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A nonlinear integral equation of Hammerstein type is one of the form 

(1) u(x) + f K(x, y)f(y, u(y))dy = 0, 
J Q 

where G is a measure space with cr-finite measure dy and the unknown 
function u(x) is defined on G. In operator-theoretic terms, the prob­
lem of determining the solutions of the equation (1) with u lying in a 
given Banach space Y of functions on G can be put in the form of the 
nonlinear functional equation 

(2) u + AN(u) = 0 

with the linear and nonlinear mappings A and N given by 

(3) Av(x) = f K(x, y)v(y)dy, Nu(x) = ƒ(*, «(*)). 
J G 

In the present note, we establish general results on the existence 
and uniqueness of solutions of equation (2) for the Banach space 
Y=X* under appropriate assumptions of weak mono tonicity type 
upon the mappings A and N. We note that Hammerstein equations 
have an extensive literature which includes Hammerstein [ l l ] , 
Iglisch [12], Golomb [lO], Dolph [7], Rothe [18], Vainberg [19], 
[20], and Krasnosel'skiï [ ló ] . The first application of the concept of 
monotone operator in this problem was made implicitly by Golomb 
[lO] and explicitly by Vainberg [19]. More recent papers applying 
monotonicity concepts to Hammerstein equations include Dolph-
Minty [8], Kolodner [l3],Brézis [3],Kolomy [14], [15], Amann [ l ] , 
[2], de Figueiredo-Gupta [9] and Vainberg [20 ]. 

We employ the following definitions: If X is a real Banach space, 
X* its conjugate space, we let (w, u) denote the duality pairing be­
tween the element w of X* and the element u of X. A mapping A of X 
into X* is said to be monotone if for all w, v in X we have 

(A(u) - A(v),u -v)^0. 

A mapping N of X* into X is said to be hemicontinuous if it is con­
tinuous from each line segment of X* to the weak topology of X. 
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DEFINITION 1. If A is a bounded monotone linear mapping of X 
into X*, then A is said to be angle-bounded with constant c^O if for 
all u, v in X 

| (A(u),v) - (A(v),u)\ ^ 2c{(A(u),u)}u*{(A(v),v)}u*. 

DEFINITION 2. If A is a bounded linear mapping of X into X*, A is 
said to be symmetric if for all u and t> in X> 

(A(u),v) = (A(v),u). 

THEOREM 1. Let X be a general real Banach space} X* its conjugate 
space. Let A be a monotone angle-bounded continuous linear mapping of 
X into X* with constant of angle-boundedness c^O, Let N be a hemi­
continuous (possibly nonlinear) mapping of X* into X such that for a 
given constant k^O 

(4) (v - vi, N(v) - N(vO) è - k\\v - *i||x* 

for all v and V\ in X*, Suppose finally that there exists a constant R with 
k(l+c2)R<l such that for all u in X 

(5) (A(u),u)£ R\\u\\x. 

Then there exists exactly one solution w in X* of the nonlinear equation 

(6) w + AN(w) = 0. 

Some special cases of Theorem 1 are the following: 

THEOREM 2. Let X be a general real Banach space, X* its conjugate 
space, A a bounded linear mapping of X into X* with A monotone and 
angle-bounded. Let Nbea hemicontinuous (possibly nonlinear) mapping 
of X* into X which is monotone, that is, 

(v - vu N(v) - NM) à 0 

for all v and v\ in X*. 
Then there exist exactly one solution w in X* of the equation 

w + AN(w) = 0. 

The result of Theorem 2 was obtained by Amann [l] under an 
assumption that X* has a dense continuous linear imbedding in a 
Hubert space. As we show below, such assumptions are not needed 
in the proof of Theorem 1, nor in the proof of Theorem 2 which is a 
special case of Theorem 1 for k = 0. Another special case is the fol­
lowing 
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THEOREM 3. Let X be a general real Banach space, X* its conjugate 
space, A a bounded linear mapping of X into X* which is monotone and 
symmetric. Suppose that N is a hemicontinuous {possibly nonlinear) 
mapping ofX* into X such that for a given k à 0 and all v, vi in X*, 

H ||2 

(v — vi, N(v) — N(vi)) â ~ k\\v — »i||x». 

Suppose that k\\A\\<\. 
Then the equation w+AN(w) = 0 has exactly one solution w in X*. 

We note that when A is symmetric then A is angle-bounded with 
constant of angle-boundedness c = 0. 

The result of Theorem 3 was obtained by Golomb [lO] for X 
= L2(G) and by Vainberg [20] for X = LP(G), using variational meth­
ods. Our method, on the other hand, consists in splitting the linear 
operator A via a Hubert space H (Theorem 4) and reducing the 
equation (6) to an equivalent equation in H, which is then solved by 
using the results of Browder [5] and Minty [17] for monotone 
operator equations. 

We may add that the proof of Theorems 1, 2, 3 and 4 can be 
adapted in a straightforward manner to the case of a real locally-
convex space. 

We turn now to the proof of Theorem 1. An essential tool in that 
proof is the following auxiliary theorem. 

THEOREM 4. Let X be a Banach space, X* its conjugate space, A a 
bounded linear mapping of X into X* which is monotone and angle-
bounded. Then there exists a Hilbert space H, a continuous linear map­
ping S of X into H with S* injective and a bounded skew-symmetric 
linear mapping B of H into H such that A = S*(I+B)S, and the follow­
ing two inequalities hold: 

(i) 
(ü) 

^ c, with c the constant of angle-boundedness of A. 
2^Rif and only if for all u in X, (A(u)t u) 2gi?||w||x. 

PROOF. We introduce a symmetric bilinear form on X by setting 

[u,ui] = h{(A(u),ud + (A(ui),u)}. 

Since [u, u] = (A(u), w ) à 0 by the mono tonicity of A, we have the 
Cauchy-Schwarz inequality 

(7) I fc«i] I â U«,«]}l/2{[«i,«i]}1/2. 

Let N be the subset of those uinX for which [u, u ] = 0.11 follows from 
(7) that iV= {u\u in Xt [u, v]=0 for all v in X} and hence, N is a 
closed vector-subspace of X. Let Ho denote the quotient vector-space 
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X/N and endow H0 with the inner product [u+N, U\+N] = [u, Ui\. 
Under this inner product, H0 is a pre-Hilbert space. We denote by H 
the Hubert space obtained from Ho by completing it with respect to 
this inner product. We let S denote the linear mapping of X into H 
obtained from the natural projection of X onto X/N. Since A is a 
bounded linear mapping of X into X*, there exists a least constant 
R^O such that (A(u), u)^R\\u\\^ for all u in X. Hence, for all u in 
X we have 

||S(«)||* = [S(«),S(u)] - (A(u),u) ^ tf|M|x 

that is, S is a bounded linear mapping of X into H with | |S | | 2 ^i£ . 
Since the range of S coincides with H0, S has a dense range in H. 
Hence the adjoint mapping 5* of H into X* is injective. 

Since A is angle-bounded with constant of angle-boundedness 
c^O, it follows that for all u, v in X 

| (A(u),v) - (A(v),u)\ £ 2c\\S(u)\\H\\S(v)\\H. 

Hence the function 

h(S(u),S(v)) = i{(A(u),v) - (A(v),u)} 

is well defined on H0 and is a bounded bilinear form on H0. Let h also 
denote the unique extension of this bounded bilinear form on H0 to 
H. I t follows that there exists a well-defined and unique bounded 
linear mapping B of H into H such that for all u, v in X 

* ( 5 ( « ) , J ( r ) ) - [B(5(«)) fJW]. 

Since h(S(u), S(v)) = -A(5(z;), 5(w)) for all w, t; in X, it follows that 
JB is skew-symmetric on Ho and hence on all of H by continuity. We 
note that 

\[B(S(u)),S(v)]\ è c\\S(u)\\B\\S(v)\\B 

for all u, v in X and so | | 5 | | ^c. 
Finally for all u, v in X 

(A(u),v) = [u,v] + h(S(u)}S(v)) - [5(«), J W ] + [S(S(«Ö),S(*)J 

= [(/ + B)S(u),S(v)] = (5*(/ + B)S(u), v). 

Thus -4 = 5 * ( / + 5 ) 5 . This completes the proof of the theorem. 
We also need the following elementary lemma in the proof of Theo­

rem 1. 

LEMMA. Let H be a given Hubert space, B a skew-symmetric bounded 
linear mapping of H into H. Then the bounded linear mapping I+B is 
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a monotone bijective mapping of H onto H. Further, for any u in H we 
have 

I(I+B)-\H),U]Z 1+|^J|J|«I1H-

PROOF OF THEOREM 1. Suppose w in X* is a solution of the equa­
tion (6). By Theorem 4, A =S*(I+B) S and equation (6) becomes 

(8) w + S*(I + B)SN(w) = 0. 

Since S* is injective, there is a unique u in H such that w = S*(u) and 
equation (8) becomes 

(9) 5*(«) + S*(I + B)SNS*(u) = 0, 

i.e., 

(10) S*(u + (I + B)SNS*(u)) = 0. 

Since S* is injective, equation (10) is equivalent to 

(11) u + (/ + B)SNS*(u) = 0. 

Hence equation (6) has exactly one solution in X* if and only if 
equation (11) has exactly one solution in H. Now, by the lemma, 
equation (11) is equivalent to the equation 

(12) (/ + B)~l(u) + SNS*(u) = 0. 

Let T= (I+By^+SNS*. For u, v in H% 

[T(u) - T(v), u-v] = [(1 + B)~l(u -v),u-v] 

+ [SNS*(u) - SNS*(v), u - v]. 

By the lemma and Theorem 4(i) 

[(/ + B)-\u - „ ) , « - » ] è 1 + * ||* ~ v\\2
H è Y ^ | f » - «||ff. 

On the other hand, 

[SNS*(u)-SNS*(v), u-v] = (5*(«)-S*(v), NS*(u) -NS*(v)) 

è -£| |S*(«)-S*M||x.è -M||«-*| |ff 

by Theorem 4(ii). Combining these inequalities, we see that 

[T(u) - T(v), u-v]^ (1/(1 + c) - kR)\\u - »||H ^ Cl||« - t>||* 

where Ci = l / ( l+c 2 ) -£ .R>0 since k(l+c*)R<l by hypothesis. 
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Thus T is a monotone hemicontinuous mapping of H into H and T 
is injective. Moreover, for u in H we have 

[r(iO, u] = [r(«) - r(0), u - o] + [r(o), «j 

^.JW|i-||r(o)|WWU. 
Since [T(u), U]/\\U\\H—»°° as ||«||JT—•*>, Tis coercive. It then follows 
from the results of Browder [5] and Minty [17] that T maps H onto 
jffinjectively. Hence (12) has exactly one solution in i î a n d so by our 
preceding discussion, equation (6) has exactly one solution in X*. 
q.e.d. 
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