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1. In [2] A. Grothendieck quotes an example, due to J. P. Serre, of 
a complex algebraic nilpotent Lie group G and a discrete uniform 
subgroup a: r C G , such that the characteristic homomorphism in­
duced in the rational cohomology of the classifying spaces 

Ba*:H*(B0, Q) - • H*(BT, Q) S fl*(I\ 0 ) 

is not trivial. The purpose of this note is to generalize this example to 
nilpotent Lie groups admitting a discrete uniform subgroup. 

Let G' be a simply connected and connected nilpotent (real) Lie 
group of dimension n with center Z(G') and <x':T'C.G' a discrete 
uniform subgroup of G' (i.e., G'/T' compact). Then A ^YT\Z(Gf) is 
a free abelian group of rank m = dim Z(G ' )>0 . Consider G — G'/A 
and T~T'/A with the natural inclusion a:T(ZG and the induced 
map in classifying spaces Ba: BT-~*BG. I t is clear that T is a discrete 
uniform subgroup of G. 

THEOREM 1.1. The rational characteristic homomorphism 

Ba*:H*(B0, Q) -> fl*(5r, 0 ) - fl*(I\ 0 ) 

is trivial (i.e. zero in positive dimensions) if and only if G' is the vector 
group Rn. 

Since G' is contractible, G = G'/A is a space of type K(A, 1) and 
hence the cohomology of its classifying space is given by H*(BG> Z) 
— Z[xi, • • • , xm]t deg(xk) = 2 . Moreover Ba is the classifying map of 
the flat G-bundle rj: ETXTG-^B?, where £ r is the total space of the 
universal T-bundle [4], [S]. The classes xkfyi) =Ba*(xk) GH2(V, Z) are 
then the characteristic classes over Z of the G-bundle rj. 

COROLLARY 1.2. The integral characteristic classes Xk(rj)t ^ 1 » 
• • • , m of the flat G-bundle rj are torsion classes if and only if G' is the 

vector group Rn. 

1 The author was supported by a National Science Foundation grant at The 
Institute for Advanced Study, Princeton. 
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Since Br can be realized as a compact manifold (§4), it has the 
homotopy type of a finite CW-complex; hence 1.2 is just a reformula­
tion of 1.1. 

Theorem 1.1 is in sharp contrast to [4, Theorems 2.2, 3.4, 3.5] and 
[2, Theorem 7.1] where sufficient conditions for the triviality of the 
rational characteristic homomorphism were given and it increases the 
number of examples [8], [2, 7.5] of flat principal bundles with non-
trivial rational characteristic classes. 

The proof of Theorem 1.1 will be given in §§2 and 3. In §4 we will 
consider a particular realization of 5 r as a compact manifold and 
examine the question whether the tangent bundle of this manifold is 
associated to the bundle rj in Corollary 1.2. 

I want to thank A. Borel, J. P. Brezin and J. P. Serre for a useful 
discussion. 

2. Proof of Theorem 1.1. The "if" part of the theorem is trivial. 
In fact, G' =Rn implies T = {1}. The "only if" part will be proved in 
the formulation of Corollary 1.2. The characteristic classes xk(i]) 
= Ba*(xk)GH2(r, Z) can be given various interpretations which we 
list in the following 

LEMMA 2.1 [5, PROPOSITION 4.17], [10, p. 189]. The following ele­
ments of H2(T, A), A^7Ti(G)^Zm are equal up to sign: 

(i) x(ri) = (xk(r)))k=i,>>>,m. 
(ii) r„(i)9 where i is the fundamental class in Hl(G, Ti(G)) 

=^Hom(7ri(G), Ti(G)) corresponding to the identity homomorphism and 
r„ is the transgression in the bundle rj. 

(iii) o(rç), the primary obstruction to a cross section in rj. 
(iv) ô(a), where S is the coboundary in the non-abelian cohomology 

sequence 

* -» Hl(T, A) ~> Hl(T, G') -+ H\T, G) -» # 2 ( I \ 4 ) 

associated to the universal covering sequence 

0 - > , 4 - > G ' - > G - > l 

ofG. 
(v) <l>(E)f the characteristic cohomology class of the central extension 

£:o->,4->r'-»r->i. 
% q 

REMARK 2.2. Lemma 2.1 only makes sense for specific isomor­
phisms H*(B0, Z)^Z[XU • • • , xm] and wi(G)^Zm. These isomor­
phisms will be exhibited at the end of §3. 
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By Lemma 2.1 it is sufficient to show that G' is the vector group 
Rn if the class <1>(E) is a torsion class. The spectral sequence of the 
extension E determines a five-term exact sequence [3, Theorem 4.2] 

0 -» Hl(T, A) - • miT', A) 
(2.3) 

- j H\A, A) -» HKT, A) - j ZP( r \ 4 ) 

and it is well known that <t>(E) =r(id i i) . If $(E) is a torsion class it 
follows from the exactness of (2.3) that (j> o i=\-idA for some X£Z+ 
and ^ G i ^ C r , 4 ) = H o m ( T f i l ) (4 is a trivial T-module). 

REMARK 2.4. Up to now our considerations apply equally well to 
the primary obstruction of flat bundles induced by any homomor-
phism a: T—>G of a discrete group T into a path-connected topological 
group G. The next lemma, however, will make use of the fact that G 
is a nilpotent Lie group. 

LEMMA 2.5. Let a': T'-*G' and A *=TT\Z(G'), as in §1. If there exists 
a homomorphism # E H o m ( r ' , -4) such that <j> o i=X-id,i, X £ Z + where 
i: A—*T' is the inclusion, then G' is isomorphic to the vector group Rn. 

I t is clear from what has already been said that Lemma 2.5 will 
complete the proof of Theorem 1.1. 

3. First we list some known facts about 1-connected and connected 
nilpotent Lie groups and their discrete uniform subgroups. Let 
a! : r ' C G' be such a pair and Q the Lie algebra of G\ Then there exists 
a base &, • • • , £n of g such that the map p: g—>G' defined by % 
= ]EXi V & ~ * p ( £ ) - n ? = i exp (Xi-f,-) is a homeomorphism a n d p ( Ö E r ' 
if and only if \iCzZ (Malcev coordinates [6]). Moreover the center 
S(ô) °f 8 i s non trivial, say of dimension m>0 [ l ; 4, Corollary l ] and 
exp: i($)--*Z(Gf) is a homeomorphism [7, Lemma 3]. Hence Z(G') is 
a vector group Rm. We quote the following results as a lemma. 

LEMMA 3.1. (i) [6] G' has a discrete uniform subgroup if and only if 
there exists a {nilpotent) Lie algebra i} over the rationals Q such that 
8 =ï) ® QR (i.e. g is rational). 

(ii) [9, Lemma 2.1] Let HQGf be a closed connected subgroup, 
T'Qfi' a discrete uniform subgroup. Then Yfr\HCH is uniform if the 
Lie algebra f) of His rational. 

Since Z(G') is trivially rational, it follows that A = r / P\Z(G / ) is 
uniform in Z(G'). Hence A is free abelian of rank m and Z{Gf)/A is a 
torus T>. 

We are now ready to prove Lemma 2.5. Consider the diagram 

file:///iCzZ
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ƒ 
G' i- Z(G') 

a'î U' 
T'<=± A , 0 o i = X-id^, XGZ+. 

i 

Using Malcev coordinates we define an analytic homomorphism 
3>: G'—>Z(G') satisfying /3' o<£=$ o a ' and <£o/=X*id.zr' by $(g) 
888 ]C?«i *<'<**» where g = IJ?- i exp (/*••&) and J t = 0 ( e x p (&)) (we use 
additive notation in Z(Gr)=Rm and omit ce' and j8' from the formu­
lae). <£ extends 0 : In fact, for 7 = IJ?„i exp(^- • J»-) £ 1 " , /*£Z, we have 
* ( T ) = : ]C?«a ti'di— ]£?-i *r<3Kexp(£t-)) =0(7) since <£ is a homomor­
phism. Let ft= H?_i exp(s»-ft); then we have g&= XlJLi exp(wr£»)> 
Ui=*ti+Si+qi(tif • • • , ^-i ;5i , • • • , 5i_i) where the ^ are polynomials 
with rational coefficients and integral values for /»-, s 4 £ Z [ó]. I t fol­
lows that * (gf t )=*(g)+*(A)+S, S = Zr.i2<Öi» • • • Î *» * • -)'di. 
Since <f> is a homomorphism, the polynomial function S with values 
in Z{G')=Rrn vanishes for tit s*£Z. Hence it vanishes identically and 
$ is a homomorphism. Finally, &ojf:Z{G')-*Z(Gf) extends <j>oi 
=X-idjL and since A(ZZ(G') is discrete uniform, this extension is 
unique and given by X*id#'. 

Since Z(G') is a vector group we can define a new homomorphism 
*(g) — lA'*(£)> g £ G ' which now satisfies ^ o j = idz'. Hence we 
have G' = Z(G') X G" with G" = ker (#). G" is with G' 1-connected, 
connected and nilpotent. Moreover G" is centerless and hence trivial 
by [l;4, Corollaryl]. Therefore w = m a n d G' = Z(G') = JRn. 

LEMMA 3.2. (i) j : Tm=^Z{G,)/AC.G^Gt/A is a maximal compact 
subgroup of G, A = r ' n Z ( G ' ) . 

(ii) cL\T—T'/A(ZG'/Z(Gf) is a discrete uniform subgroup and we 
have a principal fibration 

(3.3) T» -> Gf/Y' -» (G'/Z(G'))/r. 

PROOF, (i) The fibration Z(G')/A-*G'/A-*G'/Z(G') shows at once 
that Z(G')/A is maximal compact in G'/A, since Gr/Z{G') is con-
tractible. By Lemma 3.1 (ii), Z{G')-T' is closed in G' and hence T is 
discrete in G' /Z{G'). The fact that (3.3) is a fibration follows now 
easily. Since G'/T' is compact, the same must be true for (G'/Z(G'))/T. 

REMARK 3.3. By Lemma 3.2, j : T^C G is a homotopy equivalence 
and so is the map in classifying spaces, By. B^m—^Bo» The isomor­
phisms referred to in Remark 2.2 are those induced by j resp. Bj (we 
choose standard generators in T"*). 

4. Let G be a connected Lie group, j : KQG a maximal compact 
subgroup, aiTQG a discrete uniform subgroup and assume for sim-
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plicity that TC\Z(G) = 0 and that T is torsion-free, Then T acts freely 
and properly discontinuous on K\G, which is topologically a euclidean 
space; hence the compact manifold (K\G)/T is of type K(T, 1) and 
can be taken as a classifying space Br- With respect to the paralleliza-
tion of G by right invariant vector fields the tangent bundle of B r is 
of the form (fa/tXKG)/T->(K\G)/T, where K acts on g/f by the 
isotropy representation p: K—>GL+(g/ï). I t is then easily seen that 
the composite homomorphism 

Bo* (Bi*)"1 Ba* 
(4.1) # * ( J W , Q) > H*(BK, Q) ; J •> H*(B0, Q) • B*(BT, 0) 

is the characteristic homomorphism of the tangent bundle of Brf 

so that this tangent bundle is in a weak sense associated to the flat 
G-bundle rjiErX TG—>B r, E r = K\G with classifying map Ba ; B r—*B G> 

Let now T and G as in Theorem 1.1. Then by Lemma 3.2 K= T™ 
and BY = (G' /Z(G') ) / r = (G/T^/T. Since T*1 is in the center of G, it 
follows that the isotropy representation p is trivial and that the tan­
gent bundle of B? is trivial. Looking at (4.1) one sees that the char­
acteristic classes xk(r)) ==5a*fe), fe = l, » • • , m of the flat G-bundle 
K] in Corollary 1.2 are not tangent classes of B r. 

A detailed study of the relation between the characteristic classes 
of the representation a:TQG and the tangent classes of the manifold 
J5 r = (K\G)/T in the more general case described above will be made 
in a subsequent paper. 
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