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A nonlinear integral equation of Hammerstein type is one of the 
form 

(1) u(x) + I K(x, y)f(y, u(y))dy « w(x) 
J Q 

where G is a measure space with a or-finite measure dy, the given 
function w(x) and the unknown function u(x) are defined on G. In 
operator-theoretic terms, the problem of determining the solutions of 
equation (1), with u, w lying in a given Banach space of functions on 
G, can be put in the form of a nonlinear functional equation 

(2) u + AN(u) = w 

with the linear and nonlinear mappings A and N respectively given 
by 

(3) Av(x) = I K(x, y)v(y)dy, Nu(x) = f(x,u(x)). 
J G 

In the present note, we apply the theory of maximal monotone 
operators in Banach spaces to establish general results on the exis­
tence of solutions of equation (2) for the reflexive Banach space X. 
Our results generalize the results of Browder-Gupta [8], Amann [ l] , 
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Kolomjr [11], Brezis [2], Kolodner [lO], Dolph-Minty [9] and 
Vaïnberg [14], [IS]. 

We employ the following definitions: If X is a real Banach space, 
X* its conjugate space, we let (w, u) denote the duality pairing be­
tween the element w in X* and the element u in X. A subset G of the 
Cartesian product XXX* is said to be monotone if (VI—VÏ, W1 — W2) è 0 
for [ui, Î ) I ] G G and [u2y V2]£G. A monotone set G is said to be maximal 
monotone if it is not properly contained in any other monotone set. 
Let T be a mapping of X into the set 2X* of all subsets of X*. 

The effective domain D(T) of T is the subset of X given by 
D(T) = {u\uEX, T(U)T*0}. The range R(T) of T is the subset of 
X * given by R(T) =U {T(u)\U(EX}. The graph G(3D of T 
is the subset of the Cartesian product X X I " * given by G(T) 
= {[u9v]\ueX,veT(u)}. 

T is said to be monotone if the graph G (T) of T is a monotone set. 
r is said to be maximal monotone if the graph G (T) of T is a maximal 
monotone set. The graph of the inverse mapping T"1 of X* into 2X 

is the subset of the Cartesian product X*XX given by G(T~l) 

= {k^]|k*>]GG(r)}. 
I t is immediate that a mapping T of a reflexive Banach space X 

into 2X* is maximal monotone if and only if the inverse mapping UP""1 

of X* into 2X is maximal monotone. T is said to be pseudomonotone 
if for any sequence {Uj} in X which converges weakly to an element 
UQ in X with 

lim sup(7\wy), uj ~ Wo) â 0 

we have 

lim mî(T(u3), Uj — z>) ^ (r^0> ^0 — fl) for all Ü G I . 

Let N be a mapping of X into X*. iV is said to be hemicontinuous 
if it is continuous from each line segment in X to the weak topology 
in X*. N is said to be coercive if (N(v), v)/\\v\\—>oo as ||»||—>°°. 

THEOREM 1. Let X be a reflexive Banach space, X* its conjugate 
space. Let A be a maximal monotone mapping of X* into 2X and N a 
coercive hemicontinuous mapping of X into X* which is monotone or 
bounded pseudomonotone. 

Then the range R(I+AN) of the mapping I+AN is all of X. 

PROOF. For given w in X, we seek v in X with N(v) in the domain 
D(A) of A and 

(4) w Ç-v + AN(v). 
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The relation (4) is equivalent to 

(5) 0 G N(v) - A~~l(w - v). 

Let Tw be the mapping of X into 2X* given by Tw(v) = — A~1(w~v) 
for v in X. Since G(TW) = —G(A"'1) + [wt 0], it follows that Tw is a 
maximal monotone mapping of X into 2X*. By hypothesis, we know 
in addition that N is a coercive hemicontinuous mapping of X into 
X* with N monotone or bounded pseudomonotone. Hence it follows 
from results of Browder (Theorem 1, [5]) and Rockafellar [ l2] , 
(see also Brezis-Crandall-Pazy [4]) that the range R(TW+N) is the 
whole of X*. 

Thus there exists a VQ in X such that OE:Tw(v0)+N(v0) = N(V0) 
— A~1(W—VQ). Such an element vQ is a solution of the relation (5) and 
hence of the relation (4). q.e.d. 

COROLLARY 1. Let Xbea reflexive Banach space, A a hemicontinuous 
monotone mapping of X* into X, N a coercive hemicontinuous monotone 
mapping of X into X*. 

Then for every w in X, the equation v+AN(v) =*w has a solution v in 
X. 

I t suffices to note that the mapping A described in Corollary 1 is a 
maximal monotone mapping from X * to X. 

COROLLARY 2. Let X be a reflexive Banach space and A a densely 
defined closed linear monotone mapping of X* into X. Suppose that A * 
is also a monotone mapping from X* to X (this will be the case if in 
particular A is bounded). 

Let N be a coercive hemicontinuous monotone mapping of X into X*. 
Then for each w in X, there exists a v in X with N(v) lying in D(A) 

such that v+AN(v) ~w. 

By a theorem of Brezis [3], each closed densely defined monotone 
linear mapping A of X* into X with A* monotone is maximal mono­
tone. 

THEOREM 2. Let X be a reflexive Banach space. Let A be a bounded 
linear monotone mapping of X * into X and N be a hemicontinuous 
monotone mapping of X into X*. Suppose that there is a nondect'easing 
nonnegative f unction <t> defined on the set R+ of nonnegative real numbers 
such that if for any u in X there is avinX satisfying 

v + AN(v) = u 

then\\v\\£<K\\u\\). 
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Then the range R(I+AN) of the mapping I+AN is the whole of X. 

PROOF. Let w be an arbitrary element of X. As in the proof of 
Theorem 1, it suffices to show that QÇzR(Tw-t-N) where TW is the 
mapping of X into 2** defined by 

Tw(v) = - A-l(w - v) 

for v in X. Since A is a bounded linear monotone mapping of X* into 
X, A is a maximal monotone mapping. Hence, as in the proof of 
Theorem 1, the mapping Tw of X into 2** is maximal monotone. We 
first observe that the mapping Tw+Noî X into 2** is maximal mono­
tone by the results of Browder [S] and Rockafellar [13]. 

Now for v in X and u in (Tw+N)(v) we have that uE: —A~l{w—v) 
+N(v) i.e. N(v)— uGA~l(w—v). This implies that AN(v)— A(u) 
= w—v i.e. v+AN(v)~w+A(u). 

It now follows from our hypothesis that 

IMI 2S <t>(\\w + A(u)\\) £ <K|MI + 114 ND-
Since <j> is a nonnegative, nondecreasing function, it follows from the 
above inequality that the mapping (Tw-\"N)~l of X* into 2X is 
bounded. It then follows from the results of Browder [5] and Rocka­
fellar [12] that the range R(Tw-jrN) is whole of X*. In particular, 
0ER(Tw+N). So there is v in X such that OE-A-^w-vt+Nip). 
This gives that v+ANv=w and hence the theorem, q.e.d. 

THEOREM 3. Let X be a reflexive Banach spacet A a bounded pseudo-
monotone mapping of X* into X, N a monotone hemicontinuous map-
ping of X into X*. Suppose k(r) and c(r) are real valued functions of r 
in R+ such that k(r)+c{r)-**> as r—»<*>, that the following two in­
equalities are satisfied: 

(1) (w, Aw) è *dM|)N|, (w G X*) 
(2) (w, u) ^ c(IHI)NI> (w G x*) f°r M u G N~\w). 

ThenR(I+AN)=X. 

PROOF. (I+AIS^N^ — N^+A. Hence it suffices to prove that 
R(N~1-\rA)—X. Since N is monotone and hemicontinuous, iV"1 

is maximal monotone from X* to 2X. Since A is bounded and pseudo-
monotone, A +N"1 will be onto X if A +JV~1 is coercive (Browder 
[7]). For w in X* and u in N~l(w) we have 

(*) (w, u + A(w)) £ ftlMI) + *(|M|)]-M|. 
This shows that A -\-N~l is coercive. Hence the theorem, q.e.d. 
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REMARK. We note that the inequality (*) will hold if condition (1) 
of Theorem 3 is replaced by the following: 

do IMWII £*i(IMI)> (wex*) 
where ki(r) is a real valued function of r in R+ and c(r) —fei(r)-»oo as 

COROLLARY 3. Let X be a reflexive Banach space. A a bounded hemi­
continuous monotone mapping of X* into X, C a completely continuous 
mapping of X* into X and N a hemicontinuous monotone mapping of 
X onto X*. Suppose (1) and (2) hold with A replaced by A+C. 

Then R(I+ (A + C)N)= X. 

Corollary 3 follows from Theorem 3 immediately since A + C is a 
bounded pseudomonotone mapping of X* into X (Browder [7]). 

We remark that the result of Corollary 3 is analogous to the results 
of Vaïnberg for the equation (2) when A is a quasi-negative linear 
mapping of X* into X (Vaïnberg [15], [14]). 
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