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1. Introduction. The well-known theorem of Kirszbraun [9], [14] 
asserts that a Lipschitz function from Rn to itself, with domain a 
finite point-set, can be extended to a larger domain including any 
arbitrarily chosen point. (The Euclidean norm is essential; see 
Schönbeck [ lö] , Grünbaum [8].) This theorem was rediscovered by 
Valentine [17] using different methods. The writer [12] proved the 
same fact for a "monotone" function, and Grünbaum [9] combined 
these two theorems into one. A further improvement to the writer's 
theorem was given by Debrunner and Flor [ó], who showed that the 
desired new functional value could always be chosen in the convex 
hull of the given functional values; several different proofs of this 
fact have now been given (see [14], [3]). An easy consequence of 
Kirszbraun's theorem is that a Lipschitz function in Hubert space 
with maximal domain is everywhere-defined (see [ l l ] , [13]). 

I t was shown by S. Banach [ l] that a real-valued function de­
fined on a subset of a metric space and satisfying \f(yi)—f(y2)\ 
= [5(^i, 3>2)]a, with 0 < a ^ l (we call this "Lipschitz-Hölder con­
tinuity"), can be extended to the whole metric space so as to satisfy 
the same inequality. Banach's theorem was rediscovered by Czipszer 
and Gehér [4] in case ce = l (but note that Banach's result follows, 
since [8(yi, 3/2)]" is another metric if c e ^ l ) . For a general review of 
the above subjects, see the article of Danzer, Grünbaum, and Klee 
[5]; see also [7]. 

In this paper, we give a unified method for proving all the above 
results, and also new theorems, the most striking of which is the 
following generalization of the Kirszbraun and Banach theorems: 

THEOREM 1. Let H be a Hilbert space, M a metric space, DC.M. 
Suppose f :D-*H satisfies \\f(yi)-f(y2)\\ S [ô(yu y2) ]

a ( 0 < a ^ l ) . Then 
there exists an extension off to all of M satisfying the same inequality, if 
either 

(i) a^h or 
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(ii) M is an inner product space, with metric given by &1/a||;yi— y2\\9 

where k>0. 
Moreover, the extension can be performed so that the range of the 

extension lies in the closed convex hull of the range off; thus 

ni/in ii// \\\ A. H/M -/(yg)ll 
III /III* = sup||/(y)| | + sup —— —— 

y vi*V2 [à(yi, 3>2)r 
is not increased. 

(Note that in case (ii), the inequality reads ||/(^i)—/Ö^H 
^fell^i—3/2||a. The important point is that k need not be changed when 
the extension is performed.) To the best of the writer's knowledge, 
no theorems on extension of Holder-continuous functions with 
infinite-dimensional range have been known until now, and the 
present theorem is new even for finite-dimensional Hubert space. 

2. Main theorem. Let X be a vector space over the real numbers. 
A real-valued function on X is called finitely lower semicontinuous if 
its restriction to any finite-dimensional subspace of X is lower semi-
continuous, the subspace being taken with the "usual" topology. 
(Examples are: a linear function, a quadratic form; neither need be 
"bounded".) Now let Y also be a space. A function <£>: XX YX Y-+R, 
written <&(x, yi, 3/2), shall be called a Kirszbraun function {K-function) 
provided: (1°) for each fixed yi, y2 it is a finitely lower semicontinuous, 
convex function of x; and (2°) for any sequence (xi, yi), • • • , (xm, ym) 
in XXY, any 3; G Y, and any probability vector (pi, • • • , jum), we 
have 

m m 

(2.1) YJ vwHxi — *y, y<, y3) ^ 2 1 ] »iH%i — *, yi, y) 
i,j i 

where x stands for 1C? fijXj. 
If X is a finite-dimensional space, we shall call $ a finite-dimensional 

K-function if it satisfies the above definition with m replaced by 
1+d im X. 

THEOREM 2 ( M A I N THEOREM). (A) Let X and Y be as above, and * 
be a K-function. Let (x\, yi), • • • , (xm, ym) be a sequence in XX Y such 
that Q(xi—Xj, yi, y/) ^Ofor all i, j , and let y be any element of Y. Then 
there exists a vector x such that &(xi—x, yi, y) ^ 0 for all i. Furthermore, 
x can be chosen in the convex hull of [x\, • • • , xm}. 

(B) The same statement holds if X is finite-dimensional, and $ is a 
corresponding finite-dimensional K-function. 
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PROOF. (A) Let Pm be the set of probability-vectors in Rm. Consider 
<£: PmXPm-*R, defined as $(JU, X) = 22» M;<K#i —X> y*' ^) where x 
stands for ^JXJXJ. Now, P w is compact; also, $ is convex and lower 
semicontinuous in X and concave and upper semicontinuous in JU. 
Thus, by von Neumann's Minimax Theorem [2] there exists a pair 
0x°, X°) in PmXPm such that for all (/x, X) in PmXPm 

(2.2) #0*o, x) ^ *(/*,X°). 

By putting X=JU°, we see that the left-hand side of (2.2) is nonposi-
tive; by putting ju a Kronecker delta on the right, we have the 
conclusion. 

(B) First apply Helly's Theorem (see [2]) to reduce the case of 
general m to the case m = n + l; then apply the proof of (A) with 
m = n + l. 

3. Examples of i£-functions. I t is easily verified that the following 
are K-iunctions: a negative (constant) real number, a linear form in 
x, a positive semidefinite quadratic form in x. 

For any space F and ö:YXY-*R such that 6(3/1, ^ ^ O and 
8(yi» yz) ^S( j i , y2) + S(3>3, 3̂ 2), then ( — S) is a K-iunction. In particular, 
S might be a metric on F. 

In case F is a space with an operation "minus" satisfying (3̂ 1— 3̂) 
— (yt—yi) = yi — y* (for example, a group, with y\ —y% = yiy~x)> and 
\[/: XX Y-+R satisfies 

(3.1) 2 7 Md*/lK*< - *i, y< ~ 3>;) ^ 2 2 2 M*K*< ~ *> yd 
i,j i 

then $(#, 3>i, ;y2) =^(# , 3>i —3 )̂ satisfies the inequality of the definition 
of "K-iunction." If F is a linear space, then \f/ might be a negative 
semidefinite quadratic form in y, or a bilinear form in x and y; these 
give rise to i£-functions. 

If x is the real numbers, then x4, is a K-i unction; this follows from 
the identity 

2 2 A W | *< — *y | = 2 2 2 M» I *< ~~ * I 

+6( ? „«:-«')' 

(where x is 7 jj ftiXi) as before, and 22* M* = !)• 
Moreover, aw^ linear combination of K-functions with nonnegative 

coefficients is a K-function. (Of course, assuming X, Y the same for 
all of them.) 
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COROLLARIES TO THEOREM 1. Kirszbraun's Theorem follows from 
the case \[/(x, y)=\\x\\2 — \\y\\2. The Debrunner-Flor Lemma men­
tioned in the Introduction is the case where \p(x, y) is a bilinear form. 
The theorem of Grünbaum [9] iscontained in the case ^ = &i(||x||2—|M|2) 
+k2(x, y)> with nonnegative ki9 k2. 

Letting X be a Hubert space and Y a metric space, and taking 
*(#> yu y*) = ||x||2 — ô(yu y2), we obtain the necessary lemma to prove 
part (ii) of Theorem 1, with a = 4. The proof parallels closely the 
usual proof of the extension theorem for Lipschitz functions (see [ l l ] 
or [13]), slightly modified to keep the range of the extension in the 
closed convex hull of the range of/. 

As remarked in the Introduction, [5(yi, y2)Y is also a metric 
if j 3 ^ 1 ; hence we have an extension theorem for ƒ satisfying 
\\f(yi)"/(Mil ^ [S(yi> y*)]" with a^ J. Indeed, if g(y) is a real-valued 
function of 7 ^ 0 with g(0) = 0 , g(y)>0 for 7 > 0 , g nondecreasing in 
7, and y~1g(y) nonincreasing for 7 > 0 , we have (for 71, y2>0): 

7ig(Yi + 72) S (71 + 72)^(71), 

72g(7i + 72) â (71 + 72M72) 

whence (by adding) g is subadditive, so that g o S is again a metric. 
Thus g(y) =7^, with O J ^ I , is a special case. 

I t has recently been established by H. Brézis and C. M. Fox that 
\(/(x, y) = — H3̂11 ̂  is a i£-function for 0< j8g2 in a Euclidean space (or 
an inner product space). Brézis uses M. Riesz' Convexity Theorem; 
Fox gives an elementary (but ingenious) proof of the stronger state­
ment 

m m 

(3.2) £ „,•«!!* - yj\\2« Û £ WwdMI2 + IMI2)a (for 0 < o g 1). 
r ,j i ,3 

J. Moser and the writer have simplified Fox's proof, as follows: 

LEMMA. For Xi, • • • , xm in an inner product space, and au • • • , 
&m>0, j3>0, note 

(3.3) ^ {xi'xj) = — n s «-*»*« i v-** 
and thus it is nonnegative. 

Now write the left-hand side of (3.2) as 

f^(W- + ll,l!«)-[1-G|^J> 
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apply Bernoulli's inequality to the expression in square brackets, 
and then the lemma, with Xi = jjLiyi} and a» = ||:y»||2. (The case where 
some ji are zero is easily disposed of by a continuity argument.) 

The above argument is easily generalized to show — [(?(:yi—D^)]", 
with 0<a^ 1, is a K-iunction if Q is a positive semidefinite quadratic 
form in a linear space Y. Part (ii) of Theorem 1 is proved by use of 
the iT-function ||x||2 —fe2||^i—y2||

2a, followed by the "usual" argument 
for Lipschitz functions. 

J. Moser and G. Schober have shown that if X is one-dimensional, 
then — [5(3>i, ^ ) ] 2 is a finite-dimensional K-function; i.e., it satisfies 
the desired inequality with m = 2. Schober's proof considers sepa­
rately the case ô(yi, yi)2S^{yu y)2+o(y2, y)2 which is easy, and the 
opposite case, which is treated by the standard maximization argu­
ment of differential calculus applied to the function /(JU) = 
fx(l—fx)ô(yu 3>2)2— M8(^I, y)2 — (1— M)8(^2, y)2. The extension theorem 
of Banach follows by Theorem 2, part (B), applied to |x | 2 — [5(^i, J2)]2. 

N O T E ADDED IN PROOF. Banach's theorem mentioned above is more 
probably due to McShane (Bull. Amer. Math. Soc. 40 (1934), 837-
842). (2°) The hypothesis "finitely lower-semicontinuous" follows 
from the other hypotheses of the definition of "K-iunction", and so 
can be dropped. (3°) Hayden, Wells, and Williams of the University 
of Kentucky have generalized the extension-theorem to cover func­
tions from one I>-space to another (unpublished work). 
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