A UNIFORM GENERALIZED SCHOENFLIES THEOREM

BY PERRIN WRIGHT¹

Communicated by O. G. Harrold, February 13, 1968

The generalized Schoenflies theorem of M. Brown [2], [3] can be restated in the following way: If S^{n-1} is the equator of S^n , then any locally flat embedding $f: S^{n-1} \rightarrow S^n$ can be extended to a homeomorphism $F: S^n \rightarrow S^n$.

The purpose of this paper is to show that, if $n \ge 5$, the extension F can be constructed in a controlled manner; in particular, if $f:S^{n-1} \to S^n$ is close to the inclusion embedding, then $F: S^n \to S^n$ can be chosen to be close to the identity homeomorphism. Consequently if, $f, g:S^{n-1} \to S^n$ are locally flat embeddings, $n \ge 5$, and f is close to g, then there is a homeomorphism $H: S^n \to S^n$ which is close to the identity such that Hf = g.

Let S^{n-1} denote the unit sphere in E^n , B^n the unit ball, and O the origin. If x, y belong to $E^n - O$, let $\theta(x, y)$ denote the angle in radians between the line segments Ox and Oy, measured such that $0 \le \theta(x, y) \le \pi$. The distance between x and y under the Euclidean metric will be denoted by dist (x, y). If A is a subset of $E^n - O$, the angular diameter of A, written θ diam A, is defined to be $\sup_{x,y\in A} \theta(x, y)$. This is significant whenever A lies in a half-space.

Now suppose S is a locally flatly embedded (n-1)-sphere in E^n which approximates the standard sphere S^{n-1} . Suppose $\phi: S^{n-1} \times [0,1] \rightarrow Cl(Ext S)$ is a collar on S in Cl(Ext S). If the collar is small, then the θ -diameter of each fiber $\phi(x \times [0,1])$ is also small. The object of Lemma 2 is to push the collar outward, leaving S fixed, so that its two boundary components are separated by a round sphere with center at O, and so that the θ -diameter of each fiber remains small. The precise statement is as follows.

LEMMA 2. If $f: S^{n-1} \to E^n$, $n \ge 5$, is a locally flat embedding such that for all $x \in S^{n-1}$, $\theta(x, f(x)) < \epsilon$, where $\epsilon < \pi/7$, then there is an embedding $F: S^{n-1} \times [0, 1] \to Cl(\operatorname{Ext} f(S^{n-1}))$ such that:

- (1) F(x, 0) = f(x),
- (2) $F(S^{n-1}\times 0)$ and $F(S^{n-1}\times 1)$ are separated by some round sphere with center at O,
 - (3) For all $x \in S^{n-1}$, $t \in [0, 1]$, $\theta(x, F(x, t)) < 13n\epsilon/2 + 15\epsilon$.

¹ Work on this paper was supported by the National Science Foundation under NSF G5458.

The proof of Lemma 2 requires four auxiliary lemmas. We begin with a collar ϕ on $S=f(S^{n-1})$, and let $U=\phi(S^{n-1}\times(0,1))$. Then U is an open subset of Ext S. We further assume $\theta(x,\phi(x,t))<\epsilon$ for all x and t. Lemma A states that any complex in Ext S can be pulled into U (in the sense of [1]) by a homotopy in Ext S whose orbits have θ -diameter at most 9ϵ . Lemma B states that any complex in Ext S can be disentangled from S, i.e., pulled into the exterior of some round sphere Σ outside S, by a homotopy in Ext S whose orbits have θ -diameter less than 4ϵ . The condition that $\theta(x,f(x))<\epsilon$ for all $x\in S^{n-1}$ insures that the "folds" in S are small, and hence any point of Ext S may be moved into U or outside Σ along a path of small θ -diameter. The condition $\epsilon < \pi/7$ is a purely artificial one which makes the proofs work.

Lemmas 1A and 1B are radial engulfing lemmas. The engulfings proceed along the orbits of the homotopies guaranteed by Lemmas A and B. The proofs of these lemmas are almost identical to the proof of Engulfing Theorem A of [1], and their functions are comparable to those of Lemmas 1 and 2 of [5].

Finally, the proof of Lemma 2 is accomplished in the manner of Lemma 9.1 of [6].

If S_1 and S_2 are disjoint locally flat (n-1)-spheres in E^n , $S_1 \subset \text{Int } S_2$, and if there is a stable homeomorphism $h: E^n \to E^n$ such that $h(S_1) = S_2$, then S_1 and S_2 cobound an annulus (Theorem 10.3 of [4]). We next strengthen a special case of this theorem.

Let \overline{S} be a sphere concentric with S^{n-1} . Let \widehat{x} denote the point of \overline{S} which is coradial with $x \in S^{n-1}$. Introduce the following notation: if $y \in E^n - O$ and L is a real number such that ||y|| + L > 0, then y + L denotes the unique point of E^n which is coradial with y and has norm ||y|| + L.

If $f: S^{n-1} \to E^n$ and $\bar{f}: \bar{S} \to E^n$ are embeddings, we say that f and \bar{f} are parallel if there is a real number L such that for all $x \in S^{n-1}$, $f(x) = \bar{f}(\bar{x}) + L$.

Clearly any two disjoint parallel spheres are stably equivalent, hence cobound an annulus. Lemma 3 states that this annulus can be coordinatized so that the θ -diameters of the fibers are directly proportional to the θ -deviation of f itself.

LEMMA 3. Let \overline{S} be a sphere concentric with S^{n-1} , of radius less than 1. Let A be the annulus between \overline{S} and S^{n-1} . Let $0 < \epsilon < \pi/7$, and let $f: S^{n-1} \rightarrow E^n$, $n \ge 5$, be a locally flat embedding such that $\theta(x, f(x)) < \epsilon$ for all $x \in S^{n-1}$. Suppose $\overline{f}: \overline{S} \rightarrow \operatorname{Int} f(S^{n-1})$ is an embedding which is parallel to f. Then there is an embedding $F: A \rightarrow E^n$ such that:

- (1) $F \mid S^{n-1} = f$, (2) $F \mid \overline{S} = \overline{f}$,
- (3) $\theta(y, F(y)) < (39/2)n\epsilon + 45\epsilon$, for all $y \in A$.

To prove Lemma 3, apply Lemma 2 to obtain an annulus in $Cl(Ext f(S^{n-1}))$ which satisfies the conclusion of Lemma 2. Call this annulus R_1 , and denote the annulus between $f(S^{n-1})$ and $\bar{f}(\bar{S})$ by R_2 . Using the fact that Int R_1 contains a round sphere with center at O_1 push R_1 onto $R_1 \cup R_2$ by a radial homeomorphism of E^n . This does not alter the θ -diameters of the fibers of R_1 . Next, map $R_1 \cup R_2$ homeomorphically onto R_2 by utilizing the annular structure on R_1 . This at worst triples the θ -diameters of fibers. The result of these maps gives an annular structure on R_2 satisfying Lemma 3.

The main theorems.

THEOREM 1. If $n \ge 5$, and $f: S^{n-1} \to E^n$ is a locally flat embedding such that $\theta(f(x), x) < \epsilon$ and dist $(f(x), x) < \epsilon$ for all $x \in S^{n-1}$, then f can be extended to an embedding $F: B^n \to E^n$ such that dist (F(x), x) $< 39n\epsilon/2 + 48\epsilon$.

COROLLARY 1. For each $\eta > 0$, there is a $\delta > 0$ such that each locally flat δ -embedding of S^{n-1} into E^n , $n \ge 5$, can be extended to an n-embedding of B^n into E^n .

The proof of Theorem 1 is outlined as follows. Partition B^n into annuli A_i of thickness 2ϵ together with a small ball B_* in the center. Partition Cl(Int $f(S^{n-1})$) into annular regions R_i , together with a small cell C about the origin, in such a way that each boundary sphere of each R_i is parallel to $f(S^{n-1})$ and the parallel distance between any two consecutive spheres (i.e., the constant L of the definition of parallel embeddings) is 2ϵ . Obtain a 1-1 correspondence between the A_i and the R_i by omitting the innermost A_i or R_i , if necessary. Use Lemma 3 to map the outermost annulus A_0 homeomorphically onto the outermost region R_0 . (We assume $\epsilon < \pi/7$, for if not, Theorem 1 is certainly true.) Then it is possible to map each A_i onto the corresponding R_i by copying the map $f|A_0$. This procedure is well defined on $A_i \cap A_{i+1}$, because of the parallel condition. Finally, map B_* homeomorphically onto C in any fashion, extending the map $F \mid \dot{B}_*$.

For points $y \in A_i$, $||y|| - ||F(y)|| | < 3\epsilon$ and $\theta(y, F(y)) < (39/2)n\epsilon$ +45 ϵ . Since $||y|| \le 1$, dist $(y, F(y)) < (39/2)n\epsilon + 48\epsilon$. For points $y \in B_*$ no control is necessary because $B_* \cup C$ has diameter less than 7ϵ .

Now consider S^{n-1} to be the equator of S^n . Theorems 2 and 3 follow from Corollary 1.

THEOREM 2. Let $n \ge 5$, $\eta > 0$. There is a $\delta > 0$ such that any locally flat δ -embedding $f: S^{n-1} \rightarrow S^n$ can be extended to a η -homeomorphism $F: S^n \rightarrow S^n$.

THEOREM 3. Let $n \ge 5$, $\eta \ge 0$. Let $g: S^{n-1} \to S^n$ be any locally flat embedding. There exists a $\delta > 0$ such that if $f: S^{n-1} \to S^n$ is any locally flat embedding satisfying $\operatorname{dist}(f(x), g(x)) < \delta$, then there is an η -homeomorphism $H: S^n \to S^n$ such that Hf = g.

These results, together with those of Connell [5] and Bing [1], can be used to show that the problem of approximating homeomorphisms of S^n , $n \ge 5$, by p.w.l. ones is equivalent to approximating locally flat embeddings of (n-1)-spheres by p.w.l. ones.

REFERENCES

- 1. R. H. Bing, *Radial engulfing*, Notes of address given at Michigan State University Conference on Topology, 1967.
- 2. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.
- 3. ——, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 4. M. Brown and H. Gluck, Stable structures on manifolds. I: Homeomorphisms of Sⁿ, Ann. of Math. 79(1964), 1-17.
- 5. E. H. Connell, Approximating stable homeomorphisms by piecewise linear ones, Ann. of Math. 78(1963), 326-338.
- 6. John Stallings, On topologically unknotted spheres, Ann. of Math. 77(1963), 490-503.

FLORIDA STATE UNIVERSITY