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The generalized Schoenflies theorem of M. Brown [2], [3] can be
restated in the following way: If S"—! is the equator of S*, then any
locally flat embedding f: S*~1—S" can be extended to a homeomor-
phism F: Sr—Sn,

The purpose of this paper is to show that, if #2 5, the extension F
can be constructed in a controlled manner; in particular, if f:.57-1—S»
is close to the inclusion embedding, then F: S*—S" can be chosen to
be close to the identity homeomorphism. Consequently if, f, g:S*~1—S»
are locally flat embeddings, =35, and f is close to g, then there is a
homeomorphism H: S*—.S* which is close to the identity such that
Hf=g.

Let S*! denote the unit sphere in E®, B* the unit ball, and O the
origin. If x, ¥ belong to E»—0, let 8(x, y) denote the angle in radians
between theline segments Ox and Oy, measured such that0<0(x,y) <.
The distance between x and y under the Euclidean metric will be
denoted by dist (x, ). If 4 is a subset of E*—0, the angular diameter
of 4, written 0 diam 4, is defined to be sup,,yc40(x, ). This is signifi-
cant whenever A4 lies in a half-space.

Now suppose S is a locally flatly embedded (#—1)-sphere in En»
which approximates the standard sphere S*!, Suppose ¢: S*!
X [0, 1]—Cl(Ext S) is a collar on S in CI(Ext S). If the collar is small,
then the f-diameter of each fiber ¢(x X [0, 1]) is also small. The object
of Lemma 2 is to push the collar outward, leaving S fixed, so that its
two boundary components are separated by a round sphere with
center at O, and so that the f-diameter of each fiber remains small.
The precise statement is as follows.

LemmMA 2. If f: S*1—E» n 25, is a locally flat embedding such that for
all x&S1, 0(x, f(x)) <e, where e<w/7, then there is an embedding
F: Sm1X [0, 1]—>Cl(Ext f(S*1)) such that:

(1) F(x, 0) =f(x),

(2) F(S*1X0) and F(S™1X1) are separated by some round sphere
with center at O,

(3) Forallx&S™1,t€]0,1],0(x, F(x, £)) <13ne/2415e.

1 Work on this paper was supported by the National Science Foundation under
NSF G5458.
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The proof of Lemma 2 requires four auxiliary lemmas. We begin
with a collar ¢ on S=£(S""1), and let U=¢(S*1X (0, 1)). Then U is
an open subset of Ext .S. We further assume 0(x, ¢(x, £)) <e for all x
and . Lemma A states that any complex in Ext S can be pulled into
U (in the sense of [1]) by a homotopy in Ext .S whose orbits have
0-diameter at most 9¢. Lemma B states that any complex in Ext S can
be disentangled from S, i.e., pulled into the exterior of some round
sphere 2 outside S, by a homotopy in Ext .S whose orbits have 8-
diameter less than 4¢. The condition that 6(x, f(x)) <e for all x ES»!
insures that the “folds” in S are small, and hence any point of Ext S
may be moved into U or outside 2 along a path of small §-diameter.
The condition e < /7 is a purely artificial one which makes the proofs
work.

Lemmas 1A and 1B are radial engulfing lemmas. The engulfings
proceed along the orbits of the homotopies guaranteed by Lemmas A
and B. The proofs of these lemmas are almost identical to the proof
of Engulfing Theorem A of [1], and their functions are comparable to
those of Lemmas 1 and 2 of [5].

Finally, the proof of Lemma 2 is accomplished in the manner of
Lemma 9.1 of [6].

If S; and S; are disjoint locally flat (»—1)-spheres in E*, S;CInt Sy,
and if there is a stable homeomorphism h: E*—E" such that k(Sy)
=.S;, then S; and S; cobound an annulus (Theorem 10.3 of [4]). We
next strengthen a special case of this theorem.

Let S be a sphere concentric with S», Let £ denote the point of
S which is coradial with x&S*1, Introduce the following notation:
if yEE*—0 and L is a real number such that ||y|| +L>0, then y+L
denotes the unique point of E» which is coradial with y and has
norm ||y|| +L.

If f: S*1—FE* and J: S—E* are embeddings, we say that f and J are
parallel if there is a real number L such that for all x&5"1, f(x)
=7(@)+L.

Clearly any two disjoint parallel spheres are stably equivalent,
hence cobound an annulus. Lemma 3 states that this annulus can be
coordinatized so that the §-diameters of the fibers are directly propor-
tional to the 6-deviation of f itself.

LEMMA 3. Let S be a sphere concentric with S*—1, of radius less than 1.
Let A be the annulus between S and S*1. Let 0<e<w/7, and let
f: Sr—1—En, n2 5, be a locally flat embedding such that 8(x, f(x)) <e
for all x&S™1, Suppose f: S—Int f(S"1) is an embedding which is
parallel to f. Then there is an embedding F: A—E" such that:
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(1) F|S1t=f,
(2) F|S=},
(3) 8(y, F(3)) <(39/2)ne+45¢, for all yEA.

To prove Lemma 3, apply Lemma 2 to obtain an annulus in
CI(Ext f(S"')) which satisfies the conclusion of Lemma 2. Call this
annulus Ry, and denote the annulus between f(S*!) and f(S) by R..
Using the fact that Int R, contains a round sphere with center at O,
push R, onto R,\UR, by a radial homeomorphism of E*. This does not
alter the f-diameters of the fibers of R;. Next, map R;\UR, homeo-
morphically onto R, by utilizing the annular structure on R;. This at
worst triples the f-diameters of fibers. The result of these maps gives
an annular structure on R, satisfying Lemma 3.

The main theorems.

THEOREM 1. If =5, and f: S*'—E" is a locally flat embedding
such that 0(f(x), x) <e and dist (f(x), x) <e for all x&ES*, then f
can be extended to an embedding F: B»—E" such that dist (F(x), x)
<39n€/2 +48e.

COROLLARY 1. For each 1>0, there is a 6§ >0 such that each locally
flat b-embedding of S*~! into E", n =5, can be extended to an n-embedding
of B" into E™.

The proof of Theorem 1 is outlined as follows. Partition B* into
annuli 4, of thickness 2¢ together with a small ball By in the center.
Partition Cl(Int f(S*')) into annular regions R;, together with a
small cell C about the origin, in such a way that each boundary sphere
of each R; is parallel to f(S*!) and the parallel distance between any
two consecutive spheres (i.e., the constant L of the definition of paral-
lel embeddings) is 2e. Obtain a 1-1 correspondence between the 4; and
the R; by omitting the innermost 4; or R;, if necessary. Use Lemma
3 to map the outermost annulus 4, homeomorphically onto the outer-
most region Ry. (We assume e<w/7, for if not, Theorem 1 is certainly
true.) Then it is possible to map each 4; onto the corresponding R; by
copying the map f [Ao. This procedure is well defined on 4;MN\A4 4,
because of the parallel condition. Finally, map Bsx homeomorphically
onto C in any fashion, extending the map F | B

For points €45, | [Isl| —||FGI| | <3¢ and 00y, F()) <(39/2)ne
+45e. Since ||y]| 1, dist(y, F(y)) < (39/2)ne+48¢. For points yE By
no control is necessary because Bx\JC has diameter less than 7e.

Now consider S*! to be the equator of S». Theorems 2 and 3 follow
from Corollary 1.
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THEOREM 2. Let n=5, 9>0. There is a >0 such that any locally
flat d-embedding f: S"~1—S™ can be extended o a n-homeomorphism
F: Sr—Sn,

THEOREM 3. Let =5, n=0. Let g: S*1—S" be any locally flat em-
bedding. There exists a 6> 0 such that if f: S1—S" is any locally flat
embedding satisfying dist(f(x), g(x)) <9, then there is an n-homeomor-
phism H: S*—S™ such that Hf =g.

These results, together with those of Connell [5] and Bing [1], can
be used to show that the problem of approximating homeomorphisms
of S, n=35, by p.w.l. ones is equivalent to approximating locally flat
embeddings of (n—1)-spheres by p.w.l. ones.
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