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1. Introduction. In a recent paper [4], M. Fukushima has estab-
lished a one-to-one correspondence between symmetric markovian
semigroups which satisfy the heat equation on a bounded domain D
in Euclidean #z-space and certain Dirichlet spaces on the Martin
boundary of that domain. In this note we give an extension of his
result to a much more general context.

Fukushima considers semigroups with resolvent kernels of the form

Go(x, y) = Gg(x, 9) + Ra(x, y)

where G2 is the “absorbing barrier” or minimal resolvent for Brownian
motion on D and R.(x, ¥), defined for x and y in D, is a nonnegative,
symmetric “a-harmonic” term, i.e. R, satisfies the equation aR.
—(1/2)AR,=0in D as a function of x for fixed y. Also, it is assumed
that aG.1 =1 in D. We start with a given nonnegative symmetric
resolvent G2 which is submarkovian, i.e. «G%1 <1, and then consider
resolvents G.=Go which are symmetric and submarkovian. The
Laplacian operator which plays a central role in Fukushima’'s work
is here replaced by a much more general type of operator 4 which
may not even be a local operator. The main results will be found in
Theorems 1-3. Our method of proof is different from that of Fuku-
shima. The details will be published elsewhere.

2. Preliminaries. Let (X, dx) be a sigma finite measure space and
let (, )x or (, )as,x denote the standard inner product on L23(X),
the Hilbert space of real-valued square integrable functions on X.

2.1. DEFINITION. A symmetric submarkovian resolvent on L2?(X)
is a family {Ga, a> 0} of bounded linear operators on L2(X) such that

2.1.1. G.f20 a.e. whenever f=0 a.e. and aG.1 =1 a.e.

2.1.2, Ga—Gp = (ﬂ—a)GaGg.

2.2. DEFINITION. The measurable function g is a normalized con-
traction of the measurable function f if | g(x)| = | f(x)| and
lg@) —g)| =|f&x) —f()| for all x, y in X.

2.3. DErINITION. A Dirichlet space relative to L%(X) is a pair
(F, &) where
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2.3.1. F is a linear (but not necessarily closed) subset of L2(X)
and §& is a positive semidefinite symmetric bilinear form on F.

2.3.2. For each a>0 the linear space F is a Hilbert space relative
to the inner product

8a(f, g) = S(f: g) + a(f: g)x'

2.3.3. If fEF and if g is a normalized contraction of f, then gEF
and &(g, g) =&(f, f).

The connection between Dirichlet spaces and resolvents may be
summed up as follows. Condition 2.1.2 guarantees that the G. form
a commuting family of bounded, symmetric operators in L2(X) and
so the spectral theory can be applied to establish the existence of a
negative definite operator A4, the so-called generator of the resolvent
family {Ga, a>0}, which is selfadjoint as an operator in the Hilbert
space R, the closure of the common range R of the G.. Also (¢ —A4)G.f
=f for fER, and Gu(e—A)f=f for fER. Then F is just the domain
of the unique positive square root +/(—4) of 4 and &(f, f)
= (v (—A)f, vV (—A)f)x for fEF. It follows easily that

(2.1) &(f, f) = Lim a(f — aG.f, f)x (@ T ).

The submarkovian property of the operators G, is equivalent to the
contraction property for the Dirichlet space (F, &).

3. The general set-up. Let (D, dx) and (M, d¢) be sigma finite
measure spaces with the possibility that d{ vanishes identically. Let
Q=D\UM. We suppose given once and for all a symmetric sub-
markovian resolvent {GS:a>0} on L*(D) which has been regularized
in the following sense. Measures Go(x, d+) on D have been selected so
that a representative for G3f is defined by the action of these mea-
sures, viz.

G = [ 62, a)f0)

and so with this choice of a representative the conditions 2.1.1 and
2.1.2 hold identically on D whenever they make sense. We assume
further that 1 is excessive (that is, ®G21 increases to 1 identically as
o increases to «), and we define %,, the active part of 1, and #,, the
passive part of 1, by

Jip = Lim aGol  hg=1—h,
all

(See [3, §7] where the significance of h, and k, is discussed.) Our
basic hypothesis is that %, can be represented as



754 JOANNE ELLIOTT AND M. R. SILVERSTEIN [July

@3.1) ha() = fMK<x, ()

where du is a bounded measure on M such that d{ is absolutely con-
tinuous with respect to du and where K(x, £) is a positive kernel
defined and jointly measurable on D X M and satisfying:

3.4.1. For each £ in M the function K(-, £) is excessive relative to
the G2.

3.4.2. For each xin D the function K(x, -) is bounded and bounded
away from 0 on M.

3.4.3. 1f ¢&LY(du) and if both [y K(-, £)¢E)du(E) =0 (a.e. dx)
on D and ¢ =0 (a.e. d{) on M, then ¢ =0 (a.e. du).

In addition we assume

3.4.4. There exists a nonzero excessive function r belonging to
L2*(D). (Since 1 is excessive, this assumption is superfluous when D
has finite dx measure.)

For >0 the auxiliary kernel K,(x, £) on D X M is defined by

K, § = K@, 9 — [ Gale, d)KG, .
D
For =0 and for ¢ in L'(du), the function H.¢$ on Q is defined by

- Hab(x) = fMKa@c, De@duE =C D,

= ¢(w) *E M.

For = 0 and for f on @ we define
. dg
240 = [ f@Ke e+ @0 GEW.
D
For &, nE M, for ¢, ¢ defined on M, and for 0 B = we introduce

Upaltn) = (@) [ 45K, DKl 1),
d
Usat® = [ U3t 0oadanta) + @ ~ 9) f ©(0),
M "
Up ol ) = fMd#(ﬂ) fMdu(E){qb(E) — o} {v® — v} Ug.a(t, 1),

Upal, ¥) = f JICECLAC)
P(E) = ﬁlhp(g)-
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It is easy to check that
Uﬁ.7(¢’ \b) = Uﬁ.a(¢7 ¢) + U¢s7(¢: ‘,’)1 0=p<a<y,

Usn(d ¥) = Up.ald, ¥) + Unn(d ¥), 0= <a<n.

The last two relations permit us to introduce

Upwlf,n) = Lim Upa(t, ) (@ T ),

Uplt, ¥) = Lim Up ol ¥) (@ T ).

Finally, we introduce the measure dul(f) = Hika(£)dpu(E) on M and
the pair (HE, &R) viz.

HE = {¢ € L2(du):8R(¢, ¢) < ®},
E2(6, ¥) = 3Usuld, ¥) + f () O SEV .
M

It is easily checked that (HE, &F) is a Dirichlet space relative to
L2*(du', M). (The significance of the superscript R will be explained
after Theorem 2 in §4.)

4. The main result. A submarkovian resolvent {G.:a>0},
symmetric relative to dx+d¢ on Q, will be called admissible if

4.1.1. For =0 on &, a version for G.f has been selected which is
defined identically on D and (a.e. du) on M and such that 2.1.1 and
2.1.2 are valid identically on D and (a.e. du) on M.

4.1.2. Gof =G+ H.G.f identically on D for a>0.

4.2 CoNVENTION. The resolvent {Gﬂ:a>0} is regarded as acting
on functions on £ in the obvious way: Gof =0 on M and Gf=Gof’
on D where f’ is the restriction of f to D. Then G is an admissible
resolvent, and 4.1.2 is now true not only on D but on all of Q.

Given any admissible resolvent {G.:a>0} we denote the associ-
ated generator by 4 and the associated Dirichlet space norms by &
and &,.

THEOREM 1. If {G.:a>0} is an admissible resolvent on Q, then
there is a unique patr (HM, M) where

(1) H™ is a linear subset of HE which is stable with respect to normal-
1zed contractions.

(i1) &M is a bilinear form on HM which dominates &® in the following
sense: if ¢ is in HM and if Y is a normalized contraction of ¢, then

(4'1) 0= SM(\[/y ‘I/) - 8R(‘l” \b) = 8M(¢7 ¢) - 8R(¢; ¢)
(iii) The pasr (HM, 8M) 4s a Dirichlet space relative to L*(du').
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(iv) For each >0 the operator H, maps HM into the domain of
vV (—A4) and for ¢ in HM

Sa(Ha¢) Ha¢) = SM(d” ¢) + UO.G(¢3 ¢)'

Moreover,domain~/(— A®) and the closure of Ho(H™) are complementary
orthogonal subspaces in domain /(— A) relative to the inner product &,.

Conversely, to every pair (HM, 8M) satisfying (i), (ii), and (iii) there
is associated a unique admissible resolvent such that (iv) is valid.

Theorem 1 yields a complete characterization of admissible re-
solvents {Ga:a>0} by means of Dirichlet spaces (H™, §¥) on M.
The next theorem gives additional information on the connection
between (H™, &) and {Ga.:a>0}.

THEOREM 2. Let {G.:a>0} and (H™, &™) be as in Theorem 1 and
for a>0, and for ¢, ¥ in HM let

8a (6, ¥) = & (6, ¥) + Uo.a(d, ¥).

Then

(i) For each a>0 the pair (HM, &¥) is a Dirichlet space relative to
L*(dp).

@Gi) If {Ra;,\:)\>0} is the resolvent on L2*(du) corresponding to the
Dirichlet space (HM, 8Y), then Ro=Lim Run (Nl 0) exists in the
strong operator topology on L2(du), and for f on Q

Gof = Gof + HoR.ALf.

REMARK. The resolvent {Gﬂ:a>0} corresponds to the absorbing
barrier resolvent in [4] and to the minimal resolvent in [1], [2], and
[3]. The Dirichlet space (HZ, &E) is the analogue of the boundary
Dirichlet space associate in [4] with the reflecting barrier process
(hence the superscript R). Just as in [4] it will turn out that the
relevant Dirichlet spaces on the boundary are just those contained
in (HZ®, &E) in an appropriate sense.

To formulate the results in terms of boundary conditions we intro-
duce the following two operators:

4.3. F defined on Q is in the domain of the local 1-generator 4, if
Fis in the domain of v/(—A4Z) and if there exists f in L2(D) such that
&¥(F, g = — [p dx f(x)g(x) for gin the domain of v/(—479). In this case
A F=f. (Here A°is the absorbing barrier generator and A® the reflect-
ing barrier generator. It follows from Theorem 1(iv) that

domain 4/(— 4% C domain 4/(— 4) C domain +/(— A4E)

for A the generator of an admissible resolvent.)
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4.4. Fdefined onQisin the domain of 47, the extended 1-generator
if F is in the domain of the local 1-generator A;, if the boundary

value v F of F belongs to H™ and if there exists ¢ in L2(M, d{) such
that

81 (Y, ¥) + | de@v@®BAF® = | de@vEs)
M M

for all Y in HM. In this case
AfF = A.F on D,
=¢ on M.

(In the course of proving Theorem 1 we show that the boundary value
4 F of Fis well defined as an element of L1(M, du) for F in domain
v/(—AR) and in particular for F in domain 41.) Then we have

THEOREM 3. Lei A be the generator of the admissible resolvent
{Gaza>0}.

(i) If d¢ =0, then F is in the domain of A if and only if F is in the
domain of the local 1-generator A, and

&' (F, ) + f OO RAFE® = 0

for all Y in HM. In this case AF=A,F+F.
(ii) If d¢ 50, then F is in the domain of A if and only if F is in the
domain of the extended 1-generator AY and then AF=A} F+F.

REMARK. Concerning the interpretation of the Dirichlet space
(H™, M) in terms of “Markov processes on the boundary” we refer
the reader to [5] and [6]. It remains to be established to what extent
or in what sense this interpretation is valid in the present context.
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