EXTENDING CERTAIN TRANSFORMATION GROUP ACTIONS IN SEPARABLE, INFINITE-DIMENSIONAL FRECHET SPACES AND THE HILBERT CUBE

BY JAMES E. WEST¹

Communicated by R. D. Anderson, May 2, 1968

A theorem of V. L. Klee, Jr. [9] asserts that any homeomorphism between two compact sets in a separable, infinite-dimensional Hilbert space can be extended to a homeomorphism of the entire space onto itself. Since it has recently been shown ([1], [5] and [6]) that all separable, infinite-dimensional Frechet spaces are homeomorphic (a Frechet space being a metrizable, complete, locally convex linear topological space), this result holds in all such spaces. A salient property of compact sets in such spaces is that for each nonnull, homotopically trivial open set U, the relative complement in U of a compact set is also nonnull and homotopically trivial (see [3, §§3–5]). This property has been called "property Z" by R. D. Anderson, who has extended Klee's theorem above to the following in [3].

Theorem A (Anderson). If X is a separable, infinite-dimensional Frechet space or the Hilbert cube, then any homeomorphism between two closed subsets of X which have property Z can be extended to a homeomorphism of X onto itself.

It might be noted here that any compact metric space can be imbedded in the Hilbert cube as a set with property Z and that any separable, complete, metric space can be imbedded in any separable, infinite-dimensional Frechet space as a closed subset with property Z (see [3]).

If X is a separable, infinite-dimensional Frechet space or the Hilbert cube, and if Y is a closed subset of X with property Z, then Theorem A provides a function F from H(Y), the group of homeomorphisms of Y onto itself, into H(X) such that for h in H(Y), $F(h) \mid Y = h$. This function is not, in general, a homomorphism, for the extension procedure does not commute with composition. It is, however, in many cases possible to construct such a homomorphism and to make it continuous in the sense of transformation groups through a linearization procedure suggested by work of P. C. Baayen and P. That is the purpose of this paper. (A transformation group is a triple (G, X, v), where P is a topological group, P is a topological space, and P is a continuous function from P into P such that

¹ Supported by National Science Foundation Grant GP 7952 X.

- (1) for g_1 and g_2 in G, $v(g_1g_2, x) = v(g_1, v(g_2, x))$ for each x in X, and
- (2) if e is the identity of G, then for each x in X, v(e, x) = x. The function v is called the action of G on X as a transformation group.) The first theorem concerns the Hilbert cube.

THEOREM 1. Any transformation group action of a topological group G on a closed subset of the Hilbert cube with property Z can be extended to an action of G on the Hilbert cube as a transformation group.

PROOF. Let (G, X, v) be the given transformation group, and let H(X) be the group of all homeomorphisms of X onto itself. Under the topology of uniform convergence, H(X) is a separable, metrizable, topological group, and the evaluation function is an action of H(X) on X as a transformation group.

Let l_2 denote the real Hilbert space of all square-summable sequences of real numbers with the norm $||(x_i)|| = (\sum_{i=1}^{\infty} x_i^2)^{1/2}$, and let E be the space of all continuous functions from H(X) into l_2 with the topology of uniform convergence on compacta. Now E is a Hausdorff, locally convex, linear topological space, and because H(X) is metrizable, E is complete [8, p. 231]. Let f_1 be an imbedding of X in l_2 , and let X' be the union of $f_1(X)$ with an infinite-dimensional compact set in l_2 disjoint from it. Let $f_2: X' \rightarrow E$ be the function defined by

$$(f_2(x'))(h) = \begin{cases} f_1 h f_1^{-1}(x'), & \text{if } x' \in f_1(X) \\ x', & \text{if } x' \notin f_1(X) \end{cases}$$

for each h in H(X). It is not difficult to see that f_2 is an imbedding of X' in E.

Let K be the closed, convex hull of $f_2(X')$ in E, and let L be the homomorphism of H(X) into the group of linear homeomorphisms of E onto itself defined by (L(g)(z))(h) = z(hg), for all z in E and all g and h in H(X). For each g in H(X), L(g) carries K into itself.

Let $w: H(X) \times K \to K$ be the function defined by L, that is, w(g, z) = (L(g))(z) for all z in K and g in H(X). By the construction, $w(g, f_2, f_1(x)) = f_2 f_1 g(x)$ for each g in H(X) and x in X. Further, w is an action of H(X) on K as a transformation group. Since the closed, convex hull of a compact set in a Hausdorff, complete, locally convex, linear, topological space is compact [10, p. 60], K is an infinite-dimensional, compact, convex set in such a space.

By a theorem of Klee [9], in order to show that K is homeomorphic to the Hilbert cube, it suffices to find a countable family of continuous linear functionals on E which separates points of K (for then using the functionals, one may imbed K linearly in l_2 and use a theorem of O.-H. Keller [7]). Such a family P may be constructed on E as follows: Let $\{h_m\}_{m>0}$ be a countable, dense set in H(X), and let

 $\{k_n\}_{n>0}$ be the family of projection functionals of l_2 onto its coordinate axes. Let $P = \{p_{mn}\}_{m,n>0}$, where for each z in E, $p_{mn}(z) = k_n(z(h_m))$. Let the Hilbert cube Y be represented as the countably infinite Cartesian product of the closed interval [-1, 1] with itself, and let q_n denote the projection of Y onto its nth coordinate space. Let $K' = K \times [-1, 1]$, and let w' be the action of H(X) on K' as a transformation group defined by w'(g, (z, t)) = (w(g, z), t), for g in H(X) and (z, t) in K'. Let f_3 be a homeomorphism of K onto Y, and let f_4 be the homeomorphism of K' onto Y defined by $f_4(z, t) = (t, q_1 f_3(z), q_2 f_3(z), \cdots)$, for (z, t) in K'.

The function $f': X \to Y$ defined by $f'(x) = f_4(f_2f_1(x), 1)$ is an imbedding of X in Y as a set with property Z, so by Theorem A there exists a homeomorphism f'' of Y onto itself agreeing with f' on X.

If $p: G \rightarrow H(X)$ is the homomorphism induced by v, that is, p(g)(x) = v(g, x) for each g in G and x in X, then it is easy to see that p is continuous. Define $v': G \times Y \rightarrow Y$ by $v'(g, y) = f''^{-1}f_4w'(p(g), f_4^{-1}f''(y))$. Now v' is the desired action of G on Y extending v.

THEOREM 2. Any transformation group action of a topological group G on a closed, locally compact subset of a separable, infinite-dimensional Frechet space Y can be extended to an action of G on Y as a transformation group.

PROOF. Let (G, X, v) be the given transformation group; let X' be the one-point compactification of X, and let f_1 be the natural imbedding of X in X'. Let $v': G \times X' \rightarrow X'$ be the transformation group action of G on X' defined by

$$v'(g, x') = \begin{cases} f_1 v(g, f_1^{-1}(x')), & \text{if } x' \in f_1(X') \\ x', & \text{if } x' \notin f_1(X') \end{cases}$$

for g in G and x' in X'. Because X' is compact and metrizable, there is an imbedding f_2 of X' in the Hilbert cube Q as a set with property Z.

Let v'' be the action of G on $f_2(X')$ induced from v' by f_2 . By Theorem 1, there is an extension w of v'' to an action of G on Q. Note that for each g in G, $w(g, f_2(X') - f_2f_1(X)) - f_2(X') = f_2f_1(X)$. Let $Y' = Q \times s$, where s is the countably infinite Cartesian product of the real line with itself. Now Y' is homeomorphic to s [2, Corollary 9.4], which is a separable, infinite-dimensional Frechet space and is hence homeomorphic to Y. Let w' be the action of G on Y' as a transformation group defined by w'(g, (y, z)) = (w(g, y), z), for g in G and (y, z) in Y'. Let f_3 be the imbedding of X' in Y' carrying x' to $(f_2(x'), 0)$, where 0 is the origin of s, and denote by x_0 the point $f_3(X' - f_1(X))$.

By a theorem of Anderson [2, Corollary 5.5], s is homeomorphic to the complement of any of its compacta, so there is a homeomorphism f_4 of $Y'-x_0$ onto Y. Let w'' be the action of G on Y as a trans-

formation group induced from w' by f_4 . Now $f_4f_4f_1$ is an imbedding of X in Y as a closed set and w'' extends the action of G on $f_4f_4f_1(X)$ induced from v, so in order to complete the proof it suffices to show that X and $f_4f_4f_1(X)$ have property Z in Y and to apply Theorem A. However, any closed, locally compact subset of a separable, infinite-dimensional Frechet space has property Z, and one way to see this is as follows: As all separable, infinite-dimensional Frechet spaces are homeomorphic, it suffices to consider s, which is homeomorphic to Q^0 , the countably infinite Cartesian product of the open interval (-1, 1) with itself and a naturally imbedded subset of the Hilbert cube. Let T be any closed, locally compact subset of Q^0 . There exists a homeomorphism h of Q onto itself carrying $Q^0 - T$ onto Q^0 [2, Corollary 5.4].

For any (relatively) open, nonnull, homotopically trivial set U in Q^0 , the set $U' = Q - \operatorname{cl}(Q^0 - U)$ is open, nonnull, and homotopically trivial in Q. Hence, $h(U') \cdot Q^0 = h(U - T)$ is nonnull, (relatively) open in Q^0 , and homotopically trivial [3, Lemma 8.3], and thus U - T is, also.

In the case of a separable, locally compact group, one may drop the hypothesis of Theorem 2 that the subset on which it acts be locally compact, as Theorem 3 below shows.

THEOREM 3. Any transformation group action of a separable, locally compact group on a closed set with property Z in a separable, infinite-dimensional Frechet space can be extended to an action of G on the entire space.

PROOF. Let (G, X, v) be the transformation group under consideration. Without loss of generality, one may assume that the action is effective, that is, that if g is in G and is not the identity, then there is some x in X such that $v(g, x) \neq x$. Effectiveness implies, in this case, that G is metrizable, for it must be Hausdorff and satisfy the first axiom of countability at each point.

As G is separable, locally compact, and metrizable, the space E of all continuous functions from G into l_2 under the topology of uniform convergence on compacta is itself a separable, infinite-dimensional Frechet space. Furthermore, the homomorphism of G into the group of linear homeomorphisms of E onto itself defined in the proof of Theorem 1 in this case defines an action of G on E as a transformation group.

Let f_1 be an imbedding of X in l_2 as a closed set, and let f_2 be the imbedding of X in E induced from f_1 as in the proof of Theorem 1. Now, as before, the action of G on E extends the action of G on $f_2(X)$ induced from v.

Let $Y' = E \times Y$, where Y is the separable, infinite-dimensional

Frechet space containing X which is in question. Now let the action of G on E generate an action of G on Y', trivial in the Y coordinate, as was done in the proof of Theorem 2. If $f_3 \colon X \to Y'$ is defined by $f_3(x) = (f_2(x), 0)$, then f_3 is an imbedding and $f_3(X)$ has property Z in Y', as it lies in a subspace of infinite co-dimension. As the defined action of G on Y' extends the induced action on $f_3(X)$ (induced from v by f_3) and as Y' is a separable, infinite-dimensional Frechet space and is thus homeomorphic to Y, there remains only to apply Theorem A in order to complete the proof.

REMARK. Raymond Y.-T. Wong has proven in [12] (but not specifically stated) that if X is a subset of the Hilbert cube Q which is homeomorphic to Q and is bi-collared (that is, there exists an open set U in Q containing X which is homeomorphic to $X \times (-1, 1)$ by a homeomorphism carrying each x in X to (x, 0)), then any action of a transformation group on X can be extended to an action on Q. (Wong proved that there exists a homeomorphism of Q onto itself carrying X onto the set of all points of Q whose first coordinate is 0.) Wong has also found a Cantor set in Q and a homeomorphism of it onto itself which cannot be extended to a homeomorphism of Q onto itself [11]. These two results are the only ones of which the author is aware concerning the extension of transformation group actions on subsets of Q which do not have property Z.

REFERENCES

- 1. R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519.
- 2. ——, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216.
 - 3. ——, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383.
- 4. P. C. Baayen and J. de Groot, Linearization of locally compact transformation groups in Hilbert space, Mathematisch Centrum, Amsterdam, 1967.
- 5. C. Bessaga and A. Pełczynski, Some remarks on homeomorphisms of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 265-270.
- 6. M. I. Kadec, On topological equivalence of all separable Banach spaces, Dokl. Akad. Nauk. SSSR 167 (1966), 23-25 = Soviet Math. Dokl. 7 (1966), 319-322.
- 7. O.-H. Keller, Die Homeomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann. 105 (1931), 748-758.
 - 8. J. L. Kelley, General topology, Van Nostrand, New York, 1955.
- 9. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 10. A. P. Robertson and W. J. Robertson, *Topological vector spaces*, Cambridge Univ. Press, New York, 1964.
- 11. R. Y.-T. Wong, A wild Cantor set in the Hilbert cube, Pacific J. Math. 24 (1968), 189-193.
 - 12. ——, Extending homeomorphisms by means of collaring (to appear).

THE INSTITUTE FOR ADVANCED STUDY