates \mathcal{E}^{R} in the following sense: if ϕ is in H^{M} and if ψ is a normalized contraction of ϕ , then

$$(4.1) 0 \leq \mathcal{E}^{M}(\psi, \psi) - \mathcal{E}^{R}(\psi, \psi) \leq \mathcal{E}^{M}(\phi, \phi) - \mathcal{E}^{R}(\phi, \phi).$$

(iii) The pair (H^M, \mathcal{E}^M) is a Dirichlet space relative to $L^2(d\mu^1)$.

(iv) For each $\alpha > 0$ the operator H_{α} maps H^{M} into the domain of $\sqrt{(-A)}$ and for ϕ in H^{M}

$$\mathcal{E}_{\alpha}(H_{\alpha}\phi, H_{\alpha}\phi) = \mathcal{E}^{M}(\phi, \phi) + U_{0,\alpha}(\phi, \phi).$$

Moreover, domain $\sqrt{(-A^0)}$ and the closure of $H_{\alpha}(H^M)$ are complementary orthogonal subspaces in domain $\sqrt{(-A)}$ relative to the inner product \mathcal{E}_{α} .

Conversely, to every pair (H^M, \mathcal{E}^M) satisfying (i), (ii), and (iii) there is associated a unique admissible resolvent such that (iv) is valid.

Theorem 1 yields a complete characterization of admissible resolvents $\{G_{\alpha}: \alpha>0\}$ by means of Dirichlet spaces (H^{M}, \mathcal{E}^{M}) on M. The next theorem gives additional information on the connection between (H^{M}, \mathcal{E}^{M}) and $\{G_{\alpha}: \alpha>0\}$.

THEOREM 2. Let $\{G_{\alpha}: \alpha > 0\}$ and (H^M, \mathcal{E}^M) be as in Theorem 1 and for $\alpha > 0$, and for ϕ, ψ in H^M let

$$\varepsilon_{\alpha}^{M}(\phi,\psi) = \varepsilon^{M}(\phi,\psi) + U_{0,\alpha}(\phi,\psi).$$

Then

- (i) For each $\alpha > 0$ the pair $(H^M, \mathcal{E}^M_{\alpha})$ is a Dirichlet space relative to $L^2(d\mu)$.
- (ii) If $\{\tilde{R}_{\alpha;\lambda}:\lambda>0\}$ is the resolvent on $L^2(d\mu)$ corresponding to the Dirichlet space $(H^M, \mathcal{E}^M_{\alpha})$, then $\tilde{R}_{\alpha} = \text{Lim } \tilde{R}_{\alpha;\lambda} \ (\lambda \downarrow 0)$ exists in the strong operator topology on $L^2(d\mu)$, and for f on Ω

$$G_{\alpha}f = G_{\alpha}^{0}f + H_{\alpha}\tilde{R}_{\alpha}\hat{H}_{\alpha}f.$$

REMARK. The resolvent $\{G_{\alpha}^{0}:\alpha>0\}$ corresponds to the absorbing barrier resolvent in [4] and to the minimal resolvent in [1], [2], and [3]. The Dirichlet space (H^{R}, \mathcal{E}^{R}) is the analogue of the boundary Dirichlet space associate in [4] with the reflecting barrier process (hence the superscript R). Just as in [4] it will turn out that the relevant Dirichlet spaces on the boundary are just those contained in (H^{R}, \mathcal{E}^{R}) in an appropriate sense.

To formulate the results in terms of boundary conditions we introduce the following two operators:

4.3. F defined on Ω is in the domain of the local 1-generator A_1 if F is in the domain of $\sqrt{(-A^R)}$ and if there exists f in $L^2(D)$ such that $\mathcal{E}_1^R(F,g) = -\int_D dx f(x)g(x)$ for g in the domain of $\sqrt{(-A^0)}$. In this case $A_1F = f$. (Here A^0 is the absorbing barrier generator and A^R the reflecting barrier generator. It follows from Theorem 1(iv) that

domain
$$\sqrt{(-A^0)} \subset \text{domain } \sqrt{(-A)} \subset \text{domain } \sqrt{(-A^R)}$$

for A the generator of an admissible resolvent.)

4.4. F defined on Ω is in the domain of A_1^+ , the extended 1-generator if F is in the domain of the local 1-generator A_1 , if the boundary value γF of F belongs to H^M and if there exists ϕ in $L^2(M, d\zeta)$ such that

$$\mathcal{E}_{1}^{M}(\gamma F,\psi) + \int_{M} d\mu(\xi)\psi(\xi)\hat{H}_{1}A_{1}F(\xi) = \int_{M} d\zeta(\xi)\psi(\xi)\phi(\xi)$$

for all ψ in H^M . In this case

$$A_1 + F = A_1 F$$
 on D ,
= ϕ on M .

(In the course of proving Theorem 1 we show that the boundary value γF of F is well defined as an element of $L^1(M, d\mu)$ for F in domain $\sqrt{(-A^R)}$ and in particular for F in domain A_1 .) Then we have

THEOREM 3. Let A be the generator of the admissible resolvent $\{G_{\alpha}: \alpha>0\}$.

(i) If $d\zeta = 0$, then F is in the domain of A if and only if F is in the domain of the local 1-generator A_1 and

$$\mathcal{E}_1^M(\gamma F, \psi) + \int_M d\mu(\xi) \psi(\xi) \hat{H}_1 A_1 F(\xi) = 0$$

for all ψ in H^{M} . In this case $AF = A_{1}F + F$.

(ii) If $d\zeta \neq 0$, then F is in the domain of A if and only if F is in the domain of the extended 1-generator A_1^+ and then $AF = A_1^+F + F$.

REMARK. Concerning the interpretation of the Dirichlet space (H^M, \mathcal{E}^M) in terms of "Markov processes on the boundary" we refer the reader to [5] and [6]. It remains to be established to what extent or in what sense this interpretation is valid in the present context.

REFERENCES

- 1. J. Elliott, Dirichlet spaces associated with integro-differential operators. I, Illinois J. Math. 9 (1965), 87-98. MR 30 #5159.
- 2. ——, Lateral conditions for semigroups involving mappings in L^p. I, J. Math. Anal. Appl. 25 (1969), 388-410. MR 39 #3350.
- 3. W. Feller, On boundaries and lateral conditions for the Kolmogorov differential equations, Ann. of Math. (2) 65 (1957), 527-570. MR 19, 892.
- 4. M. Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities, J. Math. Soc. Japan 21 (1969), 58-93. MR 38 #5291.
- 5. K. Sato, A decomposition of Markov processes, J. Math. Soc. Japan 17 (1965), 269-293. MR 31 #6284.
- 6. K. Sato and T. Ueno, Multi-dimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ. 4 (1964/65), 529-605. MR 33 #6702.

RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903