ON THE CHARACTERISTIC HOMOMORPHISM OF A DISCRETE UNIFORM SUBGROUP OF A NILPOTENT LIE GROUP

BY FRANZ KAMBER¹

Communicated by N. E. Steenrod, January 17, 1968

1. In [2] A. Grothendieck quotes an example, due to J. P. Serre, of a complex algebraic nilpotent Lie group G and a discrete uniform subgroup α : $\Gamma \subset G$, such that the characteristic homomorphism induced in the rational cohomology of the classifying spaces

$$B\alpha^*: H^*(B_G, \mathbf{Q}) \to H^*(B_\Gamma, \mathbf{Q}) \cong H^*(\Gamma, \mathbf{Q})$$

is not trivial. The purpose of this note is to generalize this example to nilpotent Lie groups admitting a discrete uniform subgroup.

Let G' be a simply connected and connected nilpotent (real) Lie group of dimension n with center Z(G') and $\alpha' \colon \Gamma' \subset G'$ a discrete uniform subgroup of G' (i.e., G'/Γ' compact). Then $A = \Gamma' \cap Z(G')$ is a free abelian group of rank $m = \dim Z(G') > 0$. Consider G = G'/A and $\Gamma = \Gamma'/A$ with the natural inclusion $\alpha \colon \Gamma \subset G$ and the induced map in classifying spaces $B\alpha \colon B_{\Gamma} \to B_G$. It is clear that Γ is a discrete uniform subgroup of G.

THEOREM 1.1. The rational characteristic homomorphism

$$B\alpha^*: H^*(B_G, \mathbf{Q}) \to H^*(B_{\Gamma}, \mathbf{Q}) = H^*(\Gamma, \mathbf{Q})$$

is trivial (i.e. zero in positive dimensions) if and only if G' is the vector group \mathbb{R}^n .

Since G' is contractible, G = G'/A is a space of type K(A, 1) and hence the cohomology of its classifying space is given by $H^*(B_G, \mathbf{Z}) = \mathbf{Z}[x_1, \dots, x_m]$, $\deg(x_k) = 2$. Moreover $B\alpha$ is the classifying map of the flat G-bundle $\eta: E_{\Gamma} \times_{\Gamma} G \to B_{\Gamma}$, where E_{Γ} is the total space of the universal Γ -bundle [4], [5]. The classes $x_k(\eta) = B\alpha^*(x_k) \in H^2(\Gamma, \mathbf{Z})$ are then the characteristic classes over \mathbf{Z} of the G-bundle η .

COROLLARY 1.2. The integral characteristic classes $x_k(\eta)$, k=1, \cdots , m of the flat G-bundle η are torsion classes if and only if G' is the vector group \mathbb{R}^n .

¹ The author was supported by a National Science Foundation grant at The Institute for Advanced Study, Princeton.

Since B_{Γ} can be realized as a compact manifold (§4), it has the homotopy type of a finite CW-complex; hence 1.2 is just a reformulation of 1.1.

Theorem 1.1 is in sharp contrast to [4, Theorems 2.2, 3.4, 3.5] and [2, Theorem 7.1] where sufficient conditions for the triviality of the rational characteristic homomorphism were given and it increases the number of examples [8], [2, 7.5] of flat principal bundles with non-trivial rational characteristic classes.

The proof of Theorem 1.1 will be given in §§2 and 3. In §4 we will consider a particular realization of B_{Γ} as a compact manifold and examine the question whether the tangent bundle of this manifold is associated to the bundle η in Corollary 1.2.

I want to thank A. Borel, J. P. Brezin and J. P. Serre for a useful discussion.

2. Proof of Theorem 1.1. The "if" part of the theorem is trivial. In fact, $G' = \mathbb{R}^n$ implies $\Gamma = \{1\}$. The "only if" part will be proved in the formulation of Corollary 1.2. The characteristic classes $x_k(\eta) = B\alpha^*(x_k) \subset H^2(\Gamma, \mathbb{Z})$ can be given various interpretations which we list in the following

LEMMA 2.1 [5, PROPOSITION 4.17], [10, p. 189]. The following elements of $H^2(\Gamma, A)$, $A \cong \pi_1(G) \cong \mathbb{Z}^m$ are equal up to sign:

- (i) $x(\eta) = (x_k(\eta))_{k=1, \dots, m}$.
- (ii) $\tau_{\eta}(\iota)$, where ι is the fundamental class in $H^1(G, \pi_1(G))$ $\cong \operatorname{Hom}(\pi_1(G), \pi_1(G))$ corresponding to the identity homomorphism and τ_{η} is the transgression in the bundle η .
 - (iii) $o(\eta)$, the primary obstruction to a cross section in η .
- (iv) $\delta(\alpha)$, where δ is the coboundary in the non-abelian cohomology sequence

$${}^* \to H^1(\Gamma,\,A) \to H^1(\Gamma,\,G') \to H^1(\Gamma,\,G) \xrightarrow{\delta} H^2(\Gamma,\,A)$$

associated to the universal covering sequence

$$0 \to A \to G' \to G \to 1$$

of G.

(v) $\phi(E)$, the characteristic cohomology class of the central extension

$$E \colon\! 0 \to A \xrightarrow{i} \Gamma' \xrightarrow{q} \Gamma \to 1.$$

REMARK 2.2. Lemma 2.1 only makes sense for specific isomorphisms $H^*(B_G, \mathbb{Z}) \cong \mathbb{Z}[x_1, \dots, x_m]$ and $\pi_1(G) \cong \mathbb{Z}^m$. These isomorphisms will be exhibited at the end of §3.

By Lemma 2.1 it is sufficient to show that G' is the vector group \mathbb{R}^n if the class $\phi(E)$ is a torsion class. The spectral sequence of the extension E determines a five-term exact sequence [3, Theorem 4.2]

$$\begin{array}{c} 0 \to H^1(\Gamma,\,A) \to H^1(\Gamma',\,A) \\ \\ (2.3) \\ \xrightarrow{i^*} H^1(A,\,A) \xrightarrow{\tau} H^2(\Gamma,\,A) \xrightarrow{q^*} H^2(\Gamma',\,A) \end{array}$$

and it is well known that $\phi(E) = \tau(\mathrm{id}_A)$. If $\phi(E)$ is a torsion class it follows from the exactness of (2.3) that $\phi \circ i = \lambda \cdot \mathrm{id}_A$ for some $\lambda \in \mathbb{Z}^+$ and $\phi \in H^1(\Gamma', A) = \mathrm{Hom}(\Gamma', A)$ (A is a trivial Γ' -module).

REMARK 2.4. Up to now our considerations apply equally well to the primary obstruction of flat bundles induced by any homomorphism $\alpha: \Gamma \rightarrow G$ of a discrete group Γ into a path-connected topological group G. The next lemma, however, will make use of the fact that G is a nilpotent Lie group.

LEMMA 2.5. Let $\alpha' : \Gamma' \to G'$ and $A = \Gamma' \cap Z(G')$, as in §1. If there exists a homomorphism $\phi \in \text{Hom}(\Gamma', A)$ such that $\phi \circ i = \lambda \cdot \text{id}_A$, $\lambda \in \mathbb{Z}^+$ where $i : A \to \Gamma'$ is the inclusion, then G' is isomorphic to the vector group \mathbb{R}^n .

It is clear from what has already been said that Lemma 2.5 will complete the proof of Theorem 1.1.

3. First we list some known facts about 1-connected and connected nilpotent Lie groups and their discrete uniform subgroups. Let $\alpha' \colon \Gamma' \subset G'$ be such a pair and \mathfrak{g} the Lie algebra of G'. Then there exists a base ξ_1, \dots, ξ_n of \mathfrak{g} such that the map $\rho \colon \mathfrak{g} \to G'$ defined by $\xi = \sum_{i=1}^n \lambda_i \cdot \xi_i \to \rho(\xi) = \prod_{i=1}^n \exp(\lambda_i \cdot \xi_i)$ is a homeomorphism and $\rho(\xi) \subset \Gamma'$ if and only if $\lambda_i \subset Z$ (Malcev coordinates [6]). Moreover the center $\mathfrak{g}(\mathfrak{g})$ of \mathfrak{g} is nontrivial, say of dimension m > 0 [1; 4, Corollary 1] and $\exp \colon \mathfrak{g}(\mathfrak{g}) \to Z(G')$ is a homeomorphism [7, Lemma 3]. Hence Z(G') is a vector group R^m . We quote the following results as a lemma.

LEMMA 3.1. (i) [6] G' has a discrete uniform subgroup if and only if there exists a (nilpotent) Lie algebra \mathfrak{h} over the rationals Q such that $\mathfrak{g} = \mathfrak{h} \otimes QR$ (i.e. \mathfrak{g} is rational).

(ii) [9, Lemma 2.1] Let $H \subset G'$ be a closed connected subgroup, $\Gamma' \subset G'$ a discrete uniform subgroup. Then $\Gamma' \cap H \subset H$ is uniform if the Lie algebra \mathfrak{h} of H is rational.

Since Z(G') is trivially rational, it follows that $A = \Gamma' \cap Z(G')$ is uniform in Z(G'). Hence A is free abelian of rank m and Z(G')/A is a torus T^m .

We are now ready to prove Lemma 2.5. Consider the diagram

$$G' \stackrel{j'}{\leftarrow} Z(G')$$
 $\alpha' \uparrow \qquad \uparrow \beta'$

$$\Gamma' \stackrel{\phi}{\rightleftharpoons} A \quad , \qquad \phi \circ i = \lambda \cdot \mathrm{id}_A, \ \lambda \in \mathbf{Z}^+.$$

Using Malcev coordinates we define an analytic homomorphism $\Phi: G' \to Z(G')$ satisfying $\beta' \circ \phi = \Phi \circ \alpha'$ and $\Phi \circ j' = \lambda \cdot \mathrm{id}_{Z'}$ by $\Phi(g) = \sum_{i=1}^n t_i \cdot d_i$, where $g = \prod_{i=1}^n \exp(t_i \cdot \xi_i)$ and $d_i = \phi(\exp(\xi_i))$ (we use additive notation in $Z(G') \cong \mathbb{R}^m$ and omit α' and β' from the formulae). Φ extends ϕ : In fact, for $\gamma = \prod_{i=1}^n \exp(t_i \cdot \xi_i) \in \Gamma'$, $t_i \in \mathbb{Z}$, we have $\Phi(\gamma) = \sum_{i=1}^n t_i \cdot d_i = \sum_{i=1}^n t_i \cdot \phi(\exp(\xi_i)) = \phi(\gamma)$ since ϕ is a homomorphism. Let $h = \prod_{i=1}^n \exp(s_i \cdot \xi_i)$; then we have $gh = \prod_{i=1}^n \exp(u_i \cdot \xi_i)$, $u_i = t_i + s_i + q_i(t_1, \dots, t_{i-1}; s_1, \dots, s_{i-1})$ where the q_i are polynomials with rational coefficients and integral values for t_i , $s_i \in \mathbb{Z}$ [6]. It follows that $\Phi(gh) = \Phi(g) + \Phi(h) + \Sigma$, $\Sigma = \sum_{i=1}^n q_i(t_1, \dots; s_1, \dots) \cdot d_i$. Since ϕ is a homomorphism, the polynomial function Σ with values in $Z(G') \cong \mathbb{R}^m$ vanishes for t_i , $s_i \in \mathbb{Z}$. Hence it vanishes identically and Φ is a homomorphism. Finally, $\Phi \circ j' : Z(G') \to Z(G')$ extends $\phi \circ i = \lambda \cdot \mathrm{id}_A$ and since $A \subset Z(G')$ is discrete uniform, this extension is unique and given by $\lambda \cdot \mathrm{id}_{Z'}$.

Since Z(G') is a vector group we can define a new homomorphism $\Psi(g) = 1/\lambda \cdot \Phi(g)$, $g \in G'$ which now satisfies $\Psi \circ j = \mathrm{id}_{Z'}$. Hence we have $G' = Z(G') \times G''$ with $G'' = \ker (\Psi)$. G'' is with G' 1-connected, connected and nilpotent. Moreover G'' is centerless and hence trivial by [1;4, Corollary1]. Therefore n = m and $G' = Z(G') = \mathbb{R}^n$.

LEMMA 3.2. (i) $j: T^m = Z(G')/A \subset G = G'/A$ is a maximal compact subgroup of $G, A = \Gamma' \cap Z(G')$.

(ii) $\bar{\alpha}$: $\Gamma = \Gamma'/A \subset G'/Z(G')$ is a discrete uniform subgroup and we have a principal fibration

$$(3.3) T^m \to G'/\Gamma' \to (G'/Z(G'))/\Gamma.$$

PROOF. (i) The fibration $Z(G')/A \rightarrow G'/A \rightarrow G'/Z(G')$ shows at once that Z(G')/A is maximal compact in G'/A, since G'/Z(G') is contractible. By Lemma 3.1 (ii), $Z(G') \cdot \Gamma'$ is closed in G' and hence Γ is discrete in G'/Z(G'). The fact that (3.3) is a fibration follows now easily. Since G'/Γ' is compact, the same must be true for $(G'/Z(G'))/\Gamma$.

REMARK 3.3. By Lemma 3.2, $j: T^m \subset G$ is a homotopy equivalence and so is the map in classifying spaces, $Bj: B_{T^m} \to B_G$. The isomorphisms referred to in Remark 2.2 are those induced by j resp. Bj (we choose standard generators in T^m).

4. Let G be a connected Lie group, $j: K \subset G$ a maximal compact subgroup, $\alpha: \Gamma \subset G$ a discrete uniform subgroup and assume for sim-

plicity that $\Gamma \cap Z(G) = 0$ and that Γ is torsion-free. Then Γ acts freely and properly discontinuous on $K \setminus G$, which is topologically a euclidean space; hence the compact manifold $(K \setminus G)/\Gamma$ is of type $K(\Gamma, 1)$ and can be taken as a classifying space B_{Γ} . With respect to the parallelization of G by right invariant vector fields the tangent bundle of B_{Γ} is of the form $((\mathfrak{g}/\mathfrak{k}) \times K)/\Gamma \to (K \setminus G)/\Gamma$, where K acts on $\mathfrak{g}/\mathfrak{k}$ by the isotropy representation $\rho \colon K \to \mathrm{GL}^+(\mathfrak{g}/\mathfrak{k})$. It is then easily seen that the composite homomorphism

$$(4.1) \quad H^*(B_{\mathrm{GL}^+}, \mathbf{Q}) \xrightarrow{B\rho^*} H^*(B_K, \mathbf{Q}) \xrightarrow{(Bj^*)^{-1}} H^*(B_G, \mathbf{Q}) \xrightarrow{B\alpha^*} H^*(B_{\Gamma}, \mathbf{Q})$$

is the characteristic homomorphism of the tangent bundle of B_{Γ} , so that this tangent bundle is in a weak sense associated to the flat G-bundle $\eta: E_{\Gamma} \times_{\Gamma} G \to B_{\Gamma}, E_{\Gamma} = K \setminus G$ with classifying map $B\alpha: B_{\Gamma} \to B_{G}$.

Let now Γ and G as in Theorem 1.1. Then by Lemma 3.2 $K = T^m$ and $B_{\Gamma} = (G'/Z(G'))/\Gamma = (G/T^m)/\Gamma$. Since T^m is in the center of G, it follows that the isotropy representation ρ is trivial and that the tangent bundle of B_{Γ} is trivial. Looking at (4.1) one sees that the characteristic classes $x_k(\eta) = B\alpha^*(x_k)$, $k = 1, \dots, m$ of the flat G-bundle η in Corollary 1.2 are *not* tangent classes of B_{Γ} .

A detailed study of the relation between the characteristic classes of the representation α : $\Gamma \subset G$ and the tangent classes of the manifold $B_{\Gamma} = (K \setminus G)/\Gamma$ in the more general case described above will be made in a subsequent paper.

References

- 1. N. Bourbaki, Groupes et algebres de Lie, Hermann, Paris, 1960.
- 2. A. Grothendieck, Classes de Chern et représentations linéaires des groupes discrets, preprint.
- 3. G. Hochschild and J. P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134.
- 4. F. Kamber and Ph. Tondeur, The characteristic homomorphism of flat bundles, Topology 6 (1967), 153-159.
- 5. ——, Flat bundles and characteristic classes of group representations, Amer. J. Math. 89 (1967), 857-886.
- 6. A. I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32; Amer. Math. Soc. Trans. No. 39 (1949).
- 7. Y. Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J. 2 (1951), 95-110.
- 8. J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1957), 215-223.
- 9. C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent Lie groups, Ann. Math. 82 (1965), 146–182.
- 10. N. Steenrod, The topology of fiber bundles, Princeton Univ. Press, Princeton, N. J., 1951.

THE INSTITUTE FOR ADVANCED STUDY