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1. Introduction. The well-known theorem of Kirszbraun [9], [14]
asserts that a Lipschitz function from R* to itself, with domain a
finite point-set, can be extended to a larger domain including any
arbitrarily chosen point. (The Euclidean norm is essential; see
Schénbeck [16], Griinbaum [8].) This theorem was rediscovered by
Valentine [17] using different methods. The writer [12] proved the
same fact for a “monotone” function, and Griinbaum [9] combined
these two theorems into one. A further improvement to the writer’s
theorem was given by Debrunner and Flor [6], who showed that the
desired new functional value could always be chosen in the convex
hull of the given functional values; several different proofs of this
fact have now been given (see [14], [3]). An easy consequence of
Kirszbraun's theorem is that a Lipschitz function in Hilbert space
with maximal domain is everywhere-defined (see [11], [13]).

It was shown by S. Banach [1] that a real-valued function de-
fined on a subset of a metric space and satisfying I fln) —f(yz)l
<[8(y1, ¥2)]o, with 0<a=1 (we call this “Lipschitz-Holder con-
tinuity”), can be extended to the whole metric space so as to satisfy
the same inequality. Banach’s theorem was rediscovered by Czipszer
and Gehér [4] in case =1 (but note that Banach’s result follows,
since [8(y1, y2) ] is another metric if @<1). For a general review of
the above subjects, see the article of Danzer, Griinbaum, and Klee
[5]; see also [7].

In this paper, we give a unified method for proving all the above
results, and also new theorems, the most striking of which is the
following generalization of the Kirszbraun and Banach theorems:

THEOREM 1. Let H be a Hilbert space, M a metric space, DC M.
Suppose f: D—H satisfies ||f(y) —f(32)|| < [6(y1, 32) ]* (0<a=1). Then
there exists an extension of f to all of M satisfying the same inequality, if
either

(i) asi, or
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(i) M s an inner product space, with metric given by k””‘” y1—y2”,
where k> 0.

Moreover, the extension can be performed so that the range of the
extension lies in the closed convex hull of the range of f; thus

) 163 = 1|
Ul = sup O] + sup =pem—

1s not increased.

(Note that in case (ii), the inequality reads ”f(yl) ——f(yﬁ”
<k||y1—9||*. The important point is that k need not be changed when
the extension is performed.) To the best of the writer’'s knowledge,
no theorems on extension of Holder-continuous functions with
infinite-dimensional range have been known until now, and the
present theorem is new even for finite-dimensional Hilbert space.

2. Main theorem. Let X be a vector space over the real numbers.
A real-valued function on X is called finstely lower semicontinuous if
its restriction to any finite-dimensional subspace of X is lower semi-
continuous, the subspace being taken with the “usual” topology.
(Examples are: a linear function, a quadratic form; neither need be
“bounded”.) Now let Y also be a space. A function®: X X Y X Y—R,
written ®(x, y1, ¥2), shall be called a Kirszbraun function (K-function)
provided: (1°) for each fixed yi, ¥; it is a finitely lower semicontinuous,
convex function of x; and (29 for any sequence (x1, 1), * * * , Xmy V)
in XXY, any y& Y, and any probability vector (ui, + * *, um), We
have

(2.1) 2w ®(s — x5, ¥, ¥7) 2 2 (s — %, 94, 9)
2,7 %

where «x stands for D7 ux;.

If X is a finite-dimensional space, we shall call ® a finite-dimensional
K-function if it satisfies the above definition with m replaced by
14dim X.

THEOREM 2 (MAIN THEOREM). (A) Let X and Y be as above, and P
be a K-function. Let (x1, ¥1), - * + y (Xm) Ym) be a sequence in X XY such
that ®(x; —x;, ¥i, ¥;) =0 for all 1, j, and let y be any element of Y. Then
there exists a vector x such that ®(x;—x, y:, v) <0 for all i. Furthermore,
x can be chosen in the convex hull of {xl, cee, xm}.

(B) The same statement holds if X is finite-dimensional, and ® is a
corresponding finite-dimensional K-function.
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Proor. (A) Let P,, be the set of probability-vectors in R™. Consider
®: P, XP,—R, defined as ®(u, N\) = D_; ui¢(x;—x, v;, y) where x
stands for Y_;\x;. Now, P,, is compact; also, ® is convex and lower
semicontinuous in N and concave and upper semicontinuous in .
Thus, by von Neumann’s Minimax Theorem [2] there exists a pair
(4% N9 in P, X P, such that for all (u, N) in P X Pp

(2.2) ®(u ) = B(n, \9).

By putting A =u° we see that the left-hand side of (2.2) is nonposi-
tive; by putting u a Kronecker delta on the right, we have the
conclusion.

(B) First apply Helly’s Theorem (see [2]) to reduce the case of
general m to the case m=n-1; then apply the proof of (A) with
m=n-41.

3. Examples of K-functions. It is easily verified that the following
are K-functions: a negative (constant) real number, a linear form in
x, a positive semidefinite quadratic form in x.

For any space Y and 6:YXY—R such that 8(y;, 92)=0 and
8(y1, ¥3) S 0(y1, ¥2) +68(vs, ¥2), then (—8) is a K-function. In particular,
6 might be a metricon V.

In case Y is a space with an operation “minus” satisfying (y1—7vs)
— (yo—v3) =y1—y, (for example, a group, with y1—y.=yy"1), and
¥: X X Y—R satisfies

3.1 f i (s — x5, yi — 9) 2 2 22 pab(@: — %, 99)
L 2T%) £}

then ®(x, y1, ¥2) =¢(x, ¥1—7.) satisfies the inequality of the definition
of “K-function.” If Y is a linear space, then ¥ might be a negative
semidefinite quadratic form in y, or a bilinear form in x and y; these
give rise to K-functions.

If x is the real numbers, then x* is a K-function; this follows from
the identity

> | wi— ] = 22#»‘] z— g’

2
+ 6( 3 waws — x2>

(where x is Z,- wix;, as before, and Z; ui=1).
Moreover, any linear combination of K-functions with nonnegative

coefficients is a K-function. (Of course, assuming X, ¥ the same for
all of them.)
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CorOLLARIES TO THEOREM 1. Kirszbraun’s Theorem follows from
the case ¥(x, ¥)=||x||2—||y||2. The Debrunner-Flor Lemma men-
tioned in the Introduction is the case where Y (x, ¥) is a bilinear form.
The theorem of Griinbaum [9] iscontained in the case y = &1 (|| x||2—||¥]|2)
~+ko(x, v), with nonnegative k1, k..

Letting X be a Hilbert space and Y a metric space, and taking
B(x, y1, y2) = ||x||2—6(y1, ¥:), we obtain the necessary lemma to prove
part (ii) of Theorem 1, with a=3%. The proof parallels closely the
usual proof of the extension theorem for Lipschitz functions (see [11]
or [13]), slightly modified to keep the range of the extension in the
closed convex hull of the range of f.

As remarked in the Introduction, [8(yi, ¥:)]¢ is also a metric
if B=<1; hence we have an extension theorem for f satisfying
lf (ye) —f )|l = [8(y1, 32) ]= with @ =3. Indeed, if g(y) is a real-valued
function of y=0 with g(0) =0, g(v) >0 for ¥>0, g nondecreasing in
v, and y~!g(y) nonincreasing for vy >0, we have (for v;, ¥.>0):

v18(v1+ v2) = (vi+ v2)g(ra),

Y28(v1+ 72) = (11 + v2)g(v2)
whence (by adding) g is subadditive, so that g o § is again a metric.
Thus g(y) =45, with « =1, is a special case.
It has recently been established by H. Brézis and C. M. Fox that
Y(x, y) = —Hy“ﬂ is a K-function for 0<B8=2 in a Euclidean space (or
an inner product space). Brézis uses M. Riesz’ Convexity Theorem;

Fox gives an elementary (but ingenious) proof of the stronger state-
ment

(3.2) i pand| s — yil|2 = i piri(|ydl2 + ||yil|D= (for 0 < & < 1).

J. Moser and the writer have simplified Fox’s proof, as follows:

LEMMA. For %1, « + +, Xm tn an inner product space, and a, - - -
an>0, >0, note

(%4, %) 1 00
(3.3) oo
i (ai+ a)) r@) Jo
and thus it is nonnegative.
Now write the left-hand side of (3.2) as

” 2y, vy ®
(| yal]2 + {2l — = | »
2wl + [l 1 = 2 |

2
#-1dt

Z e %ty
3
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apply Bernoulli’s inequality to the expression in square brackets,
and then the lemma, with x;=u:y;, and a;=||y||% (The case where
some 7y, are zero is easily disposed of by a continuity argument.)

The above argument is easily generalized to show — [Q(y1—7%2)]*,
with 0<a =1, is a K-function if Q is a positive semidefinite quadratic
form in a linear space Y. Part (ii) of Theorem 1 is proved by use of
the K-function ||x||2— £2||y1— ;|| 2¢, followed by the “usual” argument
for Lipschitz functions.

J. Moser and G. Schober have shown that if X is one-dimensional,
then — [8(y1, ¥2)]? is a finite-dimensional K-function; i.e., it satisfies
the desired inequality with m =2. Schober’s proof considers sepa-
rately the case 6(y1, ¥2)2=<6(y1, ¥)2+06(y2, ¥)? which is easy, and the
opposite case, which is treated by the standard maximization argu-
ment of differential calculus applied to the function f(u)=
(1 —p)d(y1, ¥2)2—ub(y1, ¥)2— (1 —p)8(ys, ¥)2 The extension theorem
of Banach follows by Theorem 2, part (B), applied to |xl 2 [8(y1, y2) ]2

NOTE ADDED IN PROOF. Banach’s theorem mentioned above is more
probably due to McShane (Bull. Amer. Math. Soc. 40 (1934), 837-
842). (2°) The hypothesis “finitely lower-semicontinuous” follows
from the other hypotheses of the definition of “K-function”, and so
can be dropped. (3°) Hayden, Wells, and Williams of the University
of Kentucky have generalized the extension-theorem to cover func-
tions from one Lr-space to another (unpublished work).
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